
The dimer state of GyrB is an active form:
implications for the initial complex assembly
and processive strand passage
Jinjun Wu1,2,3, Zhiping Zhang1, Lesley A. Mitchenall4, Anthony Maxwell4, Jiaoyu Deng1,

Hongtai Zhang2, Ying Zhou2, Yuan-yuan Chen5, Da-Cheng Wang5, Xian-En Zhang1,* and

Lijun Bi2,*

1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071,
2Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101,
3Graduate School, Chinese Academy of Sciences, Beijing 100039, China, 4Department of Biological Chemistry,
John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK and 5National Laboratory of
Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Received March 16, 2011; Revised June 13, 2011; Accepted June 16, 2011

ABSTRACT

In a previous study, we presented the dimer struc-
ture of DNA gyrase B0 domain (GyrB C-terminal
domain) from Mycobacterium tuberculosis and
proposed a ‘sluice-like’ model for T-segment trans-
port. However, the role of the dimer structure is still
not well understood. Cross-linking and analytical
ultracentrifugation experiments showed that the
dimer structure exists both in the B0 protein and in
the full-length GyrB in solution. The cross-linked
dimer of GyrB bound GyrA very weakly, but bound
dsDNA with a much higher affinity than that of the
monomer state. Using cross-linking and far-western
analyses, the dimer state of GyrB was found to be
involved in the ternary GyrA–GyrB–DNA complex.
The results of mutational studies reveal that the
dimer structure represents a state before DNA
cleavage. Additionally, these results suggest that
the dimer might also be present between the
cleavage and reunion steps during processive
transport.

INTRODUCTION

Type II DNA topoisomerases are ‘marvelous molecular
machines’ that catalyze the ATP-dependent transport
of one DNA duplex (the ‘transport’ or ‘T’ segment)
through a transient break in another segment (the ‘gate’
or ‘G’ segment) (1,2). With the exception of topo VI (topo
IIB), type II topoisomerases, including prokaryotic DNA
topoisomerase II (DNA gyrase and topo IV) and

eukaryotic DNA topoisomerase II, are similar in
sequence, and belong to the type IIA enzymes (2).
Eukaryotic topoisomerase II is a homodimer whereas bac-
terial DNA gyrase exists as an A2B2 heterotetramer
(Figure 1A). The B and A subunits of DNA gyrase are
homologous to the N- and C-terminus, respectively, of
eukaryotic topo II (Figure 1A). DNA gyrase is the
primary target of many important antibacterial agents
(3). It is of great benefit to drug design to investigate the
mechanism of the enzyme, especially for those from infec-
tious pathogens, such as Mycobacterium tuberculosis.
DNA gyrase has been found as the sole type IIA topo-
isomerase in M. tuberculosis so far (4).

Structural and functional studies, particularly with the
enzymes from Escherichia coli and Saccharomyces
cerevisiae, have established a two-gate mechanism for
type IIA topoisomerase catalysis (5–8). According to this
model, each enzyme is composed of two identical halves
and two protein gates are formed on both sides of the
enzyme (the entrance gate or ‘N’ gate and the DNA
gate, where the G-segment DNA is cleaved). The T
segment travels through these two gates, and in type IIA
enzymes, finally exits through a third gate (the ‘exit’ or ‘C’
gate). A series of structures have provided direct evidence
that the DNA gate opens by swiveling around the molecu-
lar dyad from a closed conformation to partially open and
then to fully open conformation (9–11). The structures of
the core enzyme of topo IIA–DNA complexes reveal the
conformation of the cleavage complex and suggest large
protein conformational changes and the sharp bending of
the G segment (12,13).

In recent years, single-molecule analyses of type IIA
topoisomerases have also provided invaluable insights
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into the mechanism of topoisomerases. Using a magnetic-
tweezers assay, Nollmann et al. (14) demonstrated that
gyrase can switch between three distinct modes of activity
in response to small changes of tension in DNA. Under low
mechanical stress, gyrase processively introduces negative
supercoils, but this reaction becomes notably less
processive as tension in the DNA increases slightly. A
simple mechanochemical model explains that processivity
depends on a kinetic competition between dissociation and
rapid, tension-sensitive DNA wrapping (15). It was also
shown that topo IV is highly processive on positively super-
coiled DNA, but is distributive on negatively supercoiled
DNA, giving rise to asymmetric supercoil relaxation (16).
However, the molecular basis for the mechanism of
processivity is not known.

Although the mechanism of type IIA topoisomerases is
well known in outline, many fundamental questions
remain obscure. For example, dramatic conformational
changes are believed to be coupled to T-segment trans-
port, which involves a series of sequential steps including
the motion of the B0 domain, the opening of the DNA gate
and strand passage through the separated gate (9), but
how these conformation changes are coordinated to
direct transport of the T segment and what the driving
force behind these changes is are poorly understood. An
important reason for this is that the structures of the
reaction intermediates, which correspond to the various
steps, have not yet been elucidated. To solve these and
other problems, we determined the structure of M. tu-
berculosis GyrB C-terminal domain (hereafter termed B0)
(Figure 1A); its roles in T-segment transport were
suggested largely on the basis of structural analysis
(17). We report here mechanistic studies of this
domain. The functional state of this domain during
the catalysis of DNA gyrase is determined and a
model is constructed to discuss its exact role during
strand passage.

MATERIALS AND METHODS

Materials

The GyrA, GyrB and B0 proteins were prepared as
described previously unless indicated (17). Mutations
were introduced by site-directed mutagenesis (18) and
mutant proteins were purified in the same way as their
wild-type equivalents. pET28–sbp–gyrA was constructed
as follows: a Streptavidin-Binding Peptide (SBP) coding
sequence plus a linker peptide coding sequence was
subcloned into pET28a and the gyrA gene was inserted
into the C-terminus of the linker sequence (19). The ex-
pressed fusion protein GyrA–SBP was purified using the
same protocol as GyrA. The above proteins were further
purified by gel filtration, where indicated. Relaxed
pBR322, positively supercoiled pBR322 and kDNA were
purchased from Inspiralis Limited, UK, negatively super-
coiled pBR322 was from Fermentas, DTT, BS3 and BMH
were from Pierce, 1,10-phenanthroline and AMPPNP
were from Sigma.

