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Abstract

Background

Nuclear Receptor Subfamily 2 Group F (Nr2f) orphan nuclear hormone transcription factors

(TFs) are fundamental regulators of many developmental processes in invertebrates and

vertebrates. Despite the importance of these TFs throughout metazoan development, previ-

ous work has not clearly outlined their evolutionary history.

Results

We integrated molecular phylogeny with comparisons of intron/exon structure, domain

architecture, and syntenic conservation to define critical evolutionary events that distinguish

the Nr2f gene family in Metazoa. Our data indicate that a single ancestral eumetazoan Nr2f

gene predated six main Bilateria subfamilies, which include single Nr2f homologs, here

referred to as Nr2f1/2/5/6, that are present in invertebrate protostomes and deuterostomes,

Nr2f1/2 homologs in agnathans, and Nr2f1, Nr2f2, Nr2f5, and Nr2f6 orthologs that are found

in gnathostomes. Four cnidarian Nr2f1/2/5/6 and three agnathan Nr2f1/2 members are

each due to independent expansions, while the vertebrate Nr2f1/Nr2f2 and Nr2f5/Nr2f6

members each form paralogous groups that arose from the established series of whole-

genome duplications (WGDs). Nr2f6 members are the most divergent Nr2f subfamily in

gnathostomes. Interestingly, in contrast to the other gnathostome Nr2f subfamilies, Nr2f5

has been independently lost in numerous vertebrate lineages. Furthermore, our analysis

shows there are differential expansions and losses of Nr2f genes in teleosts following their

additional rounds of WGDs.

Conclusion

Overall, our analysis of Nr2f gene evolution helps to reveal the origins and previously unrec-

ognized relationships of this ancient TF family, which may allow for greater insights into the

conservation of Nr2f functions that shape Metazoan body plans.
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Introduction

Nuclear hormone receptors (NRs) form a large, ancient superfamily of transcription factors

(TFs) found in all Metazoa [1]. While NR functions are often dictated by interactions with spe-

cific ligands, including steroids, thyroid hormones, and retinoids [2, 3], the ligands for many

NRs, called orphan NRs, are still not known [4]. Nuclear Receptor Subfamily 2 Group F Mem-

bers (Nr2fs), initially named Chicken ovalbumin upstream promoter-transcription factors

(Coup-TFs) due to their ability to bind the COUP element of the ovalbumin gene [5–7], are

some of the most highly studied orphan NRs. Despite an overall expansion of the NR super-

family [1, 2], invertebrate phyla appear to have predominantly retained a single Nr2f gene.

Only one Nr2f member is present in the protostome Drosophila melanogaster (fly), early-

branching deuterostome Strongylocentrotus purpuratus (sea urchin) [8, 9], and invertebrate

chordates Branchiostoma floridae (amphioxus) and Ciona robusta (sea squirt) [10, 11]. How-

ever, the number of Nr2f genes in early-branching metazoans is presently less clear. In cnidari-

ans, one Nr2f has been reported in Hydractinia echinata [12, 13], while multiple have been

reported in Nematostella and Hydra vulgaris [14, 15]. In contrast to most invertebrates, verte-

brates have exhibited a significant expansion of the Nr2f family, with gnathostomes having

multiple Nr2f genes. Furthermore, teleosts possess additional Nr2f Ohnologs (duplicates origi-

nating from whole-genome duplication (WGD)) [16], most likely reflecting the additional

WGDs that have occurred in the teleost lineage [17, 18].

Nr2f proteins are highly conserved at the sequence level throughout Metazoa [19]. From

the N-terminus to the C-terminus, all Nr2f proteins have six domains (Fig 1): an A/B domain,

which contains the activating function-1 (AF-1) domain; the C domain, which contains the

DNA-binding domain (DBD); the D domain (a linker); the E domain, which is comprised of

the ligand-binding domain (LBD) and an AF-2 domain; the F domain (C-terminal) [20].

While the A/B domains are the most divergent in sequence, strikingly, the DBDs and LBDs of

Nr2f members even from distantly related species (e.g. fly, sea urchin, frog, zebrafish, mouse,

and human) are ~94% identical [21]. The extremely high degree of conservation among several

species implies the preservation of critical roles for Nr2f in development and differentiation

[21, 22]. Moreover, requirements for Nr2f genes have been found in organs of all three germ

layers during embryogenesis [14, 22]. For instance, the Drosophila Nr2f homolog, called seven
up (svp), is required for retinal, dorsal vessel, and liver development [23, 24]. Furthermore,

Nr2f TFs in vertebrates appear to both have acquired diverse and retained redundant func-

tions. For instance, in mice, Nr2f1 is predominantly required for neural development with a

role in regulation of premigratory and migratory neural crest cells in the developing hindbrain

[25, 26]. However, the mouse Nr2f2 gene is required for differentiation of mesodermal deriva-

tives, including atrial cardiomyocytes of the heart and venous endothelial cells [22, 27, 28]. An

example of redundancy is zebrafish nr2f1a and nr2f2, which are both required for proper ven-

tricular cardiomyocyte and cranial muscle specification [29].

Fig 1. Schematic of conserved domain architecture of Nr2f TFs. A/B (N-terminal variable domain with

transactivating AF-1 domain), C (DBD, which contains two Zinc finger (Znf) motifs), D (a linker domain), E (LBD

plus transactivating AF-2 domain), and F (C-terminal).

https://doi.org/10.1371/journal.pone.0254282.g001
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While Nr2f proteins were initially identified as transcriptional activators of chicken ovalbu-

min gene [5], they have since been shown to function directly as both transcriptional activators

and repressors in several developmental contexts [22, 30, 31]. Nr2fs can bind a range of differ-

ent response elements [32–34] and in signaling reporter assays can compete with and inhibit

retinoic acid receptors [35]. In vivo they bind numerous targets that reflect their various

requirements in the specific tissues. For instance, Nr2f1 KO mice also have inner ear defects

[36]. In the mouse inner ear, direct targets of Nr2f1 include fatty acid binding protein 7

(FABP7), cellular retinoic acid binding protein 1 (CRABP1) [37], microRNA-140 (mi-R140),

and Krüppel-like 9 (Klf9) [37, 38]. In adipogenesis, Nr2f2 directly represses peroxisome prolif-

erator-activated receptor γ (PPARγ) downstream of canonical Wnt/β-catenin signaling [39].

