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Abstract

Inflammatory bone diseases, including rheumatoid arthritis, periodontitis and peri-implanti-

tis, are associated not only with the production of inflammatory cytokines but also with local

oxidative status, which is defined by intracellular reactive oxygen species (ROS). Osteoclast

differentiation has been reported to be related to increased intracellular ROS levels in osteo-

clast lineage cells. Sudachitin, which is a polymethoxyflavone derived from Citrus sudachi,

possesses antioxidant properties and regulates various functions in mammalian cells. How-

ever, the effects of sudachitin on inflammatory bone destruction and osteoclastogenesis

remain unknown. In calvaria inflamed by a local lipopolysaccharide (LPS) injection, inflam-

mation-induced bone destruction and the accompanying elevated expression of osteoclas-

togenesis-related genes were reduced by the co-administration of sudachitin and LPS.

Moreover, sudachitin inhibited osteoclast formation in cultures of isolated osteoblasts and

osteoclast precursors. However, sudachitin rather increased the expression of receptor acti-

vator of NF-κB ligand (RANKL), which is an important molecule triggering osteoclast differ-

entiation, and the mRNA ratio of RANKL/osteoprotegerin that is a decoy receptor for

RANKL, in the isolated osteoblasts, suggesting the presence of additional target cells.

When osteoclast formation was induced from osteoclast precursors derived from bone mar-

row cells in the presence of soluble RANKL and macrophage colony-stimulating factor,

sudachitin inhibited osteoclastogenesis without influencing cell viability. Consistently, the

expression of osteoclast differentiation-related molecules including c-fos, NFATc1, cathep-

sin K and osteoclast fusion proteins such as DC-STAMP and Atp6v0d2 was reduced by

sudachitin. In addition, sudachitin decreased activation of MAPKs such as Erk and JNK and

the ROS production evoked by RANKL in osteoclast lineage cells. Our findings suggest that

sudachitin is a useful agent for the treatment of anti-inflammatory bone destruction.
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Introduction

Osteoclasts are the cells responsible for physiological and pathological bone resorption and belong

to the monocyte/macrophage cell lineage [1]. Although many systemic hormones and local cyto-

kines regulate osteoclast differentiation [2], the receptor activator of NF-κB (RANK) ligand

(RANKL) and macrophage colony-stimulating factor (M-CSF) are the most important molecules

in osteoclastogenesis. The signals of RANKL that is produced by bone marrow stromal cells or

osteoblasts are introduced into osteoclast precursors, via a receptor of RANKL (RANK) on the

plasma membrane of osteoclast lineage cells, leading to the activation of NF-κB and MAPKs [3–

8]. The activation of the signaling molecules then induces the expression of NFATc1 [9, 10], a

master transcription factor for osteoclast differentiation. Thereby, the expression of osteoclast dif-

ferentiation-related molecules, including tartrate-resistant acid phosphatase (TRAP), cathepsin K

and fusion-related proteins such as Atp6v0d2and DC-STAMP is induced [11–15].

Chronic autoimmune rheumatoid arthritis (RA), periodontitis and peri-implantitis are rep-

resentative inflammatory bone diseases, accompanied by bone destruction by increasing the

number of osteoclasts and functioning in collaboration with immune cells, osteoblasts and oste-

oclasts [16, 17]. Local inflammation in bone induces the production of pro-osteoclastogenic

cytokines, including RANKL, tumor necrosis factor-α (TNF-α) and interleukins (ILs), such as

IL-1β and IL-17 [16]. Simultaneously, local inflammation induces the production of reactive

oxygen species (ROS) for host defense [18]. However, excessive production of ROS can damage

molecules, such as DNA, proteins and lipids, in the cells surrounding the local inflammation

site. On the other hand, ROS can also act as signaling transduction molecules involved in the

regulation of many cellular events, such as angiogenesis, myogenesis and adipogenesis [19–21].

ROS have been suggested to stimulate osteoclast differentiation [22]. Increased ROS production

has been linked to enhanced osteoclastogenesis in cell culture models [23, 24]. Therefore, limiting

the excessive production of intracellular ROS has been assumed to prevent the extreme formation

of osteoclasts induced by local inflammation. Extensive studies have examined the effects of vari-

ous antioxidants, including biological compounds, such as glutathione, and compounds derived

from natural foods, such as plant flavonoids, on osteoclast formation, inflammatory bone diseases

and osteoporosis [25–28]. However, determining the direct effects of these antioxidants on bone

resorption has been difficult, and the results have been inconclusive due to their diverse actions in

a variety of cells. Under these circumstances, polymethoxy flavonoids derived from citrus fruits,

such as nobiletin and tangeretin, have been demonstrated to exhibit anti-proliferative, apoptotic

and anti-inflammatory effects on various cancer cells through their antioxidant actions [29–31].

Recently, sudachitin, which is a polymethoxy flavonoid derived from Citrus sudachi, has been

reported to improve glucose and lipid metabolism by increasing mitochondrial biogenesis in skele-

tal muscle in addition to its potent antioxidant action [32–36]. However, the mechanism of action

of sudachitin in bone metabolism and bone diseases remains unclear.

In this study, we found that sudachitin blocked LPS-induced inflammatory bone destruc-

tion by directly inhibiting osteoclast differentiation from osteoclast precursors without any

effects on osteoblasts. Furthermore, sudachitin repressed the activation of Erk and JNK, which

are pivotal signaling pathways for osteoclast differentiation, while simultaneously decreasing

intracellular ROS production. Therefore, sudachitin may be a useful therapeutic agent for the

treatment of inflammatory bone diseases.

Materials and methods

Mice

C57BL/6J mice were obtained from CLEA Japan, Inc. (Shizuoka, Japan). The experimental

animal procedures were reviewed and approved by the Meikai University School of Dentistry’s
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animal care committee and conformed to relevant guidelines and laws. Animal sacrifice was

humanely performed by cervical dislocation for adult mice and decapitation for neonatal

mice.

Antibodies and reagents

Sudachitin was obtained from Wako Pure Chemical Industries, Ltd. (Tokyo, Japan). LPS

derived from Escherichia coli (O55:B5) was purchased from Sigma-Aldrich (St. Louis, MO).

Recombinant human M-CSF was kindly provided by the Morinaga Milk Industry Co. (Tokyo,

Japan). Recombinant murine soluble RANKL (sRANKL) and recombinant murine IL-1β were

obtained from R&D Systems (Minneapolis, MN) and PeproTech (Rocky Hill, NJ), respec-

tively. Prostaglandin E2 (PGE2) was obtained from Sigma-Aldrich. The anti-phospho-Erk1/2,

anti-Erk1/2, anti-phospho-SAPK/JNK, anti-SAPK/JNK, anti-phospho-IκB, and anti-IκB anti-

bodies were purchased from Cell Signaling Technology (Danvers, MA). The anti-c-fos and

anti-NFATc1 antibodies were obtained from Santa Cruz Biotechnology (San Diego, CA). The

anti-cathepsin K, anti-DC-STAMP (clone 1A2) and anti-Atp6v0d2 antibodies were purchased

from BioVision (Mountain View, CA), MILLIPORE (Temecula, CA) and AVIVA Systems

Biology (San Diego, CA), respectively.

In vivo LPS-induced calvarial bone destruction model

The in vivo LPS-induced inflammatory calvarial bone destruction model was established as

previously described [37]. Eight-week-old male C57BL/6J mice were injected with 100 μg LPS

subperiosteally into the calvarial bone daily for 5 days. After 6 days, computed tomography

(CT) scanning of the calvariae was performed using μCT (Skyscan 1172, Bruker, Billerica,

MA) and reconstructed into a three-dimensional image. In addition, the calvarial bones were

crushed in Buffer RLT Plus (Qiagen, Valencia, CA) using Polytron PT3100 (Kinematica AG),

and the total RNA was subsequently extracted and used for cDNA synthesis using an RNeasy

Mini plus kit (Qiagen).

Osteoclast formation in a co-culture of osteoblasts from calvariae and

osteoclast precursors from bone marrow cells

Osteoblasts were obtained from the calvariae of 3- to 7-day-old C57BL/6J mice by sequential

digestion with 0.1% collagenase/0.2% dispase II in α-MEM, as previously described [37]. The

cells released from the 3rd-5th digestion were cultured for expansion in α-MEM/10% FBS and

stored in liquid nitrogen as calvaria-derived osteoblasts. Osteoblasts (4000/well in a 96-multi-

well plate) and osteoclast precursors (8000/well) derived from bone marrow cells pretreated

with M-CSF (100 ng/ml) for 3 days were co-cultured in the presence of IL-1β (10 ng/ml) and

PGE2 (10 μM) for 5–6 days. After culturing, the cells were fixed in 10% formalin and stained to

detect the TRAP activity using a leukocyte acid phosphatase kit (Sigma-Aldrich). The osteo-

clast formation in the co-culture was evaluated by counting the TRAP-positive multi-nucle-

ated cells (MNCs) per well. In addition, TRAP activity in the conditioned medium was

measured using p-nitrophenyl phosphate as a substrate, as previously described [38].

In vitro assay of osteoclastogenesis in bone marrow cells

The in vitro osteoclast formation was measured as previously described [39]. Briefly, bone

marrow cells isolated from femora and tibiae are cultured for 3 days in α-MEM (ICN Biomedi-

cals, Aurora, OH) containing 10% FBS and M-CSF (100 ng/ml) in a humidified atmosphere at

5% CO2. Following the removal of the non-adherent cells and the small population of stromal
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cells by washing the dishes with PBS and a subsequent incubation for 3 min in 0.25% trypsin/

0.05% EDTA, the adherent monocytes were harvested by vigorous pipetting and used as osteo-

clast precursors. We used the high concentration (100 ng/ml) of M-CSF to obtain more osteo-

clast precursors efficiently, as previously reported [40]. The harvested osteoclast precursors

were seeded in various tissue culture dishes and plates at an initial density of 2.5×104/cm2 and

cultured in α-MEM/10% FBS/M-CSF (20 ng/ml)/sRANKL (10 ng/ml) with or without various

concentrations of sudachitin. The culture medium was exchanged with fresh medium every 2

days. TRAP-positive MNCs with more than 3 nuclei were considered osteoclastic cells and

counted under a microscope. In addition, the enzymatic activity of TRAP in the conditioned

medium was measured.

Quantitative real-time PCR

The total RNA from the calvarial bones and cultured cells was reverse-transcribed using a

High-capacity RNA-to-cDNA kit (Life Technologies) to produce cDNA. Quantitative real-

time PCR was performed using the TaqMan Universal PCR Master Mix (Applied Biosystems,

Foster City, CA) or Quantitative Tech SYBR Green PCR Master Mix (QIAGEN) on a Gen-

eAmp 5700 Sequence Detection System (Applied Biosystems). The TaqMan primers for the

indicated genes were obtained from Applied Biosystems and are listed in S1 Table. The relative

quantification of the target mRNA expression was calculated and normalized to the amount of

18S rRNA. The primer sequences used for the quantitative RT-PCR performed with the SYBR

Green PCR Master Mix are also listed in S1 Table.

Western blotting analysis

After washing the cells with PBS, the cells were lysed in whole-cell lysis buffer [10 mM sodium

phosphate (pH 7.5), 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM

EDTA, 1 mM p-(aminoethyl)benzenesulfonyl fluoride (p-ABSF), 10 μg/ml leupeptin, 10 μg/ml

pepstatin, and 10 μg/ml aprotinin] at 4˚C, as previously described [37]. The whole-cell lysates

were centrifuged at 12,000 × g for 10 min, and the supernatants were used for western blotting

analysis. Samples of whole-cell lysates containing equal amounts of protein were subjected to

SDS-PAGE, and the proteins that separated in the gel were subsequently electrotransferred

onto PVDF membranes. After blocking with 5% skim milk, the membranes were incubated

with the indicated antibodies, followed by a peroxidase-conjugated anti-mouse or anti-rabbit

IgG antibody. The immunoreactive proteins were visualized, as previously described [37].

Measurement of viable cells

The number of viable cells in the cultures of the osteoclast linage cells was estimated using a

Cell Counting Kit-8 (CCK-8, Dojindo Molecular Technologies, Inc., Kumamoto), according

to the manufacturer’s instructions. The osteoclast precursors were cultured with M-CSF and

sRANKL for 24 h and 48 h. Then, 10 μl of CCK-8 solution was added to the cultures. After a 1

h incubation, the absorbance of the culture was measured at 450 nm.

Measurement of intracellular ROS

After culturing the osteoclast precursors in the presence of M-CSF and sRANKL with or with-

out sudachitin for 24 h, we measured the concentration of intracellular ROS using an OxiSe-

lectTM Intracellular ROS Assay Kit (Green Fluorescence, Cell Biolabs, Inc., San Diego, CA),

according to the manufacturer’s instructions. The assay employs the cell-permeable fluoro-

genic probe 2’, 7’-Dichlorodihydrofluorescin diacetate (DCFH-DA). In brief, DCFH-DA is
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diffused into cells and is deacetylated by cellular esterases to non-fluorescent 2’, 7’-Dichlorodi-

hydrofluorescin (DCFH), which is rapidly oxidized to highly fluorescent 2’, 7’- Dichlorodihy-

drofluorescein (DCF) by ROS [41]. After washing the cells twice with α-MEM, we added a

DCFH-DA probe (100 μl)/α-MEM/10% FBS to the culture and incubated the cells for 30 min.

Then, the probes were removed and washed with PBS. Subsequently, the cells were lysed in the

cell lysis buffer. The concentration of DCF in the cell lysates was measured at an excitation of

480 nm and an emission of 530 nm using a standard solution of DCF.

Statistical analysis

The data are presented as the mean ± standard error of the mean (SEM). The mean group val-

ues were compared by unpaired Student’s t-test, one-way ANOVA or two-way ANOVA; the

significance of the observed differences was subsequently determined by post hoc testing using

Tukey’s method or Bonferroni’s method. A P-value< 0.05 was considered significant.

Results

Sudachitin suppressed LPS-induced inflammatory bone destruction

The anti-inflammatory actions of sudachitin have been demonstrated by many in vivo and in
vitro studies. Therefore, we first examined the effects of sudachitin on inflammatory bone loss

using an LPS-induced in vivo model of inflammatory bone destruction. Following a subperios-

teal LPS injection into the calvarial bones in mice, severe bone destruction was observed on

both sides of the sagittal suture using three-dimensional μCT (Fig 1A). An injection of up to

50 μM sudachitin alone did not result in any of the irregular bone lesions observed following

the LPS injection. However, an injection of sudachitin along with LPS markedly inhibited the

bone loss induced by the LPS injection at a dose ranging from 10 and 50 μM (Fig 1A). Consis-

tently, the LPS injection markedly increased the mRNA levels of osteoclast-differentiation

related molecules, such as TRAP (acp5) and cathepsin K (ctsk), in the locally inflamed calvar-

iae, and the simultaneous administration of sudachitin with LPS reduced these enhanced

mRNA levels (Fig 1B). Thus, sudachitin strongly suppresses inflammatory bone destruction.

Sudachitin inhibits osteoclastogenesis in a co-culture of osteoblasts and

osteoclast precursors in the presence of pro-inflammatory factors

Osteoclast formation proceeds following an interaction between osteoclast lineage cells and

osteoblasts [37, 42]. Thus, we examined the effect of sudachitin on osteoclastogenesis in a co-

culture of isolated osteoblasts and osteoclast precursors derived from bone marrow cells. In

the co-culture, pro-inflammatory factors, such as IL-1β and PGE2, induced osteoclast forma-

tion (Fig 2A and 2B). However, the simultaneous addition of 10 to 50 μM sudachitin with IL-

1β and PGE2 inhibited osteoclast formation. The inhibitory effect of sudachitin was consistent

with the effect observed following the LPS-induced inflammatory bone destruction in the

calvariae.

To examine the mechanism underlying the inhibitory effect of sudachitin on osteoclast for-

mation in the co-culture, we examined the mRNA expression levels of RANKL (rankl), which

is a molecule that triggers osteoclast differentiation, and OPG (opg), which is an anti-osteoclast

differentiation cytokine, in isolated osteoblasts (Fig 2C–2E). The RANKLmRNA expression

level in the osteoblasts increased in response to the IL-1β and PGE2 treatment, and the

enhanced level was maintained in the presence of sudachitin; however, sudachitin increased

the mRNA level compared with that in the osteoblasts treated with IL-1β and PGE2 (Fig 2C).

The opg mRNA expression level did not differ between the sudachitin-treated and untreated

Sudachitin and osteoclastogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0191192 January 17, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0191192


osteoblasts, while 50 μM sudachitin decreased the opg mRNA expression level (Fig 2D). In

addition, sudachitin dose-dependently increased the mRNA ratio of rankl to opg (Fig 2E).

Thus, the inhibitory effect of sudachitin on osteoclast formation in inflammatory bone

destruction and the co-culture of osteoblasts and osteoclast precursors cannot be attributed to

its action on osteoblasts.

Sudachitin directly acts on osteoclast precursors and inhibits

osteoclastogenesis

The above-mentioned results suggest that sudachitin plays other roles in addition to its role in

osteoblasts. Thus, we next examined the effects of sudachitin on in vitro osteoclast formation

from osteoclast precursors derived from bone marrow cells. In our culture system for in vitro
osteoclast formation, the generation of TRAP-positive mononuclear preosteoclasts begins on

Fig 1. Sudachitin decreases inflammatory bone resorption and the expression of osteoclast differentiation-related genes in calvariae inflamed

by an LPS injection. LPS (100 μg/day) or PBS with or without various concentrations of sudachitin (Sud.) was subperiosteally injected into the

calvariae of mice once a day for 5 days in vivo. On day 6 after the initiation of the injections, the calvariae were removed, and the three-dimensional

structures were determined by a μCT analysis (A). The total RNA was extracted from the injected region in calvariae, and the mRNA levels of

osteoclast differentiation-related genes, such as acp5 and ctsk, were measured by quantitative real-time RT-PCR (B). The presented values represent

the mean ± SD (n = 3). �P< 0.05 vs. calvaria injected without LPS and sudachitin and ��P< 0.05 vs. calvaria injected only with LPS.

https://doi.org/10.1371/journal.pone.0191192.g001
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day 1 after the addition of RANKL to the osteoclast precursor culture, and the preosteoclasts

begin to fuse with each cell to generate TRAP-positive multinucleated osteoclasts between day

1.5 and day 3 (Fig 3A). Sudachitin at a concentration ranging from 2 and 10 μM time- and

dose-dependently inhibited osteoclast formation and maturation (Fig 3A). In particular, at the

10 μM concentration, the TRAP-positive multinucleate cells barely formed in the culture.

Fig 2. Effects of sudachitin on osteoclastogenesis in a co-culture of isolated osteoblasts and osteoclast precursors and the mRNA

expression levels of RANKL and OPG in isolated osteoblasts. Isolated osteoblasts and osteoclast precursors were co-cultured in the presence

of IL-1β (10 ng/ml) and PGE2 (10 μM) with various concentrations of sudachitin (Sud.) for 5 days. Then, the cells were stained for the

detection of the TRAP activity. The photographs represent the TRAP-stained co-cultures (A). The TRAP-positive MNCs in the co-cultures

were counted (B). The presented values represent the mean ± SD (n = 4). �P< 0.05 vs. co-culture in the absence of IL-1β and PGE2. ��P< 0.05

vs. co-culture with IL-1β and PGE2 in the absence of sudachitin. In addition, the isolated osteoblasts were treated with various concentrations

of sudachitin in the absence or presence of IL-1β (10 ng/ml) and PGE2 (10 μM) for 6 h. Then, the total RNA was extracted; the mRNA levels of

RANKL (rankl, C) and OPG (opg, D) were measured by quantitative real-time RT-PCR, and the ratio of rankl mRNA/opg mRNA was

calculated (E). The presented values represent the mean ± SD (n = 3). In C and E, �P< 0.05 vs. culture with IL-1β and PGE2 in the absence of

sudachitin; ��P< 0.05 vs. culture with IL-1β and PGE2 alone. In D, ��P< 0.05 vs. culture without IL-1β, PGE2 and sudachitin. NS indicates

that the difference is not significant.

https://doi.org/10.1371/journal.pone.0191192.g002

Sudachitin and osteoclastogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0191192 January 17, 2018 7 / 17

https://doi.org/10.1371/journal.pone.0191192.g002
https://doi.org/10.1371/journal.pone.0191192


Consistently, sudachitin decreased the enzymatic activity of TRAP in the conditioned

medium. Thus, sudachitin directly inhibits osteoclast differentiation. However, the number of

viable cells in the presence of up to 10 μM sudachitin did not change, while a higher dose of

Fig 3. Sudachitin decreases osteoclastogenesis induced by RANKL in cultures of osteoclast precursors. Osteoclast precursors were treated with

various concentrations of sudachitin (open circle, 0 μM; closed circle, 2 μM; open square, 5 μM; closed square, 10 μM) in the presence of sRANKL (10

ng/ml) and M-CSF (20 ng/ml) for the indicated times (A). At the end of the culture period, the cells were stained for the detection of TRAP activity,

and the TRAP-positive MNCs were counted. In addition, the TRAP activity in the conditioned medium was measured. The presented values

represent the mean ± SD (n = 4). �P< 0.05 vs. culture in the absence of sudachitin on each day. The photographs indicate the osteoclasts formed in

the cultures on day 3. The magnification of the photographs was 40x. In another experiment, the osteoclast precursors were treated with sudachitin

(open circle, 0 μM; closed circle, 2 μM; open square, 5 μM; closed square, 10 μM; open triangle, 30 μM)) in the presence of sRANKL and M-CSF for

24 h and 48 h. At each culture timepoint, the number of viable cells was measured. The presented values represent the mean ± SD (n = 4). �P< 0.05

vs. culture without sudachitin at each timepoint. NS indicates that the difference is not significant.

https://doi.org/10.1371/journal.pone.0191192.g003
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sudachitin (30 μM) decreased cell viability (Fig 3B). Therefore, inhibition of osteoclastogenesis

by sudachitin at low doses is not caused by a decrease in the cell viability. The effective suda-

chitin doses that inhibited in vitro osteoclast formation were lower than those that prevented

inflammatory bone destruction in vivo. This discrepancy might have resulted from the local

diffusion of sudachitin in vivo.

We next examined the expression of osteoclast differentiation-related molecules and the

signaling pathways involved in osteoclastogenesis. The mRNA expression levels of c-fos and

NFATc1, which are crucial transcription factors for osteoclast differentiation, TRAP (acp5)

and cathepsin K (ctsk), which are functional enzymes for bone resorption, and DC-STAMP,

OC-STAMP and Atp6v0d2, which are integral proteins for the cell-cell fusion of preosteoclasts,

markedly increased in response to the sRANKL/M-CSF treatment during osteoclast formation

(Fig 4). The enhanced mRNA levels decreased in the presence of sudachitin (10 μM) at all

timepoints of the culture (Fig 4).

Consistent with the inhibitory effects of sudachitin on the mRNA expression levels in the

osteoclast lineage cells, sudachitin decreased the increased protein levels of these osteoclast dif-

ferentiation-related molecules including c-Fos, NFATc1, cathepsin K, DC-STAMP and

Atp6v0d2 during osteoclast formation stimulated by sRANKL and M-CSF (Fig 5).

Sudachitin suppresses the production of intracellular ROS and activation

of MAPKs in osteoclast lineage cells

Osteoclast differentiation has been associated with an elevated production of intracellular ROS

[23, 43, 44]. Furthermore, sudachitin has been shown to exert antioxidant effects in the body

[34]. Therefore, to explore whether the inhibitory effect of sudachitin on osteoclastogenesis is

related to the intracellular production of ROS, we determined the concentration of intracellu-

lar ROS in osteoclast lineage cells treated with sRANKL and/or sudachitin. As shown in Fig

6A, when osteoclast precursors were treated with sRANKL for 24 h, the intracellular ROS

content was 2.5-fold higher than that in the cells treated with M-CSF alone. However, the

simultaneous addition of sudachitin with sRANKL dose-dependently attenuated the elevated

intracellular ROS content. The ROS content in the cells treated with sRANKL plus 10 μM

sudachitin was equivalent to that in the cells treated with M-CSF alone. Thus, sudachitin

inhibited the intracellular production of ROS during osteoclast formation.

Finally, we examined the effects of sudachitin on the activation of osteoclast differentiation-

signaling pathways, such as NF-κB and MAPKs, including Erk and JNK. The activation of

these pathways was evoked by the addition of sRANKL in the short term. However, pretreat-

ment with sudachitin reduced the activation of Erk and JNK (Fig 6B). The activation of NF-κB

stimulated by sRANKL is also slightly decreased by the sudachitin-pretreatment, whereas the

reduction was less than those of Erk and JNK (Fig 6B).

Discussion

In this study, we demonstrated that sudachitin, which is a polymethoxy flavonoid, suppresses

inflammatory bone destruction induced by an LPS injection in the calvariae. The inhibition

by sudachitin could be attributed to the direct inhibition of osteoclastogenesis from osteoclast

precursors because sudachitin reduced osteoclast formation from osteoclast precursors in

response to RANKL in vitro and sudachitin increased the ratio of RANKL to Opg in the osteo-

blasts. Furthermore, sudachitin suppressed the intracellular ROS production and the activation

of MAPKs, including Erk and JNK, both of which are involved in osteoclast differentiation.

These inhibitory activities could be associated with a decrease in osteoclast formation. Thus,

sudachitin could be a useful agent for the treatment of inflammatory bone destruction.
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ROS are mainly classified into the following four types: hydroxyl radicals, nitric oxide,

superoxide anions and hydrogen peroxide. Although the role of ROS in osteoclast formation

has been reported since 1990, the ROS type that is important for osteoclastogenesis has not

been determined. The ROS production in osteoclast lineage cells has been demonstrated to be

mediated by NADHP oxidases, which consist of five isoforms, i.e., Nox1 to Nox5. Further-

more, many NOX organizers, NOX activators and small GTPases participate in regulating the

enzymatic activities of the NADPH oxidases [45]. Although NOX1-/-, NOX2-/- and NOX3

mutant mice do not demonstrate bone abnormalities [44, 46, 47], global Nox4-knockout mice

display a higher trabecular bone density and reduced numbers and markers of osteoclasts in
vivo [44]. In particular, ex vivo experiments using NOX4-/- osteoclast precursors showed a

reduction in osteoclastogenesis that is consistent with the down-regulation of intracellular

ROS production. In addition, the NOX inhibitors GKT137928 and GKT137831 both rescued

the bone loss induced by ovariectomy [44]. These observations highlight the pivotal role of

Fig 4. Inhibitory effect of sudachitin on the mRNA expression levels of osteoclast differentiation-related molecules in osteoclast lineage cells. Osteoclast

precursors were cultured with M-CSF and sRANKL in the absence or presence of sudachitin (Sud., 10 μM) for the indicated durations. After culturing, total

RNA was prepared and subjected to quantitative real-time PCR to determine the mRNA expression levels of c-fos, nfatc1, acp5, ctsk, Dcstamp, Ocstamp and

Atp6v0d2. The values represent the mean ± SD (n = 3). �P< 0.05 vs. culture in the absence of sudachitin at each timepoint.

https://doi.org/10.1371/journal.pone.0191192.g004
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intracellular ROS catalyzed by NOX4 in osteoclast differentiation and function. The present

study also indicates the importance of intracellular ROS in osteoclastogenesis because sudachi-

tin, which has antioxidant properties, strongly inhibited inflammatory bone destruction and

osteoclast formation, changes accompanied by a reduction in the intracellular ROS content.

Although many studies have demonstrated the effects of antioxidant compounds on osteo-

clast differentiation associated with the intracellular redox status, the effects have not always

been consistent and remain controversial. Glutathione (GSH) is a representative antioxidant,

and cellular redox status is defined by the balance between oxidants and antioxidants, in par-

ticular the GSH/oxidized GST (GSSG) ratio. Romagnoli et al demonstrated that a low GSH/

GSSG ratio downregulated OPG expression in human osteoclasts, resulting in an increase in

the ratio of RANKL to OPG and indicating that GSH/GSSG redox coupling could affect osteo-

clastogenesis [48]. However, these authors did not directly determine the influence of the

GSG/GSSG change on osteoclast formation. Le Nihouannen et al found that the addition of

ascorbic acid to a culture of osteoclast precursors in the presence of RANKL decreased osteo-

clast formation, which was consistent with the decrease in the ratio of GSH/GSSG [49]. How-

ever, several studies have reported an inhibitory effect of ascorbic acid on osteoclastogenesis

[50], indicating the difficulty of controlling the intracellular redox status.

The efficacy of natural food-derived antioxidants in osteoclastic bone resorption has also

been extensively studied [51]. Recent epidemiological studies have shown that flavonoid

consumption has a stronger association with bone integrity than general fruit and vegetable

consumption. Epigallocatechin gallate and its polymerized theaflavin digallate, which are

Fig 5. Inhibitory effect of sudachitin on the protein levels of osteoclast differentiation-related molecules in

osteoclast lineage cells. Osteoclast precursors were cultured with M-CSF and sRANKL in the absence or presence of

sudachitin (Sud.,10 μM) for the indicated durations. After culturing, whole-cell lysates were prepared and subjected to

a western blotting analysis to determine the protein levels of c-Fos, Nfatc1, cathepsin K, DC-STAMP and Atp6v0d2. β-

Actin was used as an internal control. The values presented below the images indicate the relative level of each protein

compared with the level of β-actin.

https://doi.org/10.1371/journal.pone.0191192.g005

Sudachitin and osteoclastogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0191192 January 17, 2018 11 / 17

https://doi.org/10.1371/journal.pone.0191192.g005
https://doi.org/10.1371/journal.pone.0191192


contained in green and black tea, exert suppressive effects on all processes of osteoclast differ-

entiation, including osteoclast precursor generation from bone marrow cells, osteoclast

Fig 6. Sudachitin suppresses the production of intracellular ROS and activation of MAPKs in osteoclast lineage

cells. Osteoclast precursors were treated with or without sudachitin (Sud.) in the presence of M-CSF and/or sRANKL

for 24 h. Then, the concentration of ROS in the cells was measured (A). The presented values represent the mean ± SD

(n = 5). �P< 0.05 and NS (not significant) vs. culture with M-CSF alone; ��P< 0.05 vs. culture with sRANKL and

M-CSF. In addition, osteoclast precursors were cultured in the absence or presence of sudachitin (10 μM) in α-MEM/

10% FBS for 3 h. Then, the cells were treated with sRANKL (20 ng/ml) with or without sudachitin in α-MEM/10% FBS

for the indicated times. Subsequently, whole-cell lysates were prepared and subjected to a western blotting analysis to

measure phosphorylated and unphosphorylated Erk1/2, SAPK/JNK, and IκB-α levels. The values presented below the

images indicate the relative ratios of the total band intensity of phosphorylated Erk1/2 (p44 and p42) and SAPK/JNK

(p46 and p54) to the total band intensity of non-phosphorylated Erk and SAPK/JNK, respectively. In case of IκB-α, the

values are the relative ratio of phosphorylated IκB-α non-phosphorylated IκB-α. In addition, total amounts of Erk1/2

(p44 and p42), SAPK/JNK (p46 and p54) and IκB-α were also compared with the level of β-actin.

https://doi.org/10.1371/journal.pone.0191192.g006
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differentiation from osteoclast precursors and the maturation of multinucleated functional

osteoclasts [52–54]. More recently, polymethoxy flavonoids contained in citrus fruits, such as

nobiletin and tangeretin, have attracted attention due to their diverse physiological activities,

such as the repression of carcinogenesis and cancer growth, anti-atherosclerosis activity, and

the improvement of dyslipidemia and anti-inflammatory diseases. Although the sudachitin

used in this study is also a polymethoxy flavonoid and has previously shown stronger physio-

logical activities than nobiletin and tangeretin, its effects on bone metabolism were revealed

for the first time in this study. Our findings show that the action of sudachitin in the suppres-

sion of osteoclast formation is more prominent than that of other polymethoxy flavonoids. In

addition, this suppression was attributed to the direct inhibition of osteoclast differentiation

from osteoclast precursors without acting on osteoblasts. Therefore, although the inhibition of

osteoclast formation by nobiletin and tangeretin has been previously reported to be associated

with the suppression of intracellular PGE2 production in osteoblasts [31], our study indicates

that the primary cells targeted by sudachitin are osteoclast lineage cells.

The elevation of intracellular ROS content causes the activation of MAPKs, such as Erk,

p38 MAPK and JNK, in various cells [55–57]. Consistently, in this study, RANKL, which is a

molecule that triggers osteoclast differentiation, induced the activation of Erk and JNK and

increased ROS; simultaneously, sudachitin also inhibited the elevation of ROS and the activa-

tion of MAPKs. In contrast, sudachitin hardly affects the activation of NF-κB evoked by

RANKL in osteoclast precursors, suggesting that the primary action target of sudachitin is

MAPK rather than NF-κB.

Various types of antibodies targeting pro-inflammatory cytokines have currently been used

for the treatments of inflammatory bone destruction such as RA, resulting in significant

improvements in clinical scores [58–60]. However, in some cases of treatment with an anti-

RANKL antibody, hypocalcemia developed in patients with severe renal dysfunction [61].

Moreover, treatments using these antibodies are extremely expensive. As previously men-

tioned, sudachitin has a variety of useful biological activities and is relatively inexpensive. In

addition, as bone loss induced by not only inflammation but also ovariectomy [44] is associ-

ated with the elevation of intracellular ROS production, our findings suggest that use of suda-

chitin may lead to a possible therapeutic approach for various bone diseases including

postmenopausal osteoporosis and inflammatory bone destruction.

Conclusions

Sudachitin, which is a polymethoxy flavonoid, blocked LPS-induced inflammatory bone

destruction by directly inhibiting osteoclast differentiation from osteoclast precursors. Fur-

thermore, sudachitin repressed the activation of Erk and JNK, which are pivotal signaling

pathways for osteoclast differentiation associated with a decrease in intracellular ROS produc-

tion. Therefore, sudachitin is a useful therapeutic agent for inflammatory bone resorption.
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