Analytical ultracentrifugation

Sedimentation velocity experiments were performed at
20�C using a Beckman Optima XL-I analytical ultracen-
trifuge. Purified GyrB and B0 protein at various concen-
trations in 50mM Tris–HCl (pH 7.5), 55mM KCl, 4mM
MgCl2 and 4mM DTT were loaded into 12mm
path-length cells and centrifuged at 42 000 and
60 000 rpm, respectively. Data were recorded with absorb-
ance detection at a wavelength of 280 nm and were
analyzed with a c(s) distribution of the Lamm equation
solutions calculated by the Sedfit program (20). The
Lamm equation describes the evolution of the concentra-
tion distribution of a species with sedimentation coeffi-
cient and diffusion coefficient in a sector-shaped volume
and in the centrifugal field. A distribution of sedimenta-
tion coefficient c(s) can be addressed with the Svedberg
equation by assuming some prior knowledge (the partial
specific volume and the friction ratio) of the macromol-
ecules. The friction ratio can be used to calculate molecu-
lar weight. For each protein concentration, experimental
profiles with 200 generated sets of data were modeled for s
values between 1 S and 15 S (GyrB) or between 0.5 S and
10 S (B0) with a confidence level of 0.95 for the regulariza-
tion procedure. This allowed us to evaluate the homogen-
eity of the sample and to determine a sedimentation
coefficient (s) for the main species. We assume the
partial specific volume to be 0.73ml/g, the buffer density
to be 1.00 g/ml, and the buffer viscosity to be 0.01002
poise, the best-fit friction ratio is 1.65 for GyrB and is
1.49 for the T546C–GyrBnc mutant.

Protein cross-linking

B0 protein and its mutant (5 mM) were exchanged exten-
sively into 20mM HEPES (pH 7.5), 20% glycerol and
50mM NaCl and incubated with BS3 in 20mM HEPES
(pH 7.5), 55mM KCl and 4mM MgCl2 for 30min at
room temperature (22±2�C). Reactions (10 ml) were
terminated by the addition of 0.5 ml, 1M Tris–HCl (pH
7.9) and then separated on 9% SDS-PAGE gels and
stained with Coomassie blue. Disulfide bond formation
in the presence of (1,10-phenanthroline)copper(II) and
BMH cross-linking was performed in 50mM Tris–HCl
(pH 7.5), 55mM KCl, 4mM MgCl2 and was carried out
as described previously (6). The cross-linked dimer of
GyrB used for further research was prepared as following:
T546C–GyrBnc (GyrBnc indicates the no-cysteine mutant
of GyrB, see Results section) protein was purified with gel
filtration and the disulfide bonds of its peak II were
formed in the presence of (1,10-phenanthroline)
copper(II). The reaction mixture was then exchanged
into 50mM Tris–HCl (pH 7.5), 20% glycerol and
50mM NaCl.

Surface plasmon resonance assay

This assay was done with an surface plasmon resonance
(SPR) instrument BIAcore 3000 (BIAcore AB, Uppsala,
Sweden) as described previously (21). GyrA–SBP or a
biotin-labeled dsDNA was coupled to a streptavidin-
coated chip (SA sensor chip, BIAcore) according to the
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manufacturer’s instructions. The biotin-labeled dsDNA
fragment (363 bp) was amplified by PCR from pBR322
using two primers (50- biotin-ATC GAT AAG CTT
TAA TGC GGT AGT T-30 and 50-GTA GAG GAT
CCA CAG GAC GGG TGT-30). Different forms of
GyrB at different concentrations were each passed
across the chip in 50mM Tris–HCl (pH 7.5), 55mM
KCl, 4mM MgCl2 and 0.005% (v/v) Tween 20, at a
flow-rate of 30 ml/min. Generally, five different analyte
concentrations were used to determine the kinetic param-
eters for each interaction. Kinetic parameters were
obtained by fitting of the sensorgrams to a 1:1 binding
with mass transfer model (BIAevaluation 4.1 software).

Far-western analysis

Interactions between GyrA, GyrB and DNA were
analyzed by far-western assay, as described, with minor
modifications (19). The DNA was negatively supercoiled,
relaxed or linear pBR322. Linear pBR322 was prepared
by digestion of the supercoiled form with EcoRI. Buffer C
was 25mM Tris–HCl (pH 7.5), 150mM NaCl, 55mM
KCl, 4mM MgCl2, 5% (w/v) non-fat milk and buffer D
was 25mM Tris–HCl (pH 7.5), 150mM NaCl, 55mM
KCl, 4mM MgCl2. Where PBS buffer was used, 4mM
MgCl2 was added. To compare interactions between
GyrA, GyrB and DNA, we quantified the far-western
spots using the volume tools of Quantity One (Biorad,
Version 4.6.2). Global background subtraction was used
to determine positive signals at the lowest enzyme concen-
trations for each kind of interactions. The value of the
signal versus the enzyme concentration can give a rough
measure of interactions. The interaction between GyrB
(II) and GyrA is normalized to be 1.

Enzyme assays

Supercoiling and decatenation were carried out as
described previously (17), under the following conditions:
40mM Tris–HCl (pH 7.5), 5mM MgCl2, 25mM KCl,
200mM potassium glutamate, 5mM DTT, 5% glycerol,
2mM ATP, 2mM spermidine, 0.1mg/ml yeast tRNA,
0.36mg/ml BSA, 5 mg/ml relaxed pBR322 or kDNA
used as the substrates; incubations were for 100min at
37�C. Relaxation of positive supercoils reactions were
carried out under the same conditions except that positive-
ly supercoiled pBR322 replaced relaxed pBR322 or
kDNA. Relaxation (of negative supercoils) reactions
were performed as described for supercoiling except that
ATP and potassium glutamate were omitted and negative-
ly supercoiled pBR322 replaced relaxed pBR322. Cleavage
of relaxed pBR322 or positively supercoiled pBR322 reac-
tions were performed as described for supercoiling except
that ATP was omitted. Cleavage of negatively supercoiled
pBR322 reactions were performed as described for relax-
ation (of negative supercoils). Quinolone-induced cleavage
included 40 mg/ml norfloxacin for cleavage of relaxed
pBR322 or positively supercoiled pBR322 and 10 mg/ml
norfloxacin for cleavage of negatively supercoiled
pBR322. In Ca2+-induced cleavage assays, 5mM CaCl2
replaced 5mM MgCl2. All the cleavage reactions were
performed at 37�C for 30min. Religation assays were

performed as previously described with some modifica-
tions (22). Reactions were initiated with Ca2+-induced
cleavage as described above. After 30min incubations at
37�C, the reactions were transferred to 30�C. NaCl was
then added to 300mM to start time-courses. All the above
reactions were terminated by the addition of SDS to 0.2%
and proteinase K to 0.2mg/ml at 37�C for 30min and
analyzed by electrophoresis.