In the mammalian heart, Nr2f2 is thought to directly orchestrate a regulatory network that

facilitates atrial cardiomyocyte identity through concurrently promoting Tbx5 and repressing

Irx4 and Hey2, the latter of which promote ventricular cardiomyocyte identity [40]. Thus,

Nr2fs can activate and repress a range of direct targets related to their functions in specific

tissues.

Despite the conservation and clear importance of this gene family to numerous develop-

mental processes in Metazoa, we still do not completely understand the evolution of Nr2f TFs.

Here, we investigated Nr2f family evolution through a combination of phylogenetic, domain

architecture, intron/exon structure, and genomic synteny analyses. Our data show that the sin-

gle Nr2f gene found in placozoans, represents the ancestral Nr2f to those found in cnidarians,

protostomes, and deuterostomes. Importantly, a single Nr2f homolog, which we have named

Nr2f1/2/5/6, is present in the majority of invertebrates, while most vertebrate genomes contain

Nr2f1, Nr2f2, Nr2f5, and Nr2f6 orthologs, which are derived from established rounds of

WGDs [41, 42]. Interestingly, the invertebrate Nr2f1/2/5/6 and agnathan Nr2f1/2 homologs

have retained the greatest similarity with vertebrate Nr2f1 and Nr2f2 paralogs. With respect to

the vertebrate Nr2f5 and Nr2f6 paralogs, Nr2f5 genes have been independently lost in some

cartilaginous fish and amniote lineages, while the Nr2f6 subfamily is the most divergent with

respect to sequence and genomic structure. Overall, our data clarify the relationships among

Nr2f genes within Metazoa and define the expansion, divergence, and independent loss of

extant Nr2f genes in vertebrates, which will allow us to make meaningful inferences about the

conserved developmental functions of this family that have helped mold animal body plans.

Results

Phylogenetic reconstruction of Nr2f evolution in animals

Although previous work has investigated the homology of some Nr2fs within metazoans, these

analyses were primarily focused on their relationship to other NRs and were limited by the

comparatively little genomic information at the time [1, 3, 14, 43, 44]. Therefore, the relatively

few Nr2f family members examined in the previous analysis did not provide a specific and

detailed understanding of Nr2f evolution. To garner a better understanding of how the Nr2f
family has evolved in animals, we performed a phylogenetic analysis using 153 Nr2f proteins

with representatives from placozoans to mammals (Fig 2; S1 File). Early-branching metazoan

models Amphimedon queenslandica (sponge) and Mnemiopsis leidyi (ctenophore) were not

included, as we did not find putative Nr2f orthologs based on current databases, consistent

with published phylogenetic studies of the NR superfamily [13, 15]. The placozoan Trichoplax
adhaerens Nr2f, which was previously shown to cluster with vertebrate Nr2fs in phylogenetic

analyses [45], was used as the outgroup in a maximum-likelihood (ML) phylogenetic tree. Pro-

tein sequences from groups that caused long branch artifacts due to significant divergence

were not included in the phylogenetic trees (S2 File). This phylogenetic analysis provided
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evidence for the existence of distinct Nr2f subfamilies (Fig 2). Moreover, the same relationships

were also supported using a Bayesian model selection (S1 Fig). Present information allowed us

to identify four Nr2fs in the cnidaria Nematostella vectensis and Acropora millepora, three in

Hydra vulgaris, and one for Hydractinia echinata. However, while identifiable as Nr2fs, an A.

millepora, the H. vulgaris, and the H. echinata Nr2fs caused long-branch artifacts and were

Fig 2. Evolutionary reconstruction of Nr2f TFs in metazoans. Phylogenetic tree of Nr2f members demonstrate the existence of six protein classes: Nr2f1/2/

5/6 (violet box), Nr2f1/2 (yellow box), Nr2f1 (pink box), Nr2f2 (green box), Nr2f5 (blue box), Nr2f6 (orange box). The placozoan Trichoplax adhaerens Nr2f

was used as the outgroup. Values at the branches indicate replicates obtained using the aLRT method.

https://doi.org/10.1371/journal.pone.0254282.g002
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consequently excluded (S2 File). Interestingly, the tree incorporating the N. vectensis and

remaining A. millepora Nr2f members, which we now call Nr2f1/2/5/6a-d based on their rela-

tionship to Bilateria Nr2fs, were found at the base of the eumetazoan Nr2f proteins and are

likely the result of gene duplications within cnidaria [15] (Fig 2). The protostome and deutero-

stome Nr2f sequences clustered into six subfamilies, which we have called Nr2f1/2/5/6, Nr2f1/
2, Nr2f1, Nr2f2, Nr2f5, and Nr2f6. Single Nr2f1/2/5/6 subfamily genes, which are highly con-

served, yet evolutionary divergent from the Nr2f1/2/5/6 genes present in early-branching

eumetazoa, were found in invertebrate protostomes, invertebrate deuterostomes (hemichor-

dates, echinoderms), and invertebrate chordates (amphioxus, tunicates). An older nomencla-

ture proposal suggested that the Drosophila Nr2f (svp) should be designated Nr2f3 [19],

implying the other invertebrate Nr2fs should follow this nomenclature. However, this designa-

tion seems to obfuscate the homology of these genes revealed here and imply a different evolu-

tionary relationship, as there is no distinct Nr2f3 subfamily. Thus, we propose using Nr2f1/2/5/
6 or in the future potentially just Nr2f for the early-branching eumetazoan and invertebrate

Nr2f genes. We have used Nr2f1/2/5/6 in this manuscript to refer to the invertebrate Nr2fs to

reinforce their evolutionary relationship within the Nr2f family. The invertebrate Nr2f1/2/5/6

group is more closely related to the branch that includes Nr2f1/2s from the agnathan (lamprey

and hagfish) and vertebrate Nr2f1 and Nr2f2 proteins than the vertebrate Nr2f5 and Nr2f6

subfamilies (Fig 2). The clustering of the invertebrate Nr2f1/2/5/6 and agnathan Nr2f1/2 pro-

teins with Nr2f1 and Nr2f2 of gnathostomes suggests that these paralogous gnathostome genes

arose from distinct duplicative events during vertebrate evolution [41, 42]. In addition, the

three agnathan Nr2f proteins found in Sea lamprey (Petromyzon marinus) and hagfish (Epta-
tretus burgeri) (Fig 2), which we have called Nr2f1/2A, Nr2f1/2B, and Nr2f1/2C, diverge and

cluster together at the base of the vertebrate Nr2f1 and Nr2f2 proteins (Fig 2), supporting that

the duplications leading to these proteins in agnathans were distinct from those that gave rise

to the Nr2f paralogs in gnathostomes.

Our analysis also shows that Nr2f5 and Nr2f6 form a separate branch and are sisters groups,

implying that they are paralogous and derived from the second of the vertebrate WGDs [41,

42]. Importantly, while all gnathostomes examined have retained Nr2f1, Nr2f2 and Nr2f6, cur-

rent genomic data support that Nr2f5 has been independently lost by multiple vertebrate

groups. Cartilaginous fish, including Whale shark (Rinchodon typus) [46] and the Great white

shark (Carcharadon charcarias) [47], have retained Nr2f5 genes, while they are absent in chi-

maera [48] and skates (S3 File). In amniotes, Nr2f5 genes were found in reptiles, such as Amer-

ican alligator (Alligator mississippiensis), gecko (Gekko japonicus), and the Green sea turtle

(Chelonia mydas) (Fig 2; S1 Fig), but absent from the Chinese sea turtle (Pelodiscus sinesis), as

well as birds and mammals (S3 File). Although previous work had also designated a Xenopus
laevis Nr2f4 [19], our data indicate there is no evidence for a separate Nr2f4 subfamily and that

this gene should be called Nr2f5. Comparing the vertebrate Nr2f1/Nr2f2 and Nr2f5/Nr2f6 clus-

ters, the branching and distances from our phylogenetic trees indicate that Nr2f1 and Nr2f2

are more highly conserved, while Nr2f6 TFs comprise the most divergent vertebrate Nr2f sub-

family (Fig 2; S1 Fig).

To analyze the impact of additional WGDs on Nr2f genes, which took place in teleosts [17,

18], and specifically, in salmonids [49], we surveyed the Nr2f proteins of 12 teleost species (Fig

2; S1 Fig). Consistent with the WGDs in these species, there was a tremendous expansion of

the Nr2f family in this clade, although it was accompanied by differential Nr2f paralog losses in

some species (Fig 2; S1 Fig). To further interrogate the evolution of the Nr2f proteins, we

examined alignments of the highly conserved zinc-fingers (Znf) within their DNA-binding

domains (DBDs) using representatives from each subfamily (Fig 3). Although there is a high

degree of conservation in all the examined Nr2fs, the amino acid changes in the DBDs parallels
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Fig 3. Zinc finger (Znf) motifs within the DBD of the Nr2f family. Alignments of first (I) and second (II) Znfs found

in Nr2f TFs. Yellow represents highly conserved amino acids throughout all species. White indicates amino acids that

are not conserved. Turquoise and blue indicate amino acid changes that are conserved within Znf I of Nr2f5 and -6,

respectively. The valine change found in some Nr2f6 LBDs is also found in the placozoan and cnidaria Nr2fs. Magenta

and red indicate amino acid changes at the same residue that are conserved within Znf II of Nr2f5 and Nr2f6,

respectively. A glycine residue is also found at the same position in some cnidaria and invertebrate Nr2fs. Green

indicates a conserved change found in most Nr2f5 and Nr2f6 Znf IIs.

https://doi.org/10.1371/journal.pone.0254282.g003
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the phylogenetic results of the whole proteins. The Nr2f1/2/5/6 proteins of early-branching

eumetazoans showed a high degree of variability and multiple differences with respect to

Nr2f1/2/5/6 DBDs of protostome and deuterostome invertebrates and the Nr2f DBDs in verte-

brates. There is high similarity between Nr2f1/2, Nr2f1 and Nr2f2 DBDs in agnathans and

gnathostomes, whereas Nr2f5 and Nr2f6 DBDs of gnathostomes exhibited specific changes

that are consistent with their positions in the phylogenetic trees (Figs 2 and 3). Interestingly,

single amino acid changes found in most Nr2f5 and Nr2f6 proteins are also found in some

early-branching eumetazoans and invertebrate Nr2fs. However, the functional significance of

these changes, if any, is not clear. Thus, our phylogenetic reconstruction of Nr2f genes in meta-

zoans overall shows the presence of single orthologs in invertebrates and a significant expan-

sion of the family in vertebrates that is punctuated with independent losses of Nr2f5 in some

cartilaginous fishes and amniotes.

Nr2f genes have conserved intron codes

To complement the phylogenetic analysis of Nr2f genes, we first analyzed the conservation of

Nr2f intron/exon structure [50–52]. Intron/exon junctions from early-branching eumetazoans

and vertebrates matching the transcripts and the translated proteins were mapped and given a

score for the intron phases (S4 File), with 0, 1 and 2 introns falling before the first, second and

third bases of a codon, respectively. The introns were then mapped on a protein alignment

comprising the highly conserved Nr2f protein DBDs and LBDs (S4 File). We found that two

“phase 1” introns (one within the 3’ end of the DBD and one within the LBD) are preserved in

all the extant Nr2f subfamilies (Fig 4A; S4 File). However, Nr2f6 genes also have a “phase 2”

intron inside the second zinc-finger domain belonging to the DBD (Fig 4A; S4 File). The con-

servation of intron/exon junctions in the examined Nr2f genes allows two groups to be distin-

guished: one constituted by Nr2f, Nr2f1/2/5/6, Nr2f1/2, Nr2f1, Nr2f2, Nr2f5, and one

comprising only vertebrate Nr2f6 (Fig 4B), implying this unique intron/exon boundary origi-

nated after the duplication event that generated Nr2f5 and Nr2f6. Thus, our analysis of intron/

exon boundaries demonstrates the existence of a highly conserved intron code throughout

eumetazoan Nr2f family members and the divergence of Nr2f6 genes following the second

WGD.

Synteny analysis defines differential duplications and losses in the Nr2f
family

In order to confirm the specific homologies indicated from the phylogenetic analysis, we next

carried out an examination of synteny within the Nr2f genomic environments. With respect to

representatives of the more ancient Nr2f genes, we did not find evidence of synteny between

the single Nr2f in the placozoan T. adhaerens and the multiple Nr2fs in cnidarians. However,

the location of the four Nr2f genes in N. vectensis and A. millepora genomes indicates they

were likely derived from an initial duplication event followed by a tandem duplication event

(Fig 5). Interestingly, Mef2 and Rbm8 homologs were associated with Nr2f1/2/5/6b in N. vec-
tensis and A. millepora, while an Arrdc homolog is associated with Nr2f1/2/5/6a in N. vectensis.
In vertebrates, Mef2 paralogs (Mef2c, Mef2b, Mef2b) are associated with Nr2f1, Nr2f2, and

Nr2f6, Arrdc paralogs (Arrdc3, Arrdc4, Txnip/Arrdc6) are associated with Nr2f1, Nr2f2, and

Nr2f5, and Rbm8a is associated with Nr2f5 (Figs 6–8), implying an ancient association of these

genes within eumetazoan genomes.

In invertebrates, despite the synteny suggested between Nr2f, Mef2, Arrdc, and Rbm8 genes

in cnidaria and vertebrates, we only found limited preservation of the Nr2f1/2/5/6 loci between

two slow-evolving deuterostomes: the amphioxus (B. belcheri) [53] and the hemichordate
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(S. kowalevskii) [54] (S2 Fig). However, the limited synteny still corroborates the existence of

the invertebrate Nr2f1/2/5/6 cluster shown in the phylogenetic trees (Fig 2; S1 Fig). Further-

more, the only remaining synteny between Nr2f1/2/5/6 in invertebrates and vertebrate ortho-

logs appears to be the linkage between UNC45A and NR2F2 of primates and Unc45a and

Fig 4. Intron code of the Nr2f family in metazoans. (A) Protein alignment showing conservation of intron/exon

structures within the DBDs (black) and LBDs (red) of Nr2f members. Znfs in the DBDs are underlined. Phase 0

introns—yellow, phase 1 introns—green, and phase 2 introns—turquoise. Asterisks indicate 100% amino acid

conservation. Colons indicate high levels (>90%) amino acid conservation. Periods indicate moderate levels (50–89%)

of amino acid conservation. (B) Schematization of intron/exon boundaries of Nr2f genes as they relate the Nr2f protein

DBD and LBDs. Black box indicates DBD. Purple boxes represent the zinc-fingers motifs within the DBD. Red boxes

indicate the LDB. Colored bars indicate the conserved Nr2f Phase 1 introns (green) and the Nr2f6-specific Phase 2

intron (turquoise).

https://doi.org/10.1371/journal.pone.0254282.g004
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Nr2f1/2/5/6 of the tunicate C. robusta (S3 Fig), which is considered the closest living relative of

vertebrates [55]. Focusing on Nr2f1 and Nr2f2 in the genomes of gnathostomes, including

Great white sharks, coelacanths, spotted gars, zebrafish, chickens, and humans, we found a

high degree of synteny for Nr2f1 and Nr2f2 loci and conservation of the location of flanking

genes among these taxa (Fig 6). Specifically, Nr2f1 and Nr2f2 genes exhibited remarkably con-

served syntenic environments, clustering with putative orthologs belonging to other families.

Lysmd3, Arrdc3, Mctp1 and Mef2a flank Nr2f1 orthologs, while Nr2f2 orthologs are flanked by

Lysmd4, Arrdc4, Mctp2 and Mef2c paralogs. Furthermore, in teleosts like zebrafish, two Nr2f1
Ohnologs (nr2f1a and nr2f1b) also shared significant conservation of paralogous genes (Fig 6),

which is consistent with an origin from the teleost-specific genome duplication (TSGD) [17,

18]. However, the nr2f1b gene has been lost by several teleost species (Fig 2; S1 Fig). Although

the genomic information is somewhat fragmented, orthologs of flanking genes found in

gnathostome Nr2f1 and Nr2f2, such as Arrdc2/3, Lysmd3, Fam172a, were also found near each

of the three Sea lamprey Nr2f1/2 genes and the hagfish Nr2f1/2C gene (S4 Fig), which is consis-

tent with these genes arising from genome duplication(s) within the agnathan lineage [56].

Together, these results suggest that Nr2f1 and Nr2f2 of gnathostomes have a common origin

and are derived from a WGD event [41, 42].

Examining Nr2f5 loci in representative gnathostomes showed a high degree of conservation

in both species that have retained and lost the gene. The adjacent genomic environments in

the majority of examined Nr2f5 loci have retained an association with Rbm8a (Fig 7), whose

homolog in cnidarians flanks Nr2f1/2/5/6b (Fig 5). The synteny is generally not shared with

gnathostome Nr2f1 and Nr2f2 orthologs (Fig 6). However, the Nr2f5 loci in coelacanth and

amphibians have retained Txnip (Fig 7), which is also named Arrdc6. As aforementioned,

Fig 5. Synteny analysis of Nr2f1/2/5/6 genes in cnidaria. Schematic of the loci flanking Nr2f1/2/5/6 gene duplications in

cnidaria N. vectensis, A. millepora, and H vulgaris. Only the one H. vulgaris gene presently has available genomic

information. Arrows indicate transcription orientation.

https://doi.org/10.1371/journal.pone.0254282.g005
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Arrdc family members flank the N. vectensis Nr2f1/2/5/6a (Fig 5) and both Nr2f1 and Nr2f2
genes (Fig 6). Interestingly, amniotes that have lost Nr2f5 (representatives including Chinese

soft-shell turtles, chickens, and humans) (Fig 7; S3 File) have largely preserved the flanking

genomic loci that are present in cartilaginous fish, zebrafish, coelacanth, frogs, and Green see

turtles (Fig 7). In contrast, the absence of Nr2f5 in some cartilaginous fish, such as C. milii, cor-

relates with the lack of the entire locus. Within the Actinopterygii (ray-finned fishes), the syn-

teny of genes has been lost only on one side of the Nr2f5 loci (Fig 7). With respect to the

lamprey, its Nr2f1/2C ortholog is flanked by a Bola1 ortholog, as well as orthologs of genes that

flank gnathostome Nr2f1 and Nr2f2 (S4 Fig; Figs 6 and 7), which further suggests ancestral

linkage with the single Nr2f1/2/5/6 genes (Fig 2; S1 Fig).

As might be expected given the divergence, the Nr2f6 subfamily did not share many com-

mon elements with the other Nr2f loci in gnathostomes (Fig 8). However, Mef2b was syntenic

in Great white sharks, Spotted gar, chicken, and human genomes, similar to cnidarian Nr2f1/
2/5/6b (Fig 5) and gnathostome Nr2f1 and Nr2f2 (Fig 6). Within gnathostomes, the Nr2f6 loci

were highly conserved from cartilaginous fish to mammals, although there were significant

gene losses surrounding nr2f6a and nr2f6b loci in zebrafish and one side of the Nr2f6 locus in

Fig 6. Synteny analysis of vertebrate Nr2f1 and Nr2f2 genes. Schematization of conserved genomic environments of gnathostome Nr2f1 and Nr2f2 genes

(red rectangles) in selected species with relative chromosomes/scaffolds. Flanking orthologous genes are represented employing rectangles of the same color.

Arrows indicate transcription orientation.

https://doi.org/10.1371/journal.pone.0254282.g006
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Fig 8. Synteny analysis of vertebrate Nr2f6 genes. Schematization of conserved genomic environments of gnathostome Nr2f6 genes (red rectangles) in

selected species with relative chromosomes/scaffolds. Flanking orthologous genes are represented using the same color code. Arrows indicate transcription

orientation.

https://doi.org/10.1371/journal.pone.0254282.g008

Fig 7. Synteny analysis of vertebrate Nr2f5 genes. Schematization of conserved genomic environments of gnathostome Nr2f5 genes (red rectangles) in

selected species with relative chromosomes/scaffolds. Flanking orthologous genes are represented using rectangles of the same color. Arrows indicate

transcription orientation.

https://doi.org/10.1371/journal.pone.0254282.g007
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humans. Furthermore, the presence of conserved orthologs (ano8a and ano8b, plvapa and

plvapb) flanking nr2f6a and nr2f6b zebrafish genes suggested that they originated from the

TSGD. Together, these findings show that despite the greater divergence of the Nr2f5 and

Nr2f6 within vertebrates the genomic environments have retained some synteny and sur-

rounding Nr2f5 and Nr2f6 loci are highly conserved within gnathostomes.

Effects of TSGD on the Nr2f gene repertoire

We next wanted to measure the impact of the series of additional WGDs that have occurred in

teleosts on Nr2f gene number (Fig 2; S1 Fig). For this comparison, we examined all the Nr2f
loci in zebrafish, the Asian arowana (S. formousus), which is documented to retain duplicates

[57], and the Atlantic salmon (S. salar), which has a salmonid-specific genome duplication

(SSGD) [49]. We found that each of these teleosts retained two Nr2f1 Ohnologs (Fig 9), sug-

gesting they either were not duplicated or that one pair of Ohnologs was lost in salmonids.

Zebrafish lost one nr2f2 Ohnolog, maintaining only the nr2f2a ortholog, while Asian arowana

retained two Nr2f2 Ohnologs. Salmonids have 3 Nr2f2 genes (Nr2f2a1, Nr2f2a2, and Nr2f2b1),

due to a loss of the one of the Nr2f2b Ohnologs following their additional WGD. With respect

to Nr2f5, only Atlantic salmon showed two copies, implying these were generated during the

SSGD event, as suggested by the presence of two Nr2f5 Ohnologs in other salmonids (Oncor-
hynchus spp., Coregonus clupeaformis) (S5 File). Finally, zebrafish and Asian arowana each pos-

sess two Nr2f6 genes, while Atlantic salmon has 3 similar to what is found in the Nr2f2
subfamily (Fig 9). Inspecting other teleost Nr2f gene family repertoires (Fig 2; S1 Fig), we

Fig 9. Synteny analysis of Nr2f genes in teleosts. Comparison of Nr2f genome environments in selected teleosts (zebrafish, Asian arowana, Atlantic salmon)

with relative chromosomes/scaffolds. Rectangles of the same color represent flanking orthologous genes. Arrows indicate transcription orientation.

https://doi.org/10.1371/journal.pone.0254282.g009
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found that the Channel catfish (Ictalurus punctatus), Red-bellied piranha (Pygocentrus natter-
eri), cavefish (Astyanax mexicanus) and Sheepshead minnow (Cyprinodon variegatus) all

retained only Nr2f6b. The Sheepshead minnow and Princess cichlid (Neolamprologus bri-
chardi) also lost Nr2f5. However, other cichlids like Nile tilapia (Oreochromis niloticus) and

Zebra mbuna (Maylandia zebra) did not lose Nr2f5 (S5 File). Intriguingly, the Monterrey plati-

fish (Xiphophorus couchianus) is the only gnathostome without any Nr2f1 paralogs, differing

from its sibling species, the common platifish (X. maculatus), which possesses Nr2f1a. There-

fore, teleosts show an expansion of Nr2f genes following TSGD and SSGD, which were fol-

lowed by high variability in species-specific losses of Nr2f Ohnologs.

Discussion

We have performed an examination of Nr2f gene evolution in metazoans. Our analysis corrob-

orates previous work showing that Nr2f genes are present in some representative early-branch-

ing eumetazoans (placozoans and cnidarians) [15, 58], but that they are absent in early-

branching metazoans, i.e. sponges and ctenophores [15, 58]. Importantly, our data support a

model in which a single Nr2f gene, which is present in a representative placozoan, predated a

Nr2f1/2/5/6 subfamily found in cnidaria and six Bilateria subfamilies that include Nr2f1/2/5/6
(found in invertebrate protostome and deuterostomes), Nr2f1/2 (found in agnathans), and

Nr2f1, Nr2f2, Nr2f5, and Nr2f6 (found in vertebrates; Fig 10). Single, conserved Nr2f1/2/5/6
genes are predominantly found throughout invertebrate protostomes and deuterostomes and

have even been retained in species traditionally considered gene losers, such as the tunicates

[52, 59, 60]. There has been significant expansion and retention of Nr2fs in gnathostomes, par-

ticularly in teleosts. Although initial analysis in lampreys suggested they may possess only one

Nr2f gene [61], our evolutionary assessment shows that extant agnathans have three Nr2f
members, which appear to have originated in part from an agnathan WGD event [56]. Inter-

estingly, the single Nr2f1/2/5/6 proteins in invertebrates are also highly conserved at the

Fig 10. Model summarizing the evolutionary events of the Nr2f family in Metazoa. A single Nr2f of placozoans (white box) represents the ancestor of

extant Nr2fs. There were duplicative events specific to cnidaria leading to the expansion of Nr2f1/2/5/6 (pink circle). Invertebrate protostomes and

deuterostomes have predominantly retained a single Nr2f1/2/5/6 homolog. There were duplicative events specific to agnathans leading to an expansion of

Nr2f1/2 genes (orange circle). WGDs within vertebrates (green circles) generated the four Nr2fs found in vertebrates, with Nr2f1/Nr2f2 being paralogous and

Nr2f5/Nr2f6 being paralogous. Nr2f5 has been independently lost in multiple vertebrate groups (red circle). It is lost in some cartilaginous fish and turtles

(reptilian amniotes), and is absent in avian and mammalian amniotes. Teleosts have additional Nr2f Ohnologs due to TSGDs (blue circles) and SSGDs

(yellow circles).

https://doi.org/10.1371/journal.pone.0254282.g010
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sequence level and cluster with the Nr2f1/2 proteins in agnathans and Nr2f1 and Nr2f2 pro-

teins in gnathostomes. Furthermore, our data support a parsimonious view that Nr2f1 and

Nr2f2 are paralogous and Nr2f5 and Nr2f6 are paralogous, consistent with each of the Nr2f1/2

and Nr2f5/6 branches being created from an initial WGD [41, 42]. Within gnathostomes, the

genomic environments of each the Nr2f1, Nr2f2, Nr2f5, and Nr2f6 orthologs have retained sig-

nificant synteny of their loci [16, 21, 22]. Remarkably, while limited synteny exists between the

Nr2f1/2 and Nr2f5/6 branches and within the Nr2f5/6 branch, members of these families have

retained association with Mef2, Arrdc, and Rbm8 homologs within their genomic environ-

ments, which is also found in cnidaria. However, this genomic association was not found in

other examined invertebrate genomes. Our analysis also shows the Nr2f5 subfamily is the

smallest in vertebrates, having been independently lost in multiple gnathostomes (some carti-

laginous fishes, amniotes—some reptiles, absent in birds and mammals) (Fig 10). In contrast

to Nr2f5, the Nr2f6 subfamily has been retained by all the evaluated gnathostomes, despite

being the most divergent at the sequence level, with respect to synteny, and intron/exon

structure.

Although overall there has been relatively limited comparative analysis of Nr2f gene expres-

sion beyond major model organisms, integrating our phylogenetic assessment with available

expression and functional analyses of the Nr2f members in evolutionarily distant animals [12,

14] presently supports a hypothesis that Nr2f expression originated in neural tissue and regula-

tion of neuronal differentiation may be the most ancient Nr2f function. Foremost, the two

Nr2f members (both Nr2f1/2/5/6c) of the diploblastic cnidaria H. vulgaris and H. echinata thus

far examined appear to be expressed in neurons and have requirements in neurogenesis [12,

14]. Clearly, the expression of the additional Nr2f cnidarian homologs that have been identi-

fied needs to be examined and if found to be expressed in endoderm would alter this hypothe-

sis. Nevertheless, the function of Nr2f1/2/5/6 orthologs of protostome invertebrates nematodes

and flies have been extensively studied in neural tissues and neural sensory cell differentiation

[8, 62, 63]. In invertebrate deuterostomes, the single Nr2f1/2/5/6 orthologs are expressed in

neural tissue of sea urchin (Strongylocentrotus purpuratus), amphioxus, and sea squirt embryos

[11, 64–66]. Recent functional analysis of the Mediterranean sea urchin (Paracentrotus lividus)
Nr2f1/2/5/6 shows that it is required for the development of neural and ectodermal derivatives

[67]. A Nr2f1/2/5/6 ortholog from the agnathan River lamprey (Lampetra fluviatilis) is also

expressed in the developing nervous system [61]. However, our identification of three Nr2f1/2
members in agnathans suggests that additional expression and potentially functional analysis

should be performed in the Sea lamprey (P. marinus) and/or hagfish (E. burgeri) to understand

the conservation of the different agnathan paralogs compared to Nr2fs in vertebrates. Both

Nr2f1 and Nr2f2 orthologs share overlapping central nervous system (CNS) expression in

mouse and zebrafish [16, 21, 68]. However, nr2f1a and nr2f2 are both expressed more exten-

sively in neural tissue of zebrafish embryos, while Nr2f1 is predominantly expressed in neural

tissues of mice [21, 22]. Nr2f5 is expressed in neural tissue and derivatives, including in the

eyes of zebrafish and newts [68–70]. Nr2f6 genes have conserved expression within the central

nervous system of mammals [16], as well as both zebrafish nr2f6 Ohnologs. Thus, all Nr2fs
examined are expressed in neural tissue, with experiments in cnidaria and invertebrates pres-

ently supporting their ancestral requirements may be in neural cell differentiation.

While we propose that Nr2fs may have originated with requirements in neural differentia-

tion, they are also required for the development of mesodermal and endodermal-derived tis-

sues through Bilateria. Thus, it is interesting to consider some of these requirements in light of

our phylogenetic analysis. In addition to neural differentiation, Nr2f homologs are necessary

for copulation control in nematodes [71] and heart vessel specification in flies [23, 24]. Fur-

thermore, the recent work with the Mediterranean sea urchin suggests that it is required for
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the development of mesendodermal derivatives [67]. The functions of Nr2f1 and Nr2f2 genes

have been intensely investigated in vertebrate models and they are required for proper human

development [22, 31, 72]. Both expression and functional analysis of Nr2f1 and Nr2f2 genes in

vertebrates show that they have acquired distinct developmental roles during evolution. Fol-

lowing overlapping expression early in mouse embryos, murine Nr2f1 and Nr2f2 become pre-

dominantly expressed in neural and mesendodermal tissues, respectively [21, 22]. Analysis of

these Nr2f genes in mice and zebrafish support the functional divergence of these proteins.

Murine Nr2f1 KOs have glial differentiation defects [73], while Nr2f2 is required for proper

development of many mesendodermal-derived tissues, including atrial chamber and arterial-

venous differentiation [40, 74]. Intriguingly, mouse Nr2f2 and zebrafish nr2f1a are functional

homologs with respect to heart development, as both are required for atrial differentiation

[75], further supporting the common evolutionary origins of these paralogs. While zebrafish

nr2f2 is not required for early atrial or vein development [29], NR2F1 and NR2F2 TFs do

appear to have redundant requirements, for instance promoting atrial cardiomyocyte differen-

tiation in human embryonic stem cells [76, 77]. It is interesting that the single Nr2f1/2/5/6
(svp/Nr2f3) homolog of flies is also required for dorsal vessel (heart) development [23]. How-

ever, if these similar roles in mesodermally-derived heart tissues reflect homologous require-

ments within Bilateria for cardiac differentiation requires functional studies from many

additional model organisms [67]. With respect to analysis of the expansion of Nr2f1 and Nr2f2
Ohnologs in teleosts, Nr2f1b actually has been lost in the majority of surveyed teleosts. Nr2f1b
zebrafish mutants are viable [78] and surprisingly do not exhibit redundancy with nr2f1a in

atrial cardiomyocyte differentiation [29], but do exhibit some redundancy with multiple other

Nr2f genes in neural crest cells that promote jaw development [78]. Virtually all the analyzed

gnathostome genomes have a single Nr2f2 gene, excluding the teleosts S. formosus (2) and S.

salar (3), implying there may be some dosage sensitivity that favors the retention of single

orthologs in gnathostomes.

With respect to the function of Nr2f5 and Nr2f6 genes, zebrafish nr2f5 mutants are viable,

yet like zebrafish nr2f1b mutants they function redundantly with other nr2f genes for proper

upper-jaw development [78]. While expression and functional analysis from other organisms

that have retained Nr2f5 (coelacanth, spotted gar, and frog) may provide insights into conser-

vation of Nr2f5 orthologs, the independent loss of Nr2f5 genes in multiple vertebrate lineages,

as well as the lack of overt requirements alone in zebrafish, suggests that Nr2f5 orthologs likely

have retained minimal developmental requirements and its loss can be tolerated. Murine

Nr2f6 KO mice have forebrain defects. Specifically, these mutants show a loss of neurons that

regulate the circadian clock genes [79]. However, Nr2f6 also has a critical role in lymphocyte

differentiation and T-cell mediated tumor surveillance, suggesting requirements in mesoder-

mally-derived tissues and neofunctionalization in adaptive immunity [80, 81]. Altogether,

minimally, expression and functional data support requirements for Nr2fs in all three germ

layers of Bilateria. However, the conservation of these requirements and if they reflect homolo-

gous roles in the different germ layers throughout Bilateria is not yet as clear.

In examining the evolution of the Nr2f TFs, it is also worthwhile to note that in early-

branching eumetazoans through invertebrate chordates and gnathostomes there is conserved

responsiveness to retinoic acid (RA) signaling [82], a critical molecule involved early pattern-

ing of vertebrate embryos [83–85], implying this relationship may form the core of an ancient

gene regulatory network. Nr2f genes from placozoans [58] and the invertebrate chordates

Ciona and amphioxus are all RA-responsive [11, 64]. Furthermore, in vertebrates, where the

earliest requirement for RA is posteriorization of the embryo [86], virtually all the Nr2f genes

have been shown to be responsive to RA signaling in developmental contexts involving all

three germ layers. Specifically, RA signaling has been shown to positively regulate all the Nr2fs
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in zebrafish in the developing zebrafish endoderm [87], the CNS [68], and anterior lateral

plate mesoderm (ALPM) [29]. RA signaling also positively regulates Nr2f1, Nr2f2 and Nr2f6 in

mice [88, 89], and NR2F1 and NR2F2 in humans [90, 91]. Nr2fs can inhibit RA signaling in

some contexts, suggesting it may form a negative feedback loop. One role Nr2fs may play is

through direct competition with retinoic acid receptors (RARs) in binding retinoic acid

response elements (RAREs) [21]. Moreover, it has been shown that the cnidarian Nr2f1/2/5/6c

possesses the ability to inhibit RA signaling in in vitro signaling assays [14]. Thus, the respon-

siveness of the Nr2f family to RA may have evolved very early and has been highly maintained

through the diversification of multiple vertebrate Nr2f genes, implying there is high selection

to maintain this relationship.

Conclusions

Overall, our evolutionary assessment sheds new light on the events that have shaped the extant

Nr2f family in Metazoa. The phylogenetic analysis defines the individual Nr2f subfamilies and

their relationships across metazoan phyla, which complements available expression and func-

tional data presently supporting an origin of their requirements in the development of neural

tissue. Interestingly, the functions of Nr2f proteins are found to regulate development of all

germ layers of Bilateria. The detailed evolutionary understanding of the Nr2f gene family we

now have will allow us to infer more meaningful conclusions about the origins and conserved

requirements of Nr2f genes in normal metazoan development and their role in sculpting

diverse body plans.

Methods

Ethics statement

Ethical approval is not required. No animals were used in this study.

Genome database searches and phylogenetic reconstruction

Homo sapiens NR2F protein sequences were employed as queries in BLASTp and tBLASTn in

genome databases of selected species (NCBI, Ensembl, Ensembl Metazoa, SkateBase [92], ANI-

SEED [93]). The entire dataset of protein sequences for domain architecture was analyzed by

using the domain database provided by Expasy, named PROSITE [94] and then, manually

annotated. All the surveyed sequences were verified to be Nr2f proteins through analysis of

DBDs and LBDs (S6 File). The analysis was weighted with 30 species from agnathans to pri-

mates to take into account the impact of multiple WGDs in vertebrates [41, 42] and in teleosts

[17, 18]. Orthology of the Nr2f members was initially assessed by using a reciprocal best blast

hit (RBBH) approach employing default parameters and corroborated by phylogenetic analy-

ses. Protein alignment for phylogeny was generated using L-INS-i (accurate; for alignment of

<200 sequences) on MAFFT [95, 96] (S7 File). The phylogenetic reconstruction of Fig 2 was

performed on the entire protein sequences and based on maximum-likelihood (ML) infer-

ences calculated with PhyML 3.0 [97], employing automatic Akaike Information Criterion

(AIC) by Smart Model Substitution (SMS) [98], which selected the JTT+G+F model employ-

ing discrete gamma distribution in categories. All parameters (gamma shape = 0.7; proportion

of invariants (fixed) = 0.000) were established from the dataset. Branch support was provided

by aLRT [99]. The phylogeny of S1 Fig was carried out employing Bayesian Information Crite-

rion (BIC) by SMS, which sorted the JTT+G+F model using discrete gamma distribution in

categories. All parameters (gamma shape = 0.7; proportion of invariants (fixed) = 0.000) were

established from the dataset, with branch support calculated employing aBayes method [100].
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Accession numbers and protein sequences used for phylogenetic tree reconstructions are pro-

vided in S1, S6, and S7 Files, while those excluded for their divergence are listed in S2 File.

Common and Latin names for species used in this study are listed in S8 File.

Analysis of intron/exon structures and phases

Gene structures were deduced after merging the genomic sequences with ESTs when available,

as previously described [50–52]. Introns were classified as phase 0, phase 1, and phase 2,

according to their positions with respect to the protein-reading frame. The amino-acid resi-

dues with the conserved introns were manually mapped on a ClustalX alignment [101] of

selected Nr2f proteins (S9 File).

Evaluation of synteny

We evaluated the presence/absence of synteny examining the chromosomes on public genome

databases (NCBI, Ensembl, Ensembl Metazoa, ANISEED [93]). We verified the existence of

duplicates using Genomicus [102] and Vertebrate Ohnologs [103]. The window considered

for the locus analyses was twenty flanking genes. Genes that were not conserved were excluded

from the analysis. All the genes were represented employing colored rectangles, using the

same color for all Nr2f genes (red).

Supporting information

S1 Fig. Phylogenetic tree of the Nr2f family, using Bayesian Information Criterion (BIC).

The same color code as Fig 2 is used. Values at the branches indicate replicates obtained

employing the aBayes method.

(TIF)

S2 Fig. Synteny analysis of Nr2f1/2/5/6 genes found invertebrates. Schematic of limited con-

servation for Nr2f1/2/5/6 loci between the hemichordate S. kowalevskii and amphioxus B. bel-
cheri. Black arrows indicate transcription orientation.

(TIF)

S3 Fig. Unc45–Nr2f gene duplet preservation. Schematic of Unc45-Nr2f duplet conservation

in genomes of ascidians (Ciona) and primates. The duplet is absent in other vertebrate models,

including zebrafish and mouse.

(TIF)

S4 Fig. Synteny analysis of Nr2f1/2 genes in agnathans. Schematic of lamprey (P. marinus)
Nr2f1/2 loci with relative chromosomes and available genomic data from the hagfish (E. bur-
geri). Genomic data could only be obtained for the hagfish Nr2f1/2C gene. Same color code of

Figs 6–8 is used. Flanking genes are in common with gnathostomes, with Arrdc2 and Arrdc3
(green) that form a conserved duplet with Nr2f1/2B and Nr2f1/2C. Nr2f1/2C is adjacent to

Fam172a in both lamprey and hagfish. Arrows indicate transcription orientation.

(TIF)

S1 File. List of all protein sequences employed in Nr2f phylogenetic tree with accession

numbers.

(TXT)

S2 File. List of protein sequences excluded from Nr2f phylogenetic tree due to their high

degree of divergence.

(TXT)
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S3 File. List of examined species whose genomes lacked Nr2f5 with their common names,

Latin names, and phyla.

(XLSX)

S4 File. Intron/Exon structure of Nr2f genes in Metazoa. Alignment of specific and con-

served intron/exon boundaries within the Zinc finger motifs of DBD (underlined) and LBDs

(red). The intron phases have been depicted using color code: Phase 0 (yellow), Phase 1
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54. Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, et al. Hemichordate genomes

and deuterostome origins. Nature. 2015; 527: 459–465. https://doi.org/10.1038/nature16150 PMID:

26580012

55. Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest

living relatives of vertebrates. Nature. 2006; 439: 965–968. https://doi.org/10.1038/nature04336

PMID: 16495997
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