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Abstract 

Background:  The mechanism of cuproptosis, a novel copper-induced cell death by regulating tricarboxylic acid 
cycle (TCA)-related genes, has been reported to regulate oxidative phosphorylation system (OXPHOS) in cancers and 
can be regarded as potential therapeutic strategies in cancer; however, the characteristics of cuproptosis in pan-can-
cer have not been elucidated.

Methods:  The multi-omics data of The Cancer Genome Atlas were used to evaluate the cuproptosis-associated char-
acteristics across 32 tumor types. A cuproptosis enrichment score (CEScore) was established using a single sample 
gene enrichment analysis (ssGSEA) in pan-cancer. Spearman correlation analysis was used to identify pathway most 
associated with CEScore. Lasso-Cox regression was used to screen prognostic genes associated with OXPHOS and 
further construct a cuproptosis-related prognostic model in clear cell renal cell carcinoma (ccRCC).

Results:  We revealed that most cuproptosis-related genes (CRGs) were differentially expressed between tumors 
and normal tissues, and somatic copy number alterations contributed to their aberrant expression. We established a 
CEScore index to indicate cuproptosis status which was associated with prognosis in most cancers. The CEScore was 
negatively correlated with OXPHOS and significantly featured prognosis in ccRCC. The ccRCC patients with high-risk 
scores show worse survival outcomes and bad clinical benefits of Everolimus (mTOR inhibitor).

Conclusions:  Our findings indicate the importance of abnormal CRGs expression in cancers. In addition, identified 
several prognostic CRGs as potential markers for prognostic distinction and drug response in the specific tumor. These 
results accelerate the understanding of copper-induced death in tumor progression and provide cuproptosis-associ-
ated novel therapeutic strategies.
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Introduction
Recently, Tsvetkov et  al. identified and termed a cop-
per-induced cell death (call ‘cuproptosis’) which dis-
tinct from ferroptosis, necroptosis and apoptosis [1]. 
Meanwhile, the pivotal mechanism of cuproptosis regu-
lated via cuproptosis-related genes (CRGs) was also 
revealed. In the happened of cuproptosis, lipoyl moiety 
acts as a direct copper binder, causing lipoylated protein 
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aggregation, Fe–S cluster–containing proteins lose, and 
the 70-kDa heat shock proteins elevation [2, 3]. In the 
past study, the copper chelator is an effective treatment 
for genetic abnormalities of copper homeostasis (such 
as Wilson’s disease and Menke’s disease) [4]. Interest-
ingly, dysregulated copper levels have been reported in 
patients suffering from differential cancers, including 
kidney, lung, breast, and colorectal cancers [3, 5–11]. 
Part of CRGs have been reported to play a significant 
role in tumors, including Ferredoxin 1 (FDX1) [12], pyru-
vate dehydrogenase E1 subunit alpha 1 (PDHA1) [13, 
14], dihydrolipoamide dehydrogenase (DLD) [15, 16], 
and dihydrolipoamide S-acetyltransferase (DLAT) [17]. 
It indicates that targeting cuproptosis may be a poten-
tial therapeutic strategy in cancer. Although II-III clini-
cal trials associated with copper ionophores in cancer 
have been conducted in recent years, the studies of target 
cuproptosis-associated molecules almost failed [18–21]. 
The main reason may be the failure to identify distinctive 
cuproptosis-related prognostic biomarkers and the selec-
tion of applicable cancer types. In addition, the cupropto-
sis characteristics based on multi-omics analyses haven’t 
been systemically clarified in cancers. Therefore, identi-
fying cuproptosis patterns in pan-cancer may provide a 
novel insight for targeted therapy.

Hence, this study aims to assess the common or distinct 
cuproptosis status in tumors and to evaluate the appro-
priate therapeutic method. In this study, we comprehen-
sively assessed the transcriptional and genomic features 
of CRGs among 32 solid tumors. Moreover, we charac-
terized cuproptosis status based on CRGs expression 
and evaluated the correspondence between prognosis 
and cuproptosis. We found that cuproptosis significantly 
related to the cancer-associated pathway (especially oxi-
dative phosphorylation) and overall survival rate in clear 
cell renal cell carcinoma (ccRCC). Subsequently, the con-
structed cuproptosis-related prognostic model shows 
precise discrimination in prognosis in ccRCC and the 
clinical benefit of mTOR inhibitor. Herein, we prove the 
crucial roles of cuproptosis in cancer.