Agarose gels were visualized and quantified using the
AlphaEaseFC (AlphaImager 2200) software. Cleavage
and decatenation activities were directly quantified by
the analysis tools (spot denso) and expressed as a percent-
age of the wild-type enzyme activities after correcting for
the different enzyme concentrations. To determine relative
activities of relaxation (of negative or positive supercoils)
and supercoiling, the concentration of a mutant enzyme
needed to reach a half-maximum activity of the wild-type
enzyme was determined first, then we calculated the ratio
of the concentration of the wild-type enzyme for its
half-maximum activity to the above concentration of the
mutant enzyme. The ratio is the relative activity of the
mutant enzyme versus the wild-type enzyme.

RESULTS

The existence of the dimer structure in full-length GyrB

We have shown previously that B0 is a dimer in the crystal
structure and that the residues involved in interactions
within the dimer interface are highly conserved (17). In
order to determine the oligmeric state of the B0 protein
in solution, chemical cross-linking and analytical ultracen-
trifugation assays were performed. Chemical cross-linking
suggests that B0 is a dimer (Figure 1B). The cross-linked B0

protein shows more than one band, probably because this
protein is liable to degradation (data not shown). The
sedimentation coefficient is 3.5 S, consistent with a
55 kDa dimer (Figure 1C) (17). Since the B0 domain
monomers are not detectable at sub-micromolar pro-
tein concentrations by analytical ultracentrifugation
(Figure 1C), the dissociation constant of its dimer is
likely to be in the sub-micromolar range. Consistent
with this result, there is a hydrophobic core within the
dimer interface and the buried area of the dimer contact
is large (1100 Å2) (17), indicating that the interactions
within the dimer interface are relatively strong. We have
previously shown that the B0 dimer, together with GyrA,
exhibits ATP-independent relaxation activity (17).
Overall, these data suggest that the dimer of the B0

protein is likely to represent an important conformation.
To determine whether this dimer exists in the full-length

GyrB from M. tuberculosis, this protein was analyzed by
gel filtration. The typical elution profile of the full-length
GyrB reveals three distinct peaks: a void volume species
(peak I, >200 kDa) and two other species (peaks II and
III) under the reducing conditions (Figure 2A). SDS–
PAGE analysis demonstrated that GyrB is present in all
these peaks (data not shown). Peak II GyrB is always
smaller than peak III and it becomes larger when DTT
is omitted in the solution (data not shown). In the
presence of GyrA, the peak I species exhibited the
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  441  S T K S G R - - - D S R T Q A I L P L R G K I L N V E K A R    GyrB-Staphylococcus aureus 
  440  S A K S G R - - - N R E F Q A I L P I R G K I L N V E K A S    GyrB-Streptococcus pneumoniae 
  435  S A K Q G R - - - D R H F Q A I L P L R G K I L N V E K A R    GyrB-Bacillus subtilis
  425  S A K Q A R - - - D R E Y Q A I M P L K G K I L N T W E V S    ParE-Escherichia coli 
  440  S A K Q G R - - - D R K F Q A I L P L R G K V I N T A K A K    ParE-Streptococcus pneumoniae 
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  490  S A K Q A R - - - D R K Y Q A I L P L R G K I L N V A S A S    ParE-Caulobacter crescentus 
436  S A K Q G R - - - D R R F Q A V L P L R G K V I N T E K A K    ParE-Bacillus subtilis

  456  L A V A G L A V V G R D Y Y G C Y P L R G K M L N V R E A S    Topo II-Saccharomyces cerevisiae
  448  L A V S G L G V I G R D L Y G V F P L R G K L L N V R E A N    Topo II-Drosophila melanogaster
  503  L A V S G L S V V G R D K Y G V F P L R G K L L N V R E G N    Topo II-Caenorhabditis elegans
  468  L A L A G R S V L G N N Y C G V F P L R G K L L N V R E A S    Topo II-Arabidopsis thaliana 
  467  L A V S G L G V V G R D K Y G V F P L R G K I L N V R E A S    Topo II-Mus musculus 
  489  L A V S G L G V I G R D R Y G V F P L R G K I L N V R E A S   Topo II-Homo sapiens 

Figure 1. (A) The primary structure diagram of M. tuberculosis gyrase and yeast topoisomerase II. The core enzyme of topoisomerase IIA is
composed of B0 and A0 domains. The domains of M. tuberculosis gyrase and yeast topoisomerase II are homologous, except for the C-terminal
domains. (B) A Coomassie blue-stained SDS–PAGE gel of the B0 protein was cross-linked by 0.11, 0.33 and 1mM BS3. (C) Analytical ultracen-
trifugation analysis of the B0 protein at 0.5mg/ml. The B0 protein used in (A and B) was purified by a Ni–NTA column and then was further purified
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lowest topoisomerase activities (supercoiling, relaxation
and decatenation), �12–30% of peak III species
(Table 1), consistent with a previous report (23), suggest-
ing that this species is mis-folded or aggregated. The topo-
isomerase activities of peak II are very comparable to
those of the peak III species, about one-half of the latter
(Table 1) and they probably correspond to the dimer and
monomer conformation of GyrB, respectively. Analytical
ultracentrifugation experiments were performed to deter-
mine the oligomeric state of the peaks II and III species.
The results of both species showed a main peak at
3.9 S±0.1 S and a secondary peak at 5.9 S±0.1 S,
which correspond to an 80 kDa monomer and a 160 kDa
dimer, respectively (Figure 2B and C). The dimer ac-
counted �18% of the total cell content for peak II at
0.6mg/ml and �6% for peak III at 0.6mg/ml. The ratio

of the latter approximates to that of GyrB during its puri-
fication by gel filtration (�8%, the peak I species is not
included). These results indicate that M. tuberculosis GyrB
alone exists as a monomer–dimer equilibrium in solution
and this equilibrium process is slow, consistent with that
of E. coli GyrB (24). Since the above experiments have
been done under reducing conditions and the ratio of
the dimer state is relatively significant, the slow equilib-
rium process may be physiologically relevant.

The existence of the dimer state of GyrB alone in
solution was confirmed by cysteine cross-linking. In the
presence of a mild oxidizing reagent (1,10-phenanthroline)
copper(II), GyrB formed non-exclusive disulfide bonds
(data not shown), which are likely to result from its
three native cysteines. Therefore, a no-cysteine mutant
of GyrB (C20A–C427A–C484A–GyrB, termed GyrBnc)

Figure 1. Continued
by a HiLoad 16/60 Superdex 75. There are three peaks in the typical elution profile of gel filtration and the fractions of the second peak were
collected and exchanged into the required buffer. (D) Crystal structure of B0 dimer (17). One monomer is colored in red and the other in yellow. Each
monomer contains a Tail and a Toprim domain. The hydrophobic core is formed as indicated by the box and shown in detail in the inset. The
residues (F514, I517, L518 and P519) contributing to this core are highlighted in ball-and-stick representation and H-bonds are shown in dashes. The
residues A543, T546 and W661 are highlighted in ball-and-stick representation. The structure pictures were produced with PyMOL. (E) Multiple
sequence alignment of the hydrophobic core within the dimer interface of B0 domain in the classes of prokaryotic gyrase, topo IV and eukaryotic
topo II. From top to bottom, lines 1–6 contains sequences from prokaryotic gyrase, line 7–11 prokaryotic topo IV, line 12–17 eukaryotic topo II.
Three residues (I517, L518 and P519) from M. tuberculosis and their homologous residues from the other species are highlighted in the red box.

Figure 2. Analysis of the oligomer of GyrB. (A) GyrB protein was purified by gel filtration. GyrB that was purified by a Ni–NTA column was
applied to a HiLoad 16/60 Superdex 200 (GE Pharmacia) in 50mM Tris–HCl (pH 7.5), 220mM KCl, 4mM MgCl2 and 4mM DTT. Three peaks are
shown (I, II and III). Fractions of peaks II and III were collected, respectively, and were exchanged extensively into 50mM Tris–HCl (pH 7.5),
55mM KCl, 4mM MgCl2 and 4mM DTT for analytical ultracentrifugation analysis. The sedimentation coefficient distribution for the peaks II (B)
and III (C) of GyrB protein at concentration of 0.6mg/ml are shown.
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was constructed and three cysteine mutations (W661C,
T546C and A543C) were each introduced into the
no-cysteine mutant (Figure 1D). In the presence of
GyrA, the relaxation (of negative supercoils) activity of
these mutants (W661C–GyrBnc, T546C–GyrBnc and
A543C–GyrBnc) is between 25–70% of the wild-type
enzyme, and supercoiling activity of the T546C–GyrBnc

mutant is �6% whereas supercoiling activity of the
other two mutants is undetectable (Table 1). The above
GyrB mutants were subjected to cross-linking analysis
using disulfide bond formation and a cysteine-specific
cross-linking reagent BMH (Figure 3A). It showed that
spontaneous disulfide bond formation occurred in all
three mutants under non-reducing conditions (Figure
3A). Both (1,10-phenanthroline)copper(II) and BMH
caused intersubunit cross-linked dimers for all three
GyrB mutants. More than one band is observed for each
of the mutants. The main band of cross-linked dimer for
W661C–GyrBnc showed faster mobility than those of the
other two mutants, indicating different SDS-bound con-
formations. This can be attributed to different sites of
cross-linking (Figure 1D). All these cross-linked dimers
produced by (1,10-phenanthroline)copper(II) could be
broken by incubation with 4mM DTT during sample
preparation that was applied to non-reducing SDS–
PAGE (Supplementary Figure S2), indicating that they
were disulfide bonds. In contrast, no specific cross-linked
dimers were found in the no-cysteine mutant of GyrB
under the same conditions (Supplementary Figure S2).
Overall, these data reveal that the intersubunit cross-
linking was formed at the cysteines that were introduced
and confirm the dimer interaction within GyrB.

The cross-linked dimer of GyrB blocks the binding to
GyrA, but binds dsDNA with a much higher affinity
than that of the monomer state

In order to probe the roles of the dimer and monomer of
GyrB, the peaks II and III of GyrB [GyrB (II) and (III)]
and the cross-linked dimer of GyrB (II) were used to
compare their interactions with GyrA or DNA. The
T546C–GyrBnc mutant was chosen to prepare the
cross-linked dimer. Because the cross-linking efficiency
of (1,10-phenanthroline)copper(II) is much higher than
that of BMH for all three mutants, this mild oxidizing
reagent was used to produce the cross-linked dimer of
GyrB. The conversion into cross-linked dimer is high
(>90%) (Figure 3C). In the presence of GyrA, the topo-
isomerase activities of the cross-linked dimer are relatively
high in the presence of DTT compared to those of the

wild-type enzyme (Supplementary Figure S3), indicating
that the cross-linked dimer is active. This cross-linked
dimer bound very weakly to immobilized GyrA
compared to those of the GyrB (II) and GyrB (III), even
at very high concentrations (Figure 4). The KD of GyrB
(II) for binding to GyrA increased about 2-fold compared
to that of GyrB (III) (Table 2). Unexpectedly, the peak II
of the T546C–GyrBnc mutant also bound very weakly to
GyrA (data not shown), very similar to its cross-linked
dimer. It was observed that peak II became much higher
than peak III in the above mutant whereas peak II was
much smaller than peak III in wild-type GyrB under the
same conditions of purification (Figure 2A and 3B),
indicating that the dimer state becomes much more
stable in the mutant. To our expectations, the results of
analytical ultracentrifugation analysis revealed a main
peak at 6.4 S±0.1 S and a secondary peak at
4.0 S±0.1 S (Supplementary Figure S4A), corresponding
to a 134 (peak II) or 157 (peak III) kDa dimer and a 66
(peak II) or 71 (peak III) kDa monomer, respectively. The
dimer accounted �77% of the total cell content for peak
II at 0.6mg/ml and �26% for peak III at 0.6mg/ml
(Supplementary Figure S4). These results suggest that
the dimer state prevents GyrB from binding GyrA.
The kinetic constants between GyrB and dsDNA are

presented in Table 3. It shows that the KD of the
cross-linked dimer for binding to the immobilized DNA
is very close to that of GyrB (II), but decreases about two
orders of magnitude compared to that of GyrB (III). Peak
II of the T546C–GyrBnc mutant [T546C–GyrBnc (II)]
behaved like its cross-linked dimer and GyrB (II),
showing a comparable KD, in accordance with the fact
that the dimer state was a predominant species for peak
II of this mutant. These data reveal that the dimer state of
GyrB has a much higher affinity for dsDNA than its
monomer state.

