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Abstract

Background: Polychlorinated biphenyls (PCBs) are persistent organic pollutants. Due to their lipophilic character, they are
preferentially stored within the adipose tissue. During the mobilisation of lipids, PCBs might be released from adipocytes
into the bloodstream. However, the mechanisms associated with the release of PCBs have been poorly studied. Several in
vivo studies followed their dynamics of release but the complexity of the in vivo situation, which is characterised by a large
range of pollutants, does not allow understanding precisely the behaviour of individual congeners. The present in vitro
experiment studied the impact of (i) the number and position of chlorine atoms of PCBs on their release from adipocytes
and (ii) the presence of other PCB congeners on the mobilisation rate of such molecules.

Methodology/Principal Findings: Differentiated rat adipocytes were used to compare the behaviour of PCB-28, -118 and -
153. Cells were contaminated with the three congeners, alone or in cocktail, and a lipolysis was then induced with
isoproterenol during 12 hours. Our data indicate that the three congeners were efficiently released from adipocytes and
accumulated in the medium during the lipolysis. Interestingly, for a same level of cell lipids, PCB-153, a hexa-CB with two
chlorine atoms in ortho-position, was mobilised slower than PCB-28, a tri-CB, and PCB-118, a penta-CB, which are both
characterised by one chlorine atom in ortho-position. It suggests an impact of the chemical properties of pollutants on their
mobilisation during periods of negative energy balance. Moreover, the mobilisation of PCB congeners, taken individually,
did not seem to be influenced by the presence of other congeners within adipocytes.

Conclusion/Significance: These results not only highlight the obvious mobilisation of PCBs from adipocytes during lipolysis,
in parallel to lipids, but also demonstrate that the structure of congeners defines their rate of release from adipocytes.
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Introduction

Polychlorinated biphenyls (PCBs) are a class of environmentally

persistent pollutants that biomagnify throughout food chains.

Ingestion of contaminated food, and especially fat-rich animal

products, represents 90% of the mean uptake of humans [1].

Adipose tissue is then the main reservoir for the storage of these

highly lipophilic molecules [2]. The cytoplasm of adipocytes is

almost exclusively composed of lipid droplets (LDs) [3], which

appear to be the principal targets for PCBs [4]. These cells

therefore have an enormous capacity to accumulate lipophilic

pollutants [5].

During periods of weight loss in humans, lipids from adipose

tissue are mobilised, leading to an increase of PCB concentrations

in this tissue [6,7]. Evidence from wildlife indicates same trends

[8–14]. This phenomenon suggests that PCBs are less efficiently

mobilised from adipocytes than fatty acids. However, a release of

PCBs in the blood circulation does occur during such periods of

weight loss and appears to become more important when the

adipose stores are already significantly reduced [2,6,15–18]. In

addition to being a reservoir, the adipose tissue can thus also be an

internal source of lipophilic pollutants for the rest of the body [2].

Once in the bloodstream, pollutants are able to contaminate other

tissues or be transferred in maternal milk. The exposure to PCBs is

associated to adverse effects on human and animal health [19,20].

Among others, PCBs are involved in endocrine disruption,

immuno- and neuro-toxicity as well as in the development of

cardiovascular diseases and type-2 diabetes [21–25]. A correlation

between the rise of persistent organic pollutants (POPs), such as

PCBs, in the serum and the alterations of skeletal muscle oxidative

capacity has been suggested in humans [16]. Furthermore,

individuals who underwent bariatric surgery exhibited a positive

association between POP serum levels and a diminished improve-

ment of lipid values and liver markers [6].
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Even if several in vivo studies report a release of PCBs from

adipose tissue during lipolytic process [6,10,13–15], little is known

concerning the chemical and biochemical factors that govern their

mobilisation and transfer into the circulation. In vivo studies on

long-term fasting wild animals report an impact of the fasting stage

as well as the degree of lipophilicity of PCB congeners on their

dynamics of mobilisation from the adipose tissue [8,10,13,14]. The

transfer from adipose tissue into the blood circulation appears to

be selective and strongly dependent on the log Kow value of the

compounds, with less lipophilic PCBs being more efficiently

released. In vivo models being usually complex, the in vitro
cultures of adipocytes would be useful to precisely understand the

mobilisation of PCB congeners as a function of their chemical

structure. A recent study from our group investigated the

dynamics of accumulation of three PCB congeners, differing in

the position and number of their chlorine atoms (PCB-28, log

Kow = 5.71; PCB-118, log Kow = 6.57 and PCB-153, log

Kow = 6.80) in cultured adipocytes [26]. The accumulation profile

revealed significant differences between PCB congeners. Their

release during lipolysis was however not investigated.