Methods
Acquisition of data
The CRGs were extracted from the reports of Tsvetkov 
[1].The pan-cancer (32/32) normalized gene expression 
RNAseq data (Version: 2019.07.22; Platform: Illumina; 
Unit: Log2(fpkm-uq + 1); samples: 10,454), and corre-
sponding clinical data were downloaded from the UCSC 
Xena website (https://​xenab​rowser.​net/​datap​ages/). 
Differential DNA methylation data of CRGs in TCGA 
pan-cancer (26/32) were acquired from the DNMIVD 
database (http://​119.3.​41.​228/​dnmivd/​index/) [22]. Copy 

number variations of CRGs in TCGA pan-cancer (32/32) 
were extracted from the cBioPortal database. The somatic 
mutation profiles of CRGs of TCGA pan-cancer (32/32) 
based on the whole-exome sequencing platform were 
downloaded from cBioPortal [23].

The gene expression matrix, somatic mutations data, 
and relevant clinical files (E-MTAB-1980 and Check-
Mate-025) of validated ccRCC cohorts were downloaded 
from the ArrayExpress database (https://​www.​ebi.​ac.​uk/​
array​expre​ss/​exper​iments/​E-​MTAB-​1980/) and supple-
mentary information of Braun study, respectively [24]. 
The relevant expression array and clinical benefit infor-
mation of Everolimus (mTOR inhibitor) in ccRCC were 
extracted from CheckMate-025 (CM-025).

Differential expression analysis of CRGs
Firstly, we extracted 17 CRGs from Tsvetkov’s study [1]. 
To detect differential expression of CRGs between nor-
mal and tumor tissue in pan-cancer (23/32), the limma 
package was utilized to calculate the log2 fold change and 
adjusted p.value. Then, we define CRGs with an adjusted 
p.value < 0.05 and absolute Log2 fold change (|Log2FC|) 
value > 1 as cuproptosis-related differential expression 
genes.

Somatic mutation and copy‑number alteration (CNA) 
analysis
The maftools package was applied to import the sam-
ples with somatic CRGs mutation in TCGA pan-cancer 
(29/32) and CM-025 (patients with Everolimus treat-
ment). The copy number alteration of each CRGs was 
evaluated for amplification and deletion. The mutation 
and CNA events of pan-cancer were integrated into the 
oncoplot of CRGs.

Identification of prognostic genes in pan‑cancer
The overall survival (OS) and progression-free survival 
(PFS) of patients in pan-cancer (32/32) based on the 
expression of CRGs were analyzed by GEPIA2 (http://​
gepia2.​cancer-​pku.​cn/), which is an online web server for 
visualization of large-scale cancer-associated genomics’ 
expression profiles database [25].

Calculate cuproptosis enrichment score (CEScore)
The GSVA (Gene Set Enrichment Analysis) package was 
utilized to calculate the CEScore using a single sample 
enrichment method [26]. These CRGs were considered as 
positive or negative factors of cuproptosis [1]. Therefore, 
17 CRGs were enrolled into GSVA analysis to calculate 
the CEScore. The CEScore to illustrate the cuproptosis 
level was constructed based on the CRGs’ expression 
(including FDX1, DLAT, DBT, DLD, GLS, PDHB, PDHA1, 
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GCSH, CDKN2A, LIAS, ATP7A, LIPT2, ATP7B, LIPT1, 
SLC31A1, MTF1, and DLST).

Identified prognosis‑related oncogenic genes based 
on CEScore
To screen oxidative phosphorylation genes significantly 
connected to CEScore, Spearman correlation analysis 
was conducted in pan-cancer (32/32). The screening con-
dition is p.value < 0.05, and |R|≥ 0.7.

To identify the features of cuproptosis, the sam-
ples of pan-cancer (32/32) were separated into high-
CEScore and low-CEScore (cutoff = median value of 
CEScore). Next, the hallmark gene sets (version: h.all.
v7.5.1.symbols.gmt) was downloaded from MSigDB web-
site (www.​gsea-​msigdb.​org), and gene set enrichment 
analysis (GSEA) was performed using clusterProfiler 
package [27].

OncoScore, a text mining R package to assess the onco-
genic potential of genes based on literature, was used 
to screen CEScore-related oncogenic genes in oxida-
tive phosphorylation gene sets. The candidate genes of 
OncoScore > 21.7 were chosen to subsequently analysis 
[28]. OncoScape, an algorithm to identify new candi-
date cancer genes by using multi-omics data, was also 
utilized to screen oncogenic potential genes [29]. The 
Combined genes with OncoScape (OG score > 2 and dif-
ferent expression > 0) and OncoScore greater than 21.7 
were included in the subsequent univariate Cox regres-
sion analysis.