The dimer structure of GyrB is involved in the complex
of GyrB–GyrA–DNA

In order to probe whether the dimer structure of GyrB
forms in the context of the functional heterotetramer of
gyrase and DNA, cross-linking assays were used to
analyze the interactions between GyrA, GyrB and DNA.
The cross-linked dimer band of the T546C–GyrBnc

mutant remained almost constant in the presence of
AMPPNP, GyrA, DNA, GyrA–DNA or GyrA–DNA–
AMPPNP (Supplementary Figure S5A). When the
mutant was replaced with the mutants of A543C–GyrBnc

and W661C–GyrBnc in the above assays, very similar

Table 1. Relative topoisomerase activities

Reactions Peak I (%) Peak II (%) Peak III (%) W661C T546C A543C

Supercoiling 13±4 42±8 100 <3 (% WT) 6±1 (%WT) <3 (% WT)
Decatenation 11±2 55±7 100 NT NT NT
Relaxationa 32±8 70±10 100 70±10 (% WT) 25±4(% WT) 20±5(% WT)

aRelaxation of negatively supercoiled pBR322.
All the activities are in the presence of wild-type GyrA. The topoisomerase activities of peaks I and II of GyrB are given as a percentage of the peak
III; the topoisomerase activities of W661C, T546C and A543C mutants are given as a percentage of the wild-type enzyme. Data in table 1 are
averaged from three separate experiments (mean±standard deviations). NT, not tested.

Nucleic Acids Research, 2011, Vol. 39, No. 19 8493

http://nar.oxfordjournals.org/cgi/content/full/gkr553/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr553/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr553/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr553/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr553/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr553/DC1


results were obtained (Supplementary Figure S5B and C).
It is reported that GyrB, GyrA and DNA can form a
ternary complex (25). Thus the dimer state of GyrB may
be present in the complex of GyrB–GyrA–DNA.
Far-western blot assays were also utilized to analyze

interactions between different forms of GyrB and GyrA–
DNA. Negatively supercoiled pBR322 was found to
interact very weakly with GyrA–SBP under conditions
tested (Figure 5A). A similar result was obtained when
this DNA passed over a SA chip where GyrA–SBP was
immobilized in the SPR analysis, even when the DNA
concentration was up to 50 mg/ml (data not shown).
When the concentration of negatively supercoiled
pBR322 was kept just below the limit of detection in the

far-western analysis of GyrA–DNA interaction, the inter-
action of GyrB–GyrA–DNA was �9-fold stronger than
that of GyrB–GyrA for both GyrB (II) and GyrB (III)
(Figure 5A), indicating that a stable complex of GyrB–
GyrA–DNA was formed. It increased to �27-fold when
the cross-linked dimer of the T546C–GyrBnc mutant was
applied to the above assays (Figure 5A). Very similar
results were shown for T546C–GyrBnc (II) (Figure 5A).
Considering that GyrA–SBP bound GyrB dimer weakly
and no obvious interaction was detected between GyrA–
SBP and the negatively supercoiled DNA under the con-
ditions tested, the above results suggest that GyrA–SBP
can strongly bind the complex of DNA and the dimer
state of GyrB. The interaction of GyrB–GyrA–DNA for

Figure 3. (A) SDS–PAGE analysis of cross-linked GyrB. W661C–GyrBnc, T546C–GyrBnc and A543C–GyrBnc (4 mM) were incubated under
non-reducing conditions alone or in the presence of BMH (25 mM) or (1,10-phenanthroline)copper(II) (CuP, 125mM). Reactions were incubated
for 1 h at 37�C for BMH cross-linking and quenched with DTT (4mM). Reactions were incubated for 0.5 h at 37�C for (1,10-phenanthroline)
copper(II) cross-linking and quenched with EDTA (1mM). The above quenched mixtures were analyzed by SDS–PAGE under non-reducing
conditions. T546C–GyrBnc protein was purified with gel filtration (B) and its peak II was cross-linked by (1,10-phenanthroline)copper(II) (C).
Lane 1, protein marker; lane 2, the prepared cross-linked T546C–GyrBnc mutant protein by (1,10-phenanthroline)copper(II); lanes 3 and 4 were
the cross-linked protein incubated with 5 and 10mM DTT, respectively. Samples were analyzed by SDS–PAGE under nonreducing conditions.
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the cross-linked dimer was nearly the same as the inter-
action for T546C–GyrBnc (II) and was stronger than for
GyrB (II) and GyrB (III) (Figure 5A and B), indicating
that the dimer state more readily forms the ternary
complex than the monomer state. When negatively super-
coiled pBR322 was replaced with relaxed pBR322 in all
the above assays, the results were almost identical except
that GyrA–SBP bound the relaxed DNA with a higher
affinity than the negatively supercoiled DNA (�10-fold)
(Figure 5A and B). Also, the results obtained with linear
DNA were very similar (data not shown). Together, the
above results suggest that the dimer structure of GyrB is
involved in the ternary complex.

The dimer structure of GyrB is involved in a step
before the cleavage

Since the activity of the cleavage and reunion steps can be
determined separately, structures of the catalytic

intermediates that correspond to these steps can be
evaluated. In order to discover at which steps the dimer
structure is involved, site-directed mutagenesis was
applied to destabilize the dimer interface. We focused on
the most conservative residues that contribute to the
hydrophobic core (Figure 1D and E); three single
mutants, I517A, L518A and P519A, were constructed.
DNA gyrase bearing the I517A mutation shows about
half the activity of the wild-type enzyme in decatenation,
relaxation (of negative supercoils) and quinolone-induced
cleavage, whereas this further decreases to �8% in super-
coiling and Ca2+-induced cleavage of relaxed pBR322
(Table 4, Figure 6 and Supplementary Figure S5). The
L518A and P519A mutants demonstrate a very similar
pattern except that all the above activities of the latter
reduce to almost the same degree (Table 4, Figure 6 and
Supplementary Figure S5). These mutants, especially
L518A, greatly reduced all activities, supporting the idea
that the dimer structure may represent an important con-
formation. Gel filtration analysis showed that most of the
B0 dimer, which was the predominant species in wild-type
B0, converts into polymers in the L518A-B0 mutant
(Supplementary Figure S7A and B). The cross-linking
analysis of this mutant also showed no cross-linked
dimer band (Supplementary Figure S7C). Overall, these
observations suggest that the mutation does destabilize
the dimer interaction, thereby favoring the monomer
which polymerizes probably because of the exposure of
the hydrophobic core in the monomer form. Similar gel
filtration elution profiles were obtained for each of the
mutants of full-length GyrB (Supplementary Figure S8).
The effect of those three mutations on the structure of
GyrB was investigated by the CD analysis and limited
proteolysis. The results of the CD analysis show that
these three GyrB mutants are similar to wild-type GyrB
(Supplementary Figure S9). Likewise, the proteolytic fin-
gerprints of these three GyrB mutants alone and in the
presence of AMPPNP, GyrA, DNA, AMPPNP–GyrA,
GyrA–DNA, GyrA–DNA–AMPPNP or GyrA–DNA–
norfloxacin were almost identical to the wild-type (data
not shown). These results indicate that the secondary
structures of the mutants are likely to be the same as the

Figure 4. SPR analysis of interactions between GyrA and different
forms of GyrB. An amount of 12 mg/ml GyrA–SBP in 50mM Tris–
HCl (pH 7.5), 20% glycerol and 50mM NaCl was injected at a flow
rate of 10 ml/min to immobilize on a streptavidin-coated chip and about
1200 response units (RU) was generated. Different forms of GyrB at
indicated concentrations were each passed across the chip at a flow-rate
of 30 ml/min.

Table 3. The kinetic constants between GyrB and dsDNA

Proteins ka (M�1s�1) kd (s�1) KA (M�1) KD (M)

GyrB (II) 9.8 (±2.3)� 103 4.0 (±2.5)� 10�5 2.4 (±0.9)� 108 4.6 (±1.8)� 10�9

GyrB (III) 2.5 (±0.7)� 103 5.5 (±0.9)� 10�4 4.8 (±2.2)� 106 2.4 (±1.1)� 10�7

Cross-linked dimer 8.3 (±2.1)� 103 3.9 (±1.9)� 10�5 2.3 (±0.6)� 108 4.5 (±1.1)� 10�9

T546C–GyrBnc (II) 1.7 (±0.4)� 104 2.5 (±0.1)� 10�4 7.0 (±2.0)� 107 1.5 (±0.4)� 10�8

Table 2. The kinetic constants between GyrB and GyrA

Proteins ka (M�1s�1) kd (s�1) KA (M�1) KD (M)

GyrB (II) 2.1 (±0.1)� 104 7.8 (±0.7)� 10�4 2.7 (±0.4)� 107 3.8 (±0.6)� 10�8

GyrB (III) 6.2 (±0.6)� 104 10.1 (±1.1)� 10�4 6.2 (±1.3)� 107 1.7 (±0.4)� 10�8
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Figure 5. Far-western analysis of interactions between GyrA, GyrB and DNA. In (A and B), different forms of DNA, GyrB (Peaks II and III of
GyrB protein purified by gel filtration, peak II of T546C–GyrBnc protein purified by gel filtration and its cross-linked dimer) alone or in the presence
of DNA were applied to a nitrocellulose membrane. These proteins were at different concentrations (37–3000 nM, from left to right) which are
indicated. When the DNA was alone, it was at different concentrations: 1.2, 3.7, 11, 33, 100 mg/ml (from left to right) for negatively supercoiled
pBR322 (–SC) (A) and 0.12, 0.37, 1.1, 3.3, 10 mg/ml (from left to right) for relaxed pBR322 (B). When the DNA was in the presence of GyrB protein,
its concentration was kept constant: 100 mg/ml for negatively supercoiled and 10 mg/ml for relaxed pBR322. The membrane was then incubated with
10 mg/ml GyrA–SBP after blocking with non-fat milk. After successive washing, GyrA–SBP remained bound to the membrane was detected by
incubating with streptavidin alkaline phosphatase conjugate and BCIP–NBT sequentially. Quantification of interactions from far-western blotting
pictures is on the right side of the pictures. Each of interactions between different forms of GyrB and GyrA in the presence and absence of DNA
were quantified (see ‘Materials and Methods’ section).
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wild-type. Therefore, the reduced activities of the mutants
are unlikely due to misfolding of the mutant proteins.

The effect of quinlones on gyrase is thought to trap the
enzyme on DNA and stabilize the cleavage complex

(12,13,26). Quinolone-induced cleavage is therefore a
good reaction that can evaluate the cleavage reaction of
topoisomerase activities. The fact that quinolone-induced
cleavage, relaxation (of negative supercoils) and
decatenation activities decreased to almost the same
extent for each of the three mutants (Table 4) indicates
that a common reaction, cleavage, is likely to be deficient
in the above reactions. Consistent with this idea, the
mutant L518A had a religation rate that was comparable
to that of wild-type (Figure 7), indicating that the
mutation has not directly affected the religation step of
the reaction and thus it is more likely to affect the
cleavage–religation reaction of the enzyme by decreasing
the cleavage activity. There are two possibilities that can
lower the cleavage reaction: a defect of the cleavage step
per se or a step before cleavage. The latter possibility is
favored because the cleavage-competent conformation of
B0 is not a dimer (12,13). The configuration of the DXD
motif in the dimer structure is obviously quite different
from its conformation in the cleavage complex (17). The
defect therefore can be attributed to a step before the
cleavage. Given that the mutations destabilize the dimer-
ization of the L518A and P519A mutants, the dimer struc-
ture of GyrB is probably involved in the step before the

Figure 6. Representative assays for WT gyrase and its various mutants: (A) supercoiling and (B) relaxation of negative supercoils; (C) representative
norfloxacin-induced cleavage of negatively supercoiled pBR322 by WT gyrase and its various mutants under relaxation (of negative supercoils)
reaction conditions. Negative controls of DNA alone, WT and its various mutants are shown. Concentrations of WT and its various mutants (GyrB
in the presence of equal molar GyrA) are indicated. R, L and S denote relaxed, linear and supercoiled pBR322, respectively.

Table 4. Relative topoisomerase activities of mutants

Reactions I517A L518A P519A

Supercoiling (% WT) 8±1 <3 23±10
Relaxation (% WT)a <3 <3 29±6
Decatenation (% WT) 50±10 12±2 28±4
Relaxation (% WT)b 50±8 10±2 29±6
Quinolone (% WT)c 64±9 11±1 33±5
Quinolone (% WT)d 49±7 8±1 35±3
Quinolone (% WT)e 37±11 12±4 54±13
Ca2+ (% WT)d 9±1 <2 36±10
Ca2+ (% WT)e <3 <2 44±4

aRelaxation of positively supercoiled pBR322.
bRelaxation of negatively supercoiled pBR322.
cCleavage of negatively supercoiled pBR322.
dCleavage of relaxed pBR322.
eCleavage of positively supercoiled pBR322.
All the activities are in the presence of wild-type GyrA. Generally data
in Table 4 are averaged from three separate experiments (mean
±standard deviations).

Nucleic Acids Research, 2011, Vol. 39, No. 19 8497



cleavage step of relaxation (of negative supercoils) and
decatenation reactions.
Notably, the supercoiling activity of the I517A and

L518A mutants reduced much more than their relaxation
(of negative supercoils), decatenation and quinolone-
induced cleavage activities compared to the wild-type
enzyme (Table 4, Figure 6 and Supplementary Figure
S5), implying that the B0 dimer may have a different role
in the supercoiling reaction compared to the other reac-
tions. Interestingly, supercoiling activity decreased to the
same extent as Ca2+-induced cleavage activity in the
I517A and L518A mutants (Table 4, Figure 6A and
Supplementary Figure S5C), suggesting that the defects
in both reactions are likely to be the same. The fact that
the decrease in quinolone-induced cleavage of relaxed
DNA is almost the same as quinolone-induced cleavage
of negatively supercoiled DNA for each of the mutants
(Table 4, Figure 6C and Supplementary Figure S5B)
implies that one defect in the supercoiling reactions of
the I517A and L518A mutants, the defect of the step
before cleavage, is common to the other reactions; i.e.
the dimer structure of GyrB is involved in the step
before the cleavage of supercoiling. Another defect may
exist that leads to the further decrease in supercoiling and
Ca2+-induced cleavage activities of the mutants. Given
that Ca2+-induced cleavage reflects a shift within the
cleavage–religation equilibrium, this defect in the super-
coiling reaction of the mutants, which shifts the equilib-
rium towards religation, may occur between these two
steps. Although the relaxation of positive supercoils is a
topologically equivalent reaction to (negative) supercoil-
ing, the former implies a different mode of activity at high
force from the latter (14). The above two mutants there-
fore were also subjected to the tests of positive supercoil

relaxation and their quinolone- and Ca2+-induced
cleavage. As expected, the losses of these activities
compared to the wild-type enzyme are very similar to
those of their counterpart reactions of supercoiling,
except that relaxation of positive supercoils activity in
the I517A mutant and its Ca2+-induced cleavage activity
were not detectable (Table 4). In contrast to the other
topoisomerase activities, both relaxation of positive super-
coils and supercoiling reactions of DNA gyrase are
processive. Therefore, the dimer structure is possible to
play an important role in the processivity of DNA
gyrase (see Discussion section).

Combining the above biochemical data with the align-
ment results for the residues forming the hydrophobic core
of the dimer structure (Figure 1E), two of the most im-
portant residues, I517 and L518, both in terms of structure
and activities for M. tuberculosis DNA gyrase, are kept
constant among DNA gyrases and are highly conserved
among topo IV enzymes. However, in eukaryotic topo II
enzymes these residues are less conserved, generally being
substituted with Val and Phe; in yeast topo II these
residues are substituted with Cys and Tyr, which are
even not hydrophobic residues. Another residue, P519, is
invariant among type IIA topoisomerases (Figure 1E). In
contrast to the I517A and L518A mutants, the supercoil-
ing and positive supercoil relaxation activities of the
P519A mutant decreased to almost the same extent as
their quinolone- and Ca2+-induced cleavage activities
(Table 4). It is evident that P519 is situated at the edge
of the hydrophobic core (Figure 1D) and thus contributes
less than I517 and L518 to the stability of the dimer struc-
ture, which is confirmed by the gel filtration analysis of the
three mutants (Supplementary Figure S8). Overall, these
results suggest that the dimer state of the B0 domain may

Figure 7. Religation assay for WT gyrase (A) and its mutant L518A (B). An amount of 100 ng of negatively supercoiled pBR322 was added in all
reactions. An amount of 11 and 100 nM enzyme were added for WT and its mutant L518A (GyrB in the presence of equal molar GyrA), respectively.
DNA alone is a negative control. Reaction times (in minutes) are indicated. R, relaxed pBR322; L, linear pBR322; S, supercoiled pBR322.
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well be ubiquitous in prokaryotic type II topoisomerases,
but possibly does not exist, or is less stable, in eukaryotic
type II topoisomerases.

DISCUSSION

The dimer state of GyrB is an active form

Mycobacterium tuberculosis GyrB appears to exist as a
slow monomer–dimer equilibrium in solution, which is
the case for the E. coli counterpart (24). The dimer inter-
action ofM. tuberculosis GyrB was confirmed within B0 by
cross-linking analysis. Moreover, it has been shown that
the interactions within the dimer interface of B0 are highly
conserved and are vital to the enzyme activities of DNA
gyrase. Therefore, the slow monomer–dimer equilibrium
for GyrB may well be common to DNA gyrases from
different species.

Although we have shown that the dimer state prevents
GyrB from binding GyrA, it does not block GyrB to bind
the complex of GyrA–DNA. Conversely, the dimer state
more readily forms the ternary complex than the
monomer state. The mutations at the dimer interface of
GyrB, destabilizing the dimer interaction, which did not
obviously affect the native secondary structure of GyrB,
reduce all the topoisomerases activities. Overall, these data
suggests that the dimer state of GyrB is an active form.

A model for the initial complex of DNA gyrase

We have shown that the formation of the dimer structure
of GyrB occurs before the cleavage step and the dimer
structure is involved in the complex of GyrB–GyrA–
DNA. Moreover, the dimer structure is an active form.
The dimer structure therefore is likely to be involved in a
complex before cleavage, i.e. an initial complex. Several
lines of evidence support this idea. The fact that the
ternary complex forms in the presence of either negatively
supercoiled or relaxed DNA suggests that the complex
forms not only in the relaxation (of negative supercoils)
reaction, but also in the supercoiling reaction, in agree-
ment with the idea that the formation of the dimer struc-
ture occurs before the cleavage step of both relaxation (of
negative supercoils) and supercoiling reactions. The for-
mation of the ternary complex is independent of ATP in
the presence of relaxed DNA and can also occur in the
presence of linear DNA. Thus, the complex should cor-
respond to a catalytic intermediate before the reaction.
The dimer state more readily forms the complex of
GyrB–GyrA–DNA than the monomer state, indicating
that the dimer state is required for the formation of the
ternary complex.

The E. coli GyrA–NTD structure is thought to have a
DNA gate-closed conformation at the beginning of the
strand-passage (9,11). Therefore, a hypothetical model
for the initial complex was generated by manually
docking the dimer structure of the B0 domains to this
structure (11). The steric hindrance between the dimer of
the B0 domain and the GyrA–NTD–DNA complex was
minimized (Figure 8B). The region of the B0 dimer that
docks to the DNA is a groove formed by the toprim
domains of the dimer, the size of which is a good fit for

dsDNA (Figure 8A). Interestingly, this docking result
shows that the long axis of the negatively charged
groove is perpendicular to the G segment, and a simple
rotation of the B0 domain around the molecular dyad of
the dimer can produce the orientation of B0 domain in the
structure of the cleavage complex (12,13,17). We have
shown that GyrA can bind relaxed DNA with a higher
affinity than negatively supercoiled DNA, making the
initial complex form more easily in the presence of
relaxed DNA than negatively supercoiled DNA. This
result implies that the initial complex is more prone to
function before the replication fork where DNA is posi-
tively supercoiled, in accordance with the functionality of
DNA gyrase (27). The presence of the initial complex in
yeast topo II is impossible because the G segment cannot
enter this initial complex of yeast topo II due to the
homodimer of this enzyme in vivo. This may also explain
why the dimer structure of the B0 domain is unlikely to
occur in eukaryotic type II topoisomerases.

A working model for the mechanism of processivity in
DNA gyrase

Processivity is an important property of molecular
motors, many of which achieve their processivity by effi-
cient translocation (28,29). However, translocation in
DNA topoisomerases is not obvious and they must
utilize a different mechanism (30). Processivity in DNA
gyrase means that the enzyme can carry out many con-
secutive strand-passage reactions without releasing the
DNA substrate. There are two possibilities for the mech-
anism of processivity: (i) cleavage, strand passage and
reunion occur once in each enzymatic cycle, and a
processive reaction contains many of these cycles; (ii) the
enzyme cleaves and religates the G-segment only once and
performs many successive strand passages in a processive
reaction. In contrast to the first possibility, the second
possibility can be exempt from many cleavage and
reunion steps, thereby enhancing the efficiency of
processivity, and can also avoid potential dsDNA
breakage due to the failure of reunion for the first possi-
bility. As regards the second possibility, the enzyme is
required to recover its conformation at the very beginning
of the reaction, forming a cycle of enzymatic processes
within the reaction. We have shown that one defect in
the processive reactions is common to the other reactions,
i.e. the dimer state of GyrB is involved in the formation of
the initial complex of processive reactions. Another defect
may occur between cleavage and religation. Given that the
dimer state of GyrB is involved in the formation of the
GyrB–GyrA–DNA complex and the dimer structure may
play an important role in the processivity of DNA gyrase,
we propose that the dimer structure can also occur in the
step between the cleavage and reunion during processive
strand passages. This idea may provide a structural basis
for the second possibility of the processive reactions (see
below).
Based on previous studies and the new results reported

here, we propose a working model for the role of the B0

domain within the global catalytic mechanism of DNA
gyrase (Figure 9). The two subunits of DNA gyrase first
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assemble on the substrate, forming the initial complex
(Figures 8B and 9a). The basic grooves of the ‘head’
dimer of GyrA–NTD bind to a side of one segment of
DNA (G-segment) (11). The B0 dimer sits at the
saddle-like region of the GyrA–NTD–DNA complex
with the bottom groove of the B0 dimer binding to the
opposing side of the G-segment. The G-segment is
slightly distorted at this moment. Another segment
(T-segment) is wrapped by the C-terminal domain of
GyrA and is delivered to the ATP-operated clamp (31)
(not shown in Figure 9). This clamp (the ATPase
domains) dimerizes upon the binding of ATP and
captures the T segment within the closed N gate (Figure
9b). The Tail domains swivel around the molecular dyad
of the B0 dimer (17), thereby pulling apart the dimer struc-
ture. The B0 domains then rotate to form the configuration
observed in structures of the core enzyme of topo IIA–
DNA complex (12,13) and the G segment is cleaved by
forming a covalent enzyme–DNA complex (Figure 9b).
Then the B0 domains may also rotate back to the

conformation of the initial state, but they do not
dimerize as the T segment comes between them (Figure
9c). When the T segment is held within the central hole
(Figure 9d), two processes probably occur. For
non-processive transport, the B0 domain first rotates to a
conformation that resembles the cleavage configuration,
and then the cleaved G-segment is religated and the exit
gate opens to release the T-segment (Figure 9f). For
processive transport, the B0 domain recovers the dimer
arrangement as it has in the initial state (Figure 9e). The
B0 dimer again rotates to open by swiveling around the
molecular dyad and the T segment can be released (Figure
9b; the release of the T segment is not shown). ATP hy-
drolysis and product release reset the enzyme in the initial
complex for another round of strand passage, where the
cleaved G segment is not resealed (Figure 9a). In this way,
the enzyme can perform consecutive strand passages
without religating the cleaved G-segment (the circle of
a–b–c–d–e–b–a in Figure 9) and only religates in the
final cycle (a–b–c–d–f in Figure 9). This putative

90°

90°

A

B

Figure 8. Schematic illustration of the dimer structure of the B0 domain docking to distorted DNA (A) and the initial complex of DNA gyrase (B).
The complex structure of GyrA–NTD–DNA (GyrA–NTD in blue and DNA in orange) is based on the structure of the yeast topo II–DNA complex
and E. coli GyrA–NTD (11,12). The dimer structure of the B0 domain (in red) (17) was docked manually to distorted DNA and the complex of
GyrA–NTD–DNA. For clarity the ATPase domain and GyrA–CTD are not included in the initial complex. The structure pictures were produced
with PyMOL.
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mechanism provides an explanation for the much greater
reduction in supercoiling and relaxation of positive super-
coils activities than in other activities for the mutants
described above. Thus it possibly provides a structural
basis for the processive transport in DNA gyrase, and
we speculate that this mechanism may be also applied to
processivity in topo IV.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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