In this study, we followed and compared the dynamics of

mobilisation of PCB-28, PCB-118 and PCB-153 from in vitro
differentiated rat adipocytes. Cells were contaminated by the three

congeners, added individually or in cocktail, at the same

concentrations in the culture medium. Lipolysis was then triggered

over 12 hours with a lipolytic medium supplemented with

isoproterenol, a well-known synthetic catecholamine [27,28].

The levels of PCBs in the extracellular medium and adipocytes

were regularly assessed. The present experiment allowed (i) to

estimate the impact of the number and position of chlorine atoms

of PCBs on their release from adipocytes and (ii) to assess the

impact of the presence of other PCB congeners on the mobilisation

dynamics of such molecules.

Experimental Procedures

Primary cultures of rat adipocytes
Differentiated rat adipocytes were obtained and cultured as

described previously [5,28]. Experimental procedures in animals

were approved by the Animal Care and Use Committee of the

Université catholique de Louvain (#103201) and were performed

in accordance with the ‘‘Principles of Laboratory Animal Care’’

(NIH Publication 85–23). Two-month-old male Wistar rats

(Centre d’Elevage Janvier, Le Genest Saint Isle, France) were

sacrificed by decapitation. The fat tissue of the stromal-vascular

fraction was sampled and then digested in a solution of collagenase

(1250 U/ml type II; Sigma-Aldrich, Bornem, Belgium). The

digested tissue underwent three filtrations and three centrifuga-

tions in order to obtain a final pellet of stromal-vascular cells,

which was suspended in a medium composed of Dulbecco’s

Modified Eagle Medium (DMEM, 4.5 g/l glucose, Gibco-

Invitrogen, Merelbeke, Belgium), 10% (v:v) heat-inactivated foetal

bovine serum (FBS, PAA, A&E Scientific, Marcq, Belgium) and an

antibiotic and antifungal mixture. Cells were seeded at a mean

density of 18,000 cells per cm2 on 6-well plates (Corning

CellBIND Surface, Corning, Elscolab, Kruibeke, Belgium) (day

0) and incubated at 37uC in a humidified atmosphere containing

10% CO2 in air for 24 hours to allow cell sedimentation and

adhesion. Twenty-four hours after the isolation of progenitor cells

(day 1), the medium was replaced by a differentiation medium

composed of DMEM (4.5 g/l glucose), 10% (v:v) heat-inactivated

FBS, 100 U/ml penicillin – 100 U/ml streptomycin – 250 ng/ml

amphotericin B mixture (Lonza, Verviers, Belgium), 10 nM

dexamethasone (Sigma-Aldrich), 10 mM ciglitizone (Sigma-Al-

drich) and 5 mg/ml insulin (Sigma-Aldrich). This medium was

renewed every 48 hours until day 10 in order to obtain

differentiated adipocytes.

Cell treatment
At day 10, adipocytes were incubated with a medium

supplemented with PCB congeners (Dr. Ehrenstorfer GmbH,

Ausburg, DE) during 12 hours (37uC – 10% CO2 in air). The

PCBs were added to the culture medium as ethanolic solution and

four conditions of PCB contamination were tested: (i) 2,4,49-

trichlorobiphenyl (PCB-28); (ii) 2,39,4,49,5-pentachlorobiphenyl

(PCB-118); (iii) 2,29,4,49,5,59-hexachlorobiphenyl (PCB-153); (iv)

an equimolar mixture of three PCB congeners (PCB-28, -118 and

-153), also called cocktail of PCBs. In all conditions of

contamination, each PCB was added to the culture medium at a

concentration of 300 nM, which is within the range of concen-

trations found in in vivo and in vitro studies [4,29,30]. Impact of

the ethanol vehicle was tested earlier [4].

Lipolysis experiment
At day 11, lipolytic process was induced to differentiated

adipocytes as previously described in Louis et al. [28]. The

differentiation medium in contact with adipocytes was removed

and replaced by a lipolytic medium composed of DMEM (1.0 g/l

glucose, Gibco–Invitrogen), 5% (v:v) heat-inactivated FBS, 2%

(w:v) bovine albumin (Sigma-Aldrich) and 1 mM isoproterenol

(Sigma-Aldrich). The lipolytic medium was renewed every 3 hours

and the process was carried out for 12 hours. In the same way as

in Louis et al. [28], cells from one plate (i.e. cells coming from the

same PCB contamination) were collected every 3 hours and

pooled in order to assess the cellular PCB and protein contents as

well as the levels of fatty acids of cellular neutral lipids (NLs).