Prognostic risk signature construction in KIRC
Firstly, univariate Cox regression analysis was performed 
to screen prognostic genes associated with OS. All eligi-
ble genes (p.value < 0.05) were further included in Lasso 
analysis for dimension reduction using the glmnet R 
package. Then, 17 prognostic genes, as risk factors, were 
identified and utilized to construct the cuproptosis-
related prognostic (CRP) model in KIRC. CRP scores of 
each sample in ccRCC were calculated in a linear com-
bination of regression coefficient values and risk gene 
expression level. According to the median value of CRP 

scores, patients in KIRC are divided into the high- and 
low-risk groups.

Construction and evaluation of nomogram
To construct a cuproptosis-related prognosis (CRP) 
model, the clinical prognosis factors were modeled by 
uni-, and multi-variate Cox risk regression in the TCGA-
KIRC cohort. The clinical characteristics were trans-
formed into binary variables, including Age (< = 65: 
1, > 65: 2), Gender (Male: 1, Female: 2), Stage (Stage I–II: 
1, Stage III–IV: 2), Grade (G1–G2: 1, G3–G4: 2).

The Nomograms were constructed to predict OS and 
PFS probabilities specify years (1, 3, and 5) by integrat-
ing clinical data. And calibration curves and decision 
curves analyses were performed to assess the accord 
between the predicted and actual OS and PFS rates via 
rms package.

Statistical analysis
All statistical analyses of data were processed with R 4.1.0 
software. Student’s t-tests and Mann–Whitney U were 
executed to compare differences between the two groups. 
The chi-square or Fisher’s test was applied to compare 
proportional differences. Kaplan–Meier (KM) analysis 
and log-rank test were conducted to compare OS and 
PFS between the two groups.

Result
The landscape of cuproptosis in pan‑cancer
We exploited the cuproptosis status of 730 normal tissues 
and 9724 tumor tissues from the TCGA database, includ-
ing 32 cancer types in mRNA levels, methylation, copy 
number variation (CNV), and somatic cell mutations.

We firstly investigated the landscape of somatic 
mutation and CNV of CRGs in different cancers 
(29/32). CDKN2A, PDHB, ATP7B, LIAS, ATP7A, and 
MTF1 have high mutation rates (Fig. 1A and Additional 
file 15: Table S2). There were more CRGs mutation and 
copy number Del in HNSC (n = 137, abbreviates see 
in Table  1), LUSC (n = 118), UCEC (n = 105), LUAD 

Fig. 1  Distinct copper-regulated genes (CRGs) expression and modification characteristics and mutation-related analysis across 32 cancer types. A 
Somatic alteration in pan-cancer (29/32). Top histogram, tumor mutation rate; Bottom histogram, an indication of cohort and nucleotide mutation 
type; Right histograms, frequency of somatic alterations in each of CRGs. B Spearman’s correlation between transcriptional levels of CRGs and 
these genes’ promoter methylation; Significantly positive and negative correlation are marked in red and purple, respectively. C The Spearman’s 
correlation of CRGs between transcriptional level and somatic copy number alterations. D The heatmap shows differential expression fold change 
of CRGs in each cancer (23/32). The red and blue points are marked significantly up-, and down-regulated genes, respectively. E The overall survival 
(OS) and progression-free survival (PFS) of CRGs in 32 cancers. The risk and protective factor genes are marked red and blue, respectively. The border 
frame means significant differences in high- and low expression of genes

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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(n = 97), BLCA (n = 75), and STAD (n = 68). Further-
more, no somatic mutations of CRGs were detected in 
MESO (n = 86), and UVM (n = 80). In addition, almost all 
tumors were more prone to have copy number deletion 
than copy number amplification in CRGs, but COAD 
(n = 63) and UCEC (n = 547) showed the opposite profile. 
Interestingly, we found most mutational co-occurrence 
in pan-cancer, such as DLAT and ATP7B mutations, 
whereas less mutually exclusive mutation events were 
observed (Additional file 1: Fig. S1A).

Since it has been proved that abnormal CNV can 
regulate gene expression, we explored the correlation 
between CNV levels and the mRNA expression of CRGs. 
The CNV levels of CRGs in most tumors were positively 
correlated with their mRNA levels, such as DLST, PDHB, 
DLD, LIAS, DBT, ATP7B. LIPT1  (Fig. 1B and Additional 
file 16: Table S3). The results demonstrated that CNV lev-
els can influence the mRNA expression of CRGs in most 
cancers. We also evaluated hyper- and hypo-methylation 
of the above CRGs between tumor and normal tissues. 

Table 1  The number of tumors and normal tissues in the pan-cancer dataset

Abbreviation Full name Total Tumor Normal

ACC​ Adrenocortical carcinoma 79 79 0

BLCA Bladder Urothelial Carcinoma 430 411 19

BRCA​ Breast invasive carcinoma 1210 1097 113

CESC Cervical squamous cell carcinoma and endocervical adenocarci-
noma

307 304 3

CHOL Cholangiocarcinoma 45 36 9

COAD Colon adenocarcinoma 510 469 41

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48 48 0

ESCA Esophageal carcinoma 172 161 11

GBM Glioblastoma multiforme 160 155 5

HNSC Head and Neck squamous cell carcinoma 544 500 44

KICH Kidney Chromophobe 89 65 24

KIRC Kidney renal clear cell carcinoma 606 534 72

KIRP Kidney renal papillary cell carcinoma 320 288 32

LGG Brain Lower Grade Glioma 511 511 0

LIHC Liver hepatocellular carcinoma 421 371 50

LUAD Lung adenocarcinoma 583 524 59

LUSC Lung squamous cell carcinoma 550 501 49

MESO Mesothelioma 86 86 0

OV Ovarian serous cystadenocarcinoma 374 374 0

PAAD Pancreatic adenocarcinoma 181 177 4

PCPG Pheochromocytoma and Paraganglioma 181 178 3

PRAD Prostate adenocarcinoma 550 498 52

READ Rectum adenocarcinoma 176 166 10

SARC​ Sarcoma 261 259 2

SKCM Skin Cutaneous Melanoma 104 103 1

STAD Stomach adenocarcinoma 407 375 32

TGCT​ Testicular Germ Cell Tumors 150 150 0

THCA Thyroid carcinoma 560 502 58

THYM Thymoma 121 119 2

UCEC Uterine Corpus Endometrial Carcinoma 582 547 35

UCS Uterine Carcinosarcoma 56 56 0

UVM Uveal Melanoma 80 80 0
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Fig. 2  The characteristics of cuproptosis enrichment score (CEScore) among 32 cancers. A The differential levels of CEScore in 32 cancers. B The 
differential levels of CEScore between tumor and normal in cancers (20/32). C, D Kaplan–Meier (KM) survival analysis of overall and progress-free 
according to the CEScore among cancers. E Enrichment analysis of tumor-related pathways significantly associated with CEScore
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Although CRGs have less significantly differential meth-
ylation levels in cancers (Additional file 1: Fig. S1B), most 
mRNA levels of CRGs are negatively correlated with 
methylation levels in specific tumors (Fig. 1C). The tran-
scriptional levels of DLAT, FDX1, DBT, DLD, PDHB, and 
GCSH negatively correlate with methylation in part of 
tumors (> 7 cancer types). In contrast, MTF1 and DLST 
have a significantly positive correlation in some types of 
tumors. It means that abnormal methylation modifica-
tion still affects CRG mRNA expression.

Subsequently, we evaluated the differential mRNA lev-
els of FDX1, LIAS, LIPT1, DLD, PDHA1, DLAT, PDHB, 
MTF1, GLS, CDKN2A, ATP7A, ATP7B, SLC31A1, DLST, 
DBT, GCSH, and LIPT2 in TCGA RNA-seq data (23/32). 
Most cancers show significantly lower mRNA levels in 
FDX1, DLD, DLST, LIAS, GLS, DBT, MTF1, and  PDHB. 
In addition to the high expression of CDKN2A in tumor 
tissue, the rest of the genes showed low expression in 
tumors (Fig.  1D and Additional file  17: Table  S4). Simi-
larly differential gene expression analysis results also 
performing between paired tumor and normal samples 
in pan-cancer cohort (14/32, Additional file 2: Fig. S2A). 
Noticeable, most of CRGs were significantly differential 
expression in KIRC cohort.

In addition, to further reveal the clinical relevance 
of cuproptosis, the affection of CRGs in survival was 
decoded. The OS and progression-free survival (PFS) 
analyses demonstrated that most CRGs serve as a protec-
tive or risk factor for at least two cancer types (Fig. 1E). 
Almost all CRGs were cited as a significant protective 
factor in KIRC (n = 534).

The gene expression and cancer-associated subtype 
analysis are utilized to identify subtype relevant changes 
of gene expression. The results show that most of CRGs 
have significant differences between different subtypes 
in KIRC and BRCA (Additional file  2: Fig. S2B and 
Additional file  18: Table  S5). Thus, diverse cuproptosis-
regulated patterns in different cancers suggest that the 
genomic and transcriptome characteristics of CRGs were 
tumor-specific and the correlation between CRGs and 
prognosis deserves further study.

Construction and characterization of CEScore 
in pan‑cancer
To further dissect the relevant clinical status associated 
with cuproptosis, the CEScore was calculated by GSVA in 
the pan-cancer cohort. The distribution of CEScore was 
observed in 32 TCGA tumors, and among 32 cancers, 
the KICH (n = 65) owns the highest CEScore, while the 
PAAD (n = 177) owns the lowest CEScore (Fig.  2A and 
Additional file 19: Table S6). Interestingly, the CEScore of 
kidney-related tumors, including KICH (n = 65) and ACC 
(n = 79) were higher than the median CEScore. However, 
those patients with KIRC (n = 534) and KIRP (n = 288) 
have lower CEScore than the median CEScore (Fig. 2B). 
We assessed the correlation between the CEScore and the 
survival (OS and PFS) of patients in the pan-cancer data-
set (32/32, Fig.  2C, D and Additional file  20: Table  S7). 
Cox regression analysis revealed that the CEScore signifi-
cantly correlated with OS in 18 types and PFS in 16 can-
cers. The OS results of pan-cancer (32/32) demonstrated 
that the relationship between CEScore and prognosis 
depended on specific tumor type (Additional file  3: Fig. 
S3). In addition, a similar effect also emerged in the KM 
PFS results of pan-cancer (Additional file 4: Fig. S4). Inter-
estingly, the results obtained from Cox regression analysis 
of OS (p < 0.001) and PFS (p < 0.001) illustrated that CES-
core is a significant prognostic factor in KIRC.  Relative 
baseline metadata see in Additional file 21: Table S8.

To further dissect the characteristics of cuproptosis in 
cancers, we calculated the Spearman correlation between 
CEScore and the whole transcriptional gene panel. Sub-
sequently, genes with high correlation were utilized to 
perform GSEA in pan-cancer. The top 22 significantly 
cancer-associated terms of the GSEA were identified 
(Fig. 2E), including oxidative phosphorylation, MYC tar-
get, the mTORC1 signaling, E2F target, metabolism-asso-
ciated pathway, DNA repair, PI3K/AKT/mTOR signaling.

Identification of CEScore‑associated prognostic genes 
in ccRCC​
The oxidative defense system is a characteristic of cop-
per-associated deficiency disease [2, 30–34]. Hence, we 

Fig. 3  Exploration of CEScore-related oncogenic genes in TCGA-KIRC. (A, B) Univariate Cox regression analysis of the CEScore-related genes for 
OS (A) and progress free survival (PFS, B). C, D Lasso regression was utilized to screen optimal prognostic factors for OS in the TCGA-KIRC cohort 
(n = 353). Lasso coefficients panel of 32 variables (C) and 17 risk variables (D) were subsequently identified by lasso-Cox analysis for OS; Lambda.
min: select the optimal risk score. E The candidate genes for cuproptosis-related prognostic (CRP) are significantly associated with CEScore in ≥ 10 
cancer types. OncoScore: evaluate their oncogenic strength based on previous reports

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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extracted significant 181 CEScore-associated oxidative 
phosphorylation genes from the GSEA result (Additional 
file  22: Table  S9). Firstly, we calculated the oncogenic 
potential genes using oncoScore and oncoScape algo-
rithms in TCGA-KIRC (Additional file  23: Table  S10). 
Then, the eighty-three candidate genes were included in 
univariate Cox regression analysis, and thirty-four OS-
related genes and forty PFS-related genes were identified, 
respectively (Fig. 3A, B and Additional file 24: Table S11). 
Finally, seventeen significantly CEScore-associated prog-
nostic genes (RHOT2, PDK4, OGDH, ACAT1, COX5B, 
ATP1B1, ACADSB, MPC1, BDH2, ALDH6A1, PRDX3, 
ATP6V1C1, AFIM1, HSPA9, DLD, SDHC, and SDHD) 
were identified by performing LASSO-Cox regression 
algorithm in KIRC (Fig.  3C, D). In addition, Spearman 
correlation analysis showed that 17 prognostic genes 
were significantly related to CEScore in pan-cancer 
(Fig. 3E).

Construction and validation of CRP model in ccRCC​
The Cox regression method was used to establish the 
CRP model (coefficient value see in Additional file  25: 
Table S12). Firstly, as depicted in the survival plot, sam-
ples with high CRP scores correlated with significantly 
decreased median survival time compared to those with 
low CRP scores in training cohort (p < 0.01, Fig. 4A and 
Additional file 5: Fig. S5A). Next, to estimate the predic-
tive accuracy of the CRP model, the area under the time-
dependent receiver operating characteristic curve (AUC) 
value for OS reached 0.80 (1  year), 0.82 (3  years), and 
0.83 (5 years), illustrating significantly statistical separa-
tion capability (Fig.  4B). The AUC curves evaluated the 
predictive effects of the CRP model of PFS (1-years: 0.72, 
3-years: 0.74, 5-years: 0.76, Additional file  5: Fig. S5B). 
Braun’s study (the patients who were without treated 
Everolimus in CM-025 cohort) and E-MTAB-1980 were 
regarded as externally validated cohorts for the CRP 
model. KM survival curves demonstrated the notable 
survival advantage for samples with lower CRP scores 
in the E-MTAB-1980 cohort (Fig.  4C) and the Braun’s 
cohort (Fig.  4E). Moreover, the AUC curves showed 
the extraordinary predictive effects of the CRP model 
for OS (1-years: 0.82, 3-years: 0.76, 5-years: 0.71) in the 

E-MTAB-1980 cohort (Fig. 4D), despite a slight decrease 
of AUC curve (1-years: 0.66, 3-years: 0.69, 5-years: 0.67) 
in the Braun cohort (Fig.  4F). Transcriptome charac-
teristics with the training cohort (Additional file  6: Fig. 
S6A) and validation cohorts (the Braun’s cohort: Addi-
tional file  6: Fig. S6B, E-MTAB-1980 cohort: Additional 
file 6: Fig. S6C) are exhibited in heatmap plots. Thus, we 
defined the patients with high CRP scores as lower CES-
core and shorter median survival times and those with 
low CRP scores as higher CEScore and longer median 
survival time in ccRCC.

Construct and validate nomogram model based 
on relevant clinical information and CRP score
Next, we performed the subgroup analysis to verify the 
prognostic value of the CRP model in different subgroups 
of KIRC patients. As for Stage I-II and III-IV KIRC, a 
higher CRP score showed worse OS and PFS outcomes 
(p < 0.05, Additional file  7: Fig. S7A–D and Additional 
file 26: Table S13). Similarly, in Grade 1–2 or 3–4 KIRC 
samples, those in the higher CRP score group had shorter 
OS and PFS median survival time (p < 0.05, Additional 
file  7: Fig. S7E–H). Furthermore, OS and PFS survival 
results illustrated that KIRC patients with higher CRP 
scores had a poor prognosis (p < 0.05, Additional file  7: 
Fig. S7I–L) between younger (Age <  = 65) and older 
(Age > 65). When KIRC patients were separated from 
female and male groups, the prognostic CRP scores were 
consistent (p < 0.001, Additional file 7: Fig. S7M–P).

Moreover, univariate and multivariate Cox analy-
ses were used to assess whether the CRP model is an 
independent prognostic indicator for OS and PFS in 
KIRC (relative baseline data see in Additional file  27: 
Table S14). The results of univariate Cox table show that 
the Age, Stage, Grade, and CRP score could indepen-
dently predict OS expectancy, respectively (Fig. 5A, B). In 
addition, the Gender, Stage, Grade, and CRP score could 
independently predict PFS probability (Additional file 8: 
Fig. S8A, B). Finally, we constructed OS and PFS nomo-
grams to help clinicians conveniently use the CRP model 
in combination with the above clinical characteristics 
to predict the survival expectancy of a specific patient 
with KIRC (Fig. 5C and Additional file 8: Fig. S8C). The 

(See figure on next page.)
Fig. 4  Construction and validation of CRP model in ccRCC. A The OS curve in the light of CRP model in TCGA-KIRC (n = 353). B The time-dependent 
receiver operating characteristic (tdROC) curve analysis of CRP model for 1,3 and 5 years. (C–F) K-M survival analysis for patients was divided into 
high- and low-risk CRP in the E-MTAB-1980 cohort (C, n = 101) and Braun cohort (E, n = 120); The tdROC curve (1, 3, 5 years) analysis of CRP model in 
E-MTAB-1980 (D cohort and Braun cohort (F)
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calibration curves and decision curve analyses implied 
the remarkable accuracy of OS (Fig.  5D–G) and PFS 
nomograms (Additional file 8: Fig. S8D–G). Our analyses 
indicated that the CRP model has a superior clinical ben-
efit for KIRC patients.

CRP score predict response to mTOR inhibitor treatment
Copper could induce autophagy via oxidative stress-
dependent AMPK-mTOR pathway [35]. We investigated 
CRP score associated with the responder with treated 
mTOR inhibitor in CM-025 cohort and their survival 
difference. As depicted in survival curves, higher CRP 
score group had a shorter median survival time (p < 0.05, 
Fig. 6A). In the CM-025 cohort, the CRP score was more 
elevated in most patients who had undergone no clinical 
benefit from Everolimus than in those who intermediate 
clinical benefit and clinical benefit (p = 0.03, Fig. 6B). In 
addition, the CRP score can distinguish mTOR-related 
upstream and downstream gene expression, includ-
ing ULK1, TSC1, PIK3CA, MTOR, EIF4E, and AKT1 
(p < 0.05, Fig. 6C). We also established a Sankey diagram 
showing the relationship between CRP score, CES-
core, Responder, and their roles in the CM-025 cohort 
(Fig. 6D). The oncoplot depicted that VHL (Low: 48% vs. 
High: 36%) mutation frequencies in low CRP scores were 
higher than in high CRP scores, but PBRM1 (Low: 18% 
vs. High: 24%) in high CRP score were higher than in low 
CRP score (Fig. 6E).

Discussion
Although the toxic mechanism of other crucial metals 
(such as iron-induced ferroptosis) is well established, the 
mechanisms of copper-induced cytotoxicity just eluci-
dated its specific process [1, 36]. However, it has not been 
systematically described in the pan-cancer cohort.

This study demonstrated the cuproptosis features 
of multi-omics, including global alterations of CRGs 
at genetic, epigenetic, and transcriptional levels in the 
TCGA pan-cancer cohort (Additional file 9: Fig. S9). Our 
genetic analysis revealed a high frequency of copy num-
ber alterations of CRGs in HNSC, LUSC, UCEC, LUAD, 
BLCA, and STAD (Fig.  1A). The spearman results con-
firmed that CNA positively correlated with most CRGs 
expression, especially for cuproptosis positive genes 

(PDHB, FDX1, and DLAT), indicating that CNV could 
affect CRGs expression, in turn, contribute to tumori-
genesis. Specifically, PDHB was frequently Del in LUSC 
and was related to worse OS in non-small cell lung can-
cer, which agrees with the past result [37]. We found 
that hypermethylation and CNV Del-mediated down-
regulation of CDKN2A was associated with poor sur-
vival in KIRC [38]. Numerous studies have proved that 
tumorigenesis of various cancers was correlated with 
the hypermethylation of CDKN2A [39–43]. Moreover, 
there are many CRGs without significantly differential 
methylation, but the expression of CRGs has a negative 
correlation with its inmost of cancer (Fig. 1C and Addi-
tional file 1: Fig. S1A). In addition, abnormal down-regu-
lated expression of CRGs indicated that worse prognosis 
in KIRC (Fig.  1E). Thus, the above results suggest that 
abnormally genetic and epigenetic regulation may regu-
late CRG expression, which further affects the prognosis 
of samples in part of cancers (≥ 3 CRGs, such as BRCA, 
KIRC, LIHC, LGG, LUSC, MESO, and SKCM).

To further characterize the status of cuproptosis, the 
CEScore was established and assessed for individuals 
in pan-cancer. Interestingly, the distribution feature of 
CEScore in kidney cancer depends on their pathologi-
cal differences. However, the patients with high CES-
core and worse prognosis in KICH are the opposite 
phenomenon in KIRC and KIRP (Fig. 2C, D). Although 
the patients with lung cancers have lower CEScore, it 
showed the OS and PFS prognostic difference between 
LUSC and LUAD. We next exploited the association 
between CEScore and its significantly related path-
way enrichment. The CEScore was notably associated 
with cancer-related signaling pathways, including oxi-
dative phosphorylation (31/32), mTORC1 signaling 
(31/32), and metabolism signaling in most cancer. These 
enrichment results are consistent with those previously 
reported [1, 35, 44–46]. Guo et al. validated that copper-
induced spermatogenesis dysfunction was protected 
by inducing autophagy via the ROS-dependent AMPK-
mTOR pathway [35]. Amchandani et  al. discovered 
that copper deficiency inhibits cancer metastasis via 
modulating oxidative phosphorylation, with the AMPK/
mTORC1 energy sensor as a critical downstream man-
ner [47]. On the one hand, remarkably higher levels of 

Fig. 5  Construction and evaluation of nomograms. A, B The univariate (A) and multivariate (B) Cox analyses of clinicopathologic data and CRP 
score for OS outcomes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance. C The predictive nomogram of OS at 1-, 3-, and 5-years 
in TCGA-KIRC. D Calibration plots of 1-, 3-, and 5-years were utilized to evaluate the predictive accuracy of OS in the CRP model. E–G Decision curve 
analysis to assess the clinical utility of 1- (E), 3- (F), and 5-years (G) nomogram

(See figure on next page.)
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copper level subsequently increased lipid peroxidation 
and regulated copper transport to overcome drug resist-
ance in RCC patients [5, 48]. On the other hand, the OS 
and PFS Cox results indicated the most significant prog-
nostic differences of CEScore in KIRC (p < 0.001, Fig. 2C, 
D). Therefore, we established the CRP model to charac-
terize cuproptosis-associated oxidative phosphorylation 
status and specific drug-resistant in KIRC. In addition, 
we also investigate the other significant GSEA terms 
(GSEA term in pan-cancer cohorts ≥ 30) and their asso-
ciation with prognosis in pan-cancer cohort. Notice-
able, although these terms have (protein secretion: 
32/32, mTORC1 signaling: 31/32, adipogenesis: 30/32) 
less normalized enrichment score than oxidative phos-
phorylation (Fig.  2E), there are significantly correlation 
with the prognosis of multiple cancer types (Additional 
file  28: Table  S15 and Additional files 10–13: Fig. S10–
13). The crosstalk by the other significant items besides 
the oxidative phosphorylation pathway with cuproptosis 
deserves further exploration.

We firstly got 34 CEScore-associated oxidative phos-
phorylation genes involved in cuproptosis and extracted 
a seventeen-gene signature to construct the CRP model 
using the reliable Cox regression method. Then, PDK4, 
OGDH, ACAT1, ATP1B1, ACADSB, MPC1, BDH2, 
ALDH6A1, PRDX3, ATP6V1C1, AFIM1, HSPA9, DLD, 
SDHC, and SDHD were identified as protective fac-
tors; RHOT2 and COX5B were regarded as risk factors. 
According to the CRP model, the patients with high CRP 
scores and lower CEScore indicated a worse prognosis in 
the training cohort (TCGA-KIRC) and validated cohort 
(E-MTAB-1980, CM-025). To estimate the reliability in 
prediction, we calculated the CRP model of AUC in 1-,3-, 
and 5-years and further validated the accuracy of the 
nomogram model based on the CRP model.

Based on the significantly high enrichment score (ES) 
value of CEScore in mTOR-related pathways, we found 
that low-risk CRP patients  treated with Everolimus 
(mTOR inhibitor) may be acquired better clinical effi-
ciency.  Guo et  al. have reported that cupric ion con-
tributes to autophagy via oxidative stress-dependent 
AMPK-mTOR pathway in mouse spermatogenic cells 

[35]. Furthermore, there is no study between mTOR 
inhibitor and cuproptosis in cancer. Two significant 
copper therapeutic strategies have been applied to 
copper dysregulated, including copper chelation, cop-
per ionophores, and inhibitor. For example, Tetrathio-
molybdate, a copper chelation, has been revealed to be 
stable, depletes copper, and is well-tolerated in phase II 
trials of advanced kidney cancer [21]. Preclinical stud-
ies have demonstrated that limiting the availability of 
copper dependence is an effective strategy for blocking 
KRAS-driven and autophagy-dependent tumor growth 
and survival in copper dysregulated diseases [49, 50]. 
A phase II study (NCT03034135) recently showed that 
adding Cu–DSF to patients with temozolomide-resist-
ant glioblastoma is well tolerated [19]. Taken together, 
the novel named cuproptosis in a subset of cancer has 
sufficient potential in therapeutic interventions.

Although we tried to infer the cuproptosis status 
exactly, there could be a variety of flaws because exist-
ing omics data only acquire RNA-seq quantifications 
for CRGs, but the cuproptosis process relies on pro-
teins. Furthermore, the precise molecular pathways 
and mechanisms behind cuproptosis remain eluci-
dated, limiting CEScores’ sensitivity and specificity. 
Although the CRP model could characterize cuprop-
tosis status and the clinical benefit of mTOR inhibi-
tor, there are still more limitations in invalidation and 
application.

Conclusions
This study clarified the landscape of multi-omics fea-
tures for cuproptosis and constructed CEScore to 
characterize cuproptosis status in pan-cancer. We 
were providing a precise and stable CRP model for 
predicting cuproptosis-associated survival prognosis 
and mTOR-targeted therapies in ccRCC. Our study 
provides a rationale for copper-induced death-specific 
tumor model selection and novel therapies targeting 
cuproptosis therapy.

(See figure on next page.)
Fig. 6  CRP model could predict the clinical benefit of Everolimus. A K-M survival analysis assesses the progression-free survival in the Everolimus 
cohort. B Stacked bar graphs to depict anti-Everolimus monotherapy clinical benefits from CheckMate-025; NCB no clinical benefit, ICB intermediate 
clinical benefit, CB clinical benefit. C Abnormally differential expression of mTOR-related genes between high- and low-risk CRP score in Everolimus 
cohort. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance. D Sankey plot of treatment clinical benefit patterns between CRP score 
and score. E The oncoplot shows the overview of somatic mutations in the Everolimus-treated patients
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