Likewise, free fatty acids (FFAs), glycerol and PCBs released in the

extracellular medium were quantified every 3 hours in all

conditions.

Cellular protein assessment
Every 3 hours, cells were washed with phosphate-buffer saline

(Sigma-Aldrich) at 37uC and then collected in an aqueous solution

composed of 35 mM sodium dodecyl sulfate (Merck, Darmstadt,

Germany), 60 mM Tris buffer (Merck) and 10 mM ethylenedi-

aminetetraacetic acid (Sigma-Aldrich). After homogenisation, the

cellular protein content was quantified by using the Bicinchoninic

Acid Protein Assay kit (Sigma-Aldrich) with bovine serum albumin

(Sigma-Aldrich) as calibration curve [28].

Cellular neutral lipid assessment
Cells were collected as described for the determination of

protein content. The method used for the extraction and the

isolation of the NL fraction (i.e. triglycerides (TGs), diglycerides,

monoglycerides and cholesterol esters) from cell lysates is described

in details in Louis et al. [28]. Briefly, the lipids were extracted with

a mixture of chloroform/methanol/water (2:2:1, v:v:v) (Biosolve,

Valkenswaard, The Netherlands) containing triheptadecanoin

(Larodan, Malmö, Sweden) used as internal standard. After

centrifugation, the supernatant was discarded; the chloroform

phase was evaporated and samples were then suspended into

200 ml chloroform. In order to isolate NLs, samples were loaded

on solid-phase extraction columns (Bond Elut NH2, 200 mg,

Varian, Middelburg, The Netherlands). The NL fraction collected

with chloroform/2-propanol (2:1, v:v) (Biosolve) was evaporated

and a methylation step was performed by adding 0.1 M KOH

(Sigma-Aldrich) in methanol at 70uC for 1 hour and then, by
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adding 1.2 M HCl in methanol at 70uC for 15 min. The addition

of hexane followed by deionized water allowed extracting the fatty

acid methyl esters by a centrifugation step. Those were separated

by gas chromatography [31]. Each peak was then identified and

quantified by comparison with pure methyl ester standards

(Larodan and Nu-Check Prep, Elysian, MN, USA). Data were

processed with the ChromQuest 4.2 software (ThermoFinnigan,

Milan, Italy). Thereafter, results were expressed by moles of fatty

acids in cellular NLs. For the sake of simplicity, we refer to mmol

NLs/mg protein in the text [28].

Extracellular free fatty acid assessment
FFA contents in the lipolytic medium were quantified with the

Wako NEFA HR kit (Sopachem, Eke, Belgium) following the

manufacturer’s instructions [28].

Extracellular glycerol assessment
Glycerol released in the extracellular medium was measured

with an in vitro enzymatic colorimetric test using glycerol-3-

phosphate-oxidase (Diasys Free Glycerol FS kit, Sopachem)

according to the manufacturer’s instructions.

PCB assessment
At each studied time of the lipolysis, cells and extracellular

medium were collected in EPA vials (Alltech, Lokeren, BE) with

5 ml of n-hexane (Biosolve) in order to perform a liquid-liquid

extraction by a 10-min shaking. The hexane phase was transferred

into a tube and PCB-112 (Dr. Ehrenstorfer GmbH) was added as

internal standard. All samples were then purified by acid and

Florisil clean-up steps as described in Debier et al. [8]. Purified

samples were collected in n-hexane. Five ml of anhydrous nonane

(Sigma-Aldrich) were added to samples and solvent was then

evaporated under a gentle stream of nitrogen. The purified

extracts were suspended into a hexane solution of Mirex (200 pg/

ml) (Dr. Ehrenstorfer GmbH) used as internal standard for the

correction of the extract volume injected in GC/MS. PCB

congeners were separated and quantified with a gas chromato-

graph (GC Trace, ThermoFinnigan) equipped with an automatic

split/splitless type injector (CTC Analytics, Zwingen, Switzerland),

a fused silica capillary column (30 m 6 0.25 mm internal

diameter; 0.25 mm film) (Rxi-5ms, Restek, Bellefonte, PA, USA)

and a mass spectrometer (Trace DSQ, ThermoFinnigan). The

system used helium as carrier gas at a constant flow rate of 1.1 ml

per minute. The temperature of injector was 230uC. The oven

temperature program was as follows: 2 min at 60uC, gradual

heating from 60 to 140uC at the rate of 20uC per minute, 1 minute

at 140uC, gradual heating from 140 to 290uC at the rate of 2.5uC
per minute, 10 minutes at 290uC and gradual cooling from 290uC
to 60uC at the rate of 10uC per minute. Molecules were sent to

mass spectrometer by the line transfer at 290uC. The ion source of

the detector was kept at 230uC. PCBs were identified according to

their retention time. Data were recorded using XCalibur 1.3

software (ThermoFinnigan). Quantification was performed by

comparison to an external standard composed of 28 congeners

(IUPAC numbers: PCB-8, -18, -28, -44, -52, -66, -77, -81, -101, -

105, -114, -118, -123, -126, -128, -138, -153, -156, -157, -167, -

169, -170, -180, -187, -189, -195, -206 and -209) in a certified

calibration mixture (AccuStandard, New Haven, CT, USA). Five

dilutions (concentration ranging from 25 to 500 pg/ml) were used

in order to draw a linear calibration curve for each PCB.

Quality control
Blanks were run with sample series to control extraction and

clean-up steps. The PCB recovery was calculated on the basis of

the internal standard, PCB-112. Results were accepted only if the

recoveries were between 70 and 130% according to EC [32]. All

results were corrected to obtain 100% recovery [8]. The quality

control was assessed through an interlaboratory comparison.

Cytotoxicity assessment
The potential cytotoxicities of the PCBs and the lipolytic

treatment were assessed by measuring the release of lactate

dehydrogenase (LDH) in the extracellular medium. The activity of

LDH was determined using the cytotoxicity detection kit (Roche

Diagnostics, Vilvoorde, Belgium) according to the manufacturer’s

instructions in (i) the differentiation medium after 12 hours of PCB

exposure and (ii) the lipolytic media collected every 3 hours during

the lipolytic process. Before the PCB exposure and the lipolysis,

some cells were lysed with 1% Triton X-100 (Sigma-Aldrich) and

were used as full toxicity control [28]. No treatments appeared

toxic (, 5% of control) as compared to the full toxicity control

(results not shown).

Statistical analysis
Data are presented as means 6 SEM of three independent

experiments for the conditions with PCB congeners alone and

means 6 SEM of five independent experiments for the condition

with the cocktail of PCBs. The statistical analysis was performed

by SAS 9.3 software (SAS Institute Inc., Cary, USA). Differences

between treatments were assessed with mixed linear models and a

Tukey’s test [28]. Differences were deemed significant at p-

values,0.05.

Results

1. Incorporation of PCBs in adipocytes
At day 10, differentiated rat adipocytes were exposed to four

different treatments of PCBs during a 12-hour period. Three PCB

congeners (PCB-28, -118 and -153) were added to the culture

medium at a concentration of 300 nM, alone or in cocktail.

Assessment of PCBs within adipocytes was carried out before the

induction of lipolysis. The concentration of each congener in

adipocytes, expressed as nmol per unit of cellular protein, was

statistically similar, whatever the kind of contamination (alone or

in cocktail) (0.328,p,1.000) (Table 1). Same conclusions were

drawn when the results were expressed per unit of NLs (0.207,p,

1.000). Since the dynamics of accumulation of PCBs in cells vary

with cellular lipid content [26], the levels of cellular NLs were

quantified and no statistical difference was noted (0.457,p,

0.978) (Table 1).

2. The time-course of lipolysis
At day 11, adipocytes contaminated with PCBs (alone or in

cocktail) were incubated with a lipolytic medium supplemented

with 1 mM isoproterenol, which was replaced every 3 hours for

12 hours. Since the aim of this work was to study the kinetics of

PCB release during the mobilisation of lipids in adipocytes, we

firstly ensured of the efficiency of lipolysis. Cellular NLs as well as

FFAs and glycerol released in the culture medium were quantified

over 12 hours (Figure 1). The FFA and glycerol initially present in

the lipolytic medium, before being in contact with adipocytes,

were subtracted from each result, leading to a value of 0 at 0 hour

(Figure 1B–C). The total FFAs and glycerol released by the

adipocytes throughout a given period were calculated by adding

the quantities measured at each period of 3 hours. For example,
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the amount of total FFAs or glycerol released after 6 hours of

lipolysis corresponds to the sum of FFAs or glycerol released

between 0 and 3 hours and between 3 and 6 hours [28].

A significant decrease of cellular NLs was observed between

early and late lipolysis for the conditions with the PCB-28

(p = 0.005) and cocktail of PCBs (p = 0.029). The cell NLs slightly

decreased over 12 hours within adipocytes contaminated with

PCB-118 (p = 0.298) and PCB-153 (p = 0.097). For all conditions,

the greatest reduction occurred during the first 3 hours of the

experiment (Figure 1A). Indeed, a mean loss of 5763% initial NLs

was noted between 0 and 12 hours, whereas after 3 hours of

lipolysis, adipocytes already lost 3366% of NLs on average,

compared to the initial levels (0.372,p,0.721 for all conditions of

contamination between 0 and 3 hours). The comparison of NL

levels between the four PCB treatments at a given period did not

highlight any difference (0.255,p,1.000).

The decrease of cellular lipid contents was accompanied by a

significant increase of total FFAs in the lipolytic medium over the

12-hour period (p,0.001) (Figure 1B). The increase of total FFAs

was more pronounced during the first 3 hours of lipolysis, during

which an average release of 6364% of total FFAs occurred (p,

0.001). FFA concentrations then continued to increase slightly, but

not significantly, between the subsequent consecutive periods

(0.491,p,0.985 for all conditions of contamination between 3

and 6 hours, 6 and 9 hours, 9 and 12 hours). No difference in the

release of FFAs was noted between the four conditions of

contamination at a given time of the lipolytic process (0.273,

p,1.000). As for total FFAs, contaminated adipocytes released a

significant amount of total glycerol throughout the lipolytic process

(p,0.001 between 0 and 12 hours) (Figure 1C). The major part of

the release (4963%) also occurred during the first 3 hours of

lipolysis for all conditions (p,0.001) (Figure 1C). Here again, no

difference in the release of glycerol was noted between the four

conditions of PCB contamination over the 12-hour period

(0.119,p,0.999). Taking all conditions of PCB contamination

together, the FFA/glycerol ratios lied between 1.4 and 1.8.

3. Comparative dynamics of mobilisation of PCB-28, -118
and -153 present in cocktail in adipocytes

In the present section, we compared the dynamics of

mobilisation of PCB-28, -118 and -153 (present in cocktail within

the cells) from the same adipocytes undergoing a lipolytic process

over a 12-hour period. In order to strictly compare the different

mobilisations between congeners, we expressed the results as

percentages of the amounts initially present in adipocytes (i.e. at

0 hour). The potential presence of PCBs in the lipolytic medium,

before being in contact with the cells, has been tested and was

negligible (result not shown). The proportions of PCBs in the

lipolytic medium at 0 hour were thus set at 0%. Regarding the

subsequent studied times of the lipolysis (3, 6, 9 and 12 hours), the

PCB levels in the medium were calculated by adding the quantities

evaluated at each period of 3 hours. For example, the amounts of

each PCB congener released after 6 hours of lipolytic treatment

correspond to the sum of PCB released between 0 and 3 hours and

between 3 and 6 hours.

In parallel to the lipid mobilisation, there was a release of PCBs

from adipocytes into the culture medium (Figure 2). An important

drop of the PCB cellular content occurred during the first half of

the lipolytic process (p,0.001 between 0 and 6 hours for the three

PCBs). It was followed by a slight, but still significant reduction of

PCB-28, -118 and -153 in adipocytes during the second part of the

lipolysis (p,0.001 between 6 and 12 hours for the three PCBs).

Accordingly, a reversed trend was noted in the lipolytic medium:

the proportions of PCB-28, -118 and -153 accrued during the first

6 hours (p,0.001 between 0 and 6 hours for the three PCBs). The

PCB accumulation in the culture medium was more moderate, but

still significant (0.001,p,0.006), during the second part of the

lipolytic process.

Even if all congeners dropped in the cells and increased in the

culture medium, the dynamics of release of PCB-153 somewhat

differed from those of PCB-28 and -118. Indeed, despite the fact

that the amounts of the three congeners within adipocytes were

statistically similar before the beginning of the lipolysis (Table 1),

the percentages of PCB-153 in adipocytes remained higher than

the ones of PCB-28 and PCB-118 at 3, 6 and 9 hours of lipolysis

(0.001,p,0.032 for PCB-28; 0.031,p,0.037 for PCB-118). The

difference disappeared at 12 hours between PCB-153 and PCB-28

(p = 0.139), but remained significant between PCB-153 and PCB-

118 (p = 0.027). On the other hand, the cellular percentage of

PCB-28 and PCB-118 did not differ between each other

throughout the lipolytic process (0.373,p,1.000). The slower

mobilisation of PCB-153 from adipocytes was reflected by a slower

increase in the culture medium as compared to PCB-28 and PCB-

118 after 3 hours of lipolysis (p,0.001 for the both comparisons).

After 6 hours, the accumulation in the medium was weaker for

PCB-153 than PCB-28 (p = 0.027) and similar between PCB-153

and PCB-118 (p = 0.178). The proportions of PCB-153 were then

similar to those of PCB-28 and -118 for the subsequent hours

(0.275,p,0.986 at 9 and 12 hours). On the other hand, the

percentages of PCB-28 and -118 in the extracellular medium were

similar to each other over the lipolysis (0.429,p,1.000).

4. Impact of the presence of other PCB congeners on the
dynamics of mobilisation of PCB-28, -118 and -153

We investigated if the dynamics of mobilisation of one PCB

congener was influenced by the presence of the other congeners.

Table 1. Efficient accumulation of PCBs in adipocytes during a 12-hour period.

Contamination by a PCB congener alone: Contamination by a cocktail of three PCB congeners:

PCB-28 PCB-118 PCB-153 PCB-28 PCB-118 PCB-153

PCBs (nmol/mg protein) 1.760.1 2.060.1 1.860.1 1.860.1 2.160.1 1.860.1

PCBs (nmol/mg NLs) 0.4760.08 0.6260.09 0.4860.08 0.6160.08 0.7060.08 0.6060.08

NLs (mmol/mg protein) 13.661.1 13.161.3 15.661.1 11.461.1 11.461.1 11.461.1

Quantities of PCBs accumulated in differentiated rat adipocytes, expressed in nmol per unit of cellular protein and per unit of neutral lipids (NLs), after a dose of PCBs
was added during 12 hours in the culture medium. Quantities of NLs, expressed in mmol per unit of cellular protein are also presented. Data represent the means of (i)
three independent experiments 6 SEM for conditions with one PCB congener alone, (ii) five independent experiments 6 SEM for conditions with the cocktail of PCBs.
There was no significant difference of PCB and NL concentrations between the three PCB congeners, whatever the kind of contamination, alone or in cocktail (p.0.05).
doi:10.1371/journal.pone.0106495.t001
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To achieve this goal, we contaminated adipocytes either with one

of the three PCB congeners (PCB-28, -118 or -153) or with a

cocktail of the three congeners. Here also, the results are expressed

as percentages of the amounts initially present in adipocytes. As

previously described, the proportions of PCBs just before the

lipolytic process (i.e. 0 hour) was set to 0% since no PCB congener

was quantified in the initial lipolytic medium. Here also, the total

PCB congeners released by the adipocytes throughout a given

period were calculated by adding the quantities measured at each

period of 3 hours.

At each studied time throughout the 12-hour period, similar

proportions of PCB-28 (Figure 3A), PCB-118 (Figure 3B) and

PCB-153 (Figure 3C) within adipocytes were quantified between

both conditions of contamination (i.e. congeners alone and in

cocktail) (0.134,p,0.934). Accordingly, no difference was noted

between the percentages of PCBs released in the lipolytic medium

in contact with adipocytes in both conditions of contamination

(0.122,p,0.916), except after 3 hours of lipolysis, where the

proportion of PCB-153 measured in the medium were higher

when it was added in cocktail than when it was added alone

(p = 0.046).

Discussion

Considerable accumulation of PCBs within adipocytes
Differentiated rat adipocytes were exposed to three targeted

PCB congeners (PCB-28, -118 and -153), which differ by the

number and the position of the chlorine atoms [19,33]. After

12 hours, similar concentrations of PCBs were stored within

adipocytes. Same observations were already drawn after 4 hours

of exposure for the same congeners [26]. The different molecular

structures of PCBs did thus not seem to influence their accretion

within adipocytes on long term. Previous studies from our group

highlighted the importance of the amount of cellular NLs, acting

as a trap for the accumulation of PCBs within adipocytes [5,26].

The fact that cellular NL levels were similar between our

Figure 1. Lipolytic treatment decreased cellular neutral lipids and increased extracellular fatty acids and glycerol. At day 11,
differentiated rat adipocytes, which were previously contaminated with PCBs, were incubated with a lipolytic medium supplemented with 1 mM
isoproterenol. We renewed the lipolytic medium every 3 hours for 12 hours. Cellular neutral lipids (corresponding to mmol of fatty acids in cellular
neutral lipids) were expressed per mg of total cell protein (A). A significant decrease of cellular lipid contents was noted throughout the lipolytic
process for the conditions with PCB-28 (p = 0.005) and the cocktail of PCBs (p = 0.029). The decrease was slighter for the conditions with PCB-118
(p = 0.298) and PCB-153 (p = 0.097). Total extracellular free fatty acids (B) and total extracellular glycerol (C) were expressed per ml of medium.
Quantities of total free fatty acids and glycerol in the medium were obtained by adding the quantities released during the periods of 3 hours (e.g.
total free fatty acids at 6 hours correspond to the sum of total free fatty acids released between 0 and 3 hours and between 3 and 6 hours). A
significant increase of total free FAs and total glycerol was observed over the 12-hour lipolytic treatment (p,0.001 for all conditions). Data represent
the means of (i) three independent experiments 6 SEM for conditions with one PCB congener alone, (ii) five independent experiments 6 SEM for
conditions with the cocktail of PCBs.
doi:10.1371/journal.pone.0106495.g001

Figure 2. Lipolytic treatment decontaminated the adipocytes, inducing an accumulation of PCB congeners in the extracellular
medium. At day 11, contaminated adipocytes underwent a lipolytic process. The PCB contents as well as the proportions of PCBs released in the
extracellular medium were assessed every 3 hours. For each PCB congener, all results were expressed in percentage of the amounts initially present
in the cells. Proportions of one PCB congener in the medium were obtained by adding the amounts released during periods of 3 hours (e.g.
proportion of one congener at 6 hours corresponds to the sum of this congener released between 0 and 3 hours and between 3 and 6 hours). An
important drop of cell PCB proportions was observed during the first 6 hours of lipolysis (p,0.001) and was followed by a more moderate decrease
of the cell PCB percentages during the last 6 hours (p,0.001). In parallel, an important increase of PCBs was noted in the extracellular medium during
the first half of lipolysis (p,0.001) and was followed by a slower accumulation during the second half of lipolysis (0.001,p,0.006). Data represent
the means of five independent experiments 6 SEM.
doi:10.1371/journal.pone.0106495.g002
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experimental conditions is most probably at the origin of the

identical accumulation of PCBs within adipocytes. While PCB

concentrations in the culture medium were in the same range than

those measured in the human serum [29,30], the PCB levels found

in cultured adipocytes after 12 hours of incubation (data from

Table 1 are equivalent ,175 ng PCB congeners per mg NLs)

were much higher than those measured in vivo, in the human

adipose tissue (from 0.02 to 0.66 ng total PCBs per mg lipids) [34–

38]. It reflects a high propensity of differentiated rat adipocytes to

store PCBs [4]. Such differences have already been noticed

previously and the reasons are discussed in details elsewhere [5].

Briefly, the higher in vitro concentrations of PCBs within

adipocytes could result from the extended contact between the

cells and the contaminated culture medium (12 hours). On the

contrary, in the in vivo situation, the PCB congeners, transported

in the circulation by lipoproteins and plasma albumin [33,39,40],

are in continual movement thanks to the blood flow. In addition,

the culture medium contains only a low concentration of serum

(10%) [4], and therefore very low levels of lipoproteins and

albumin, which could contribute to a smaller retention of PCBs in

this hydrophilic compartment and a higher storage in the

lipophilic compartment represented by adipocytes. The differen-

tiated rat adipocytes are also organised as a monolayer whereas in
vivo adipose tissue shows a complex 3D-structure. Furthermore,

lipolysis, which occurs regularly in vivo, may lead to the

mobilisation of PCBs from adipocytes. Finally, the circulating

PCBs may be taken up by other tissues such as the liver.

Similar dynamics of mobilisation between cellular lipids
and PCBs

Once the lipolytic pathway was induced, adipocytes started to

mobilise their lipid content. A decrease of the cellular NLs could

be observed throughout the 12-hour experiment, with a more

pronounced lipolytic action during the first 3 hours. This sharper

decrease of NL content at early lipolysis was in accordance with

our previous study [28]. As a result of the mobilisation of cellular

NLs, FFAs and glycerol were released in the extracellular medium.

The lipolytic treatment also led to the release of PCBs from

adipocytes to the extracellular medium. The dynamics of

mobilisation of PCBs exhibited some parallelism with those of

cellular lipids, as the major part of PCB discharge occurred during

the first hours of lipolysis as well. Previously, it was shown that in
vitro epididymal adipocytes isolated from rats also unloaded PCB-

153 during a lipolytic treatment of 50 min with 0.8 mM

isoproterenol [41]. The release of PCBs might accompany the

mobilisation of cell lipids, which agrees with previous studies on

the behaviour of dioxins [42,43]. In addition, cellular TG content

is an important parameter governing the accumulation of PCBs in

adipocytes [5,26]. PCBs are stored almost exclusively within the

LDs [4]. As this lipophilic pool is reduced during lipolysis [28], the

capacity of storage is thus also lessened, promoting the release of

PCBs in the extracellular medium, where they could be tightly

associated with diverse lipoproteins (present in the 5% serum) and

bovine albumin (2%).

Although an obvious release of PCBs occurred from adipocytes

during the lipolytic experiment, some molecules of PCBs could be

taken up again by the cells as previously suggested in in vivo
studies [13,14]. This phenomenon is well known for FFAs, which

are partly reabsorbed by adipocytes and re-esterified into newly

synthesized TGs [28,44]. A complete hydrolysis of one mole of

TGs leads to the release of three moles of free FAs and one mole of

glycerol. This could be translated by a free FA/glycerol ratio

equivalent to 3.0. However, free FA/glycerol ratios were lower

than 3.0 in our experiments, which likely reflects a reuptake of free

FAs by the cells. Nevertheless, this phenomenon might have been

somewhat limited in our experimental conditions, because of the

renewal of the lipolytic medium every 3 hours [28].

Studies investigating the release of POPs from adipose tissue

during periods of weight loss in animals and humans usually report

an increase of the concentrations of PCBs and related compounds

in adipose tissue, despite their significant discharge in the blood

circulation [6,14,15,18]. This increase suggests a less efficient

mobilisation of PCBs from this tissue than lipids and a

concentration of these lipophilic pollutants in the remaining

amount of fat cells. The adipose tissue is a macroscopic structure

that is irrigated by blood vessels. During adipose tissue lipolysis, it

is possible that PCBs are transferred to adipocytes that still contain

significant amounts of lipids in their LDs instead of being all

released into the circulation. It is also possible that PCBs are

released in the bloodstream together with the lipids and then

reabsorbed by the adipose tissue as a result of their higher affinity

for the remaining lipids present in the cells [13]. Our in vitro
model differs from the in vivo situation among others by the fact

that it is characterised by only one layer of cells, which is in direct

contact with the extracellular medium that is regularly renewed. A

reuptake of PCBs by the cells and/or a migration of PCBs to

deeper adipocyte layers that are still filled with fat are thus not

possible. Moreover, the high PCB concentrations, which were

found in the cultivated adipocytes before the lipolytic induction,

might also promote the massive release of congeners in the

extracellular medium.

Differences of release according to the kind of PCB
congener

When the three congeners were added in cocktail to the culture

medium, we could observe that PCB-153 was less efficiently

mobilised from adipocytes than PCB-28 and PCB-118 during the

first part of the lipolytic process. This difference however

disappeared at 12 hours of lipolysis. The slower mobilisation of

PCB-153 from adipocytes reflects the fact that, besides the cellular

lipid content, the rate of release is also governed by the physico-

chemical properties of the congeners, which are defined by the

number and the position of chlorine atoms on the biphenyl core

[2]. If we consider the electrostatic potentials of PCBs [26], PCB-

Figure 3. Presence of other congeners did not influence the dynamic of PCB mobilisation. At day 11, differentiated rat adipocytes, which
were previously contaminated with either individual PCB congeners or with a cocktail of PCBs, underwent a lipolytic process. The cellular levels of
PCBs before the lipolytic process were quantified and set at 100%. During 12-hour period of lipolysis, the contents of PCB congeners within
adipocytes and in the extracellular medium were assessed every 3 hours. The results for PCB-28 (A), PCB-118 (B) and PCB-153 (C) were expressed by
the percentage of initial amounts of each congener. Within a condition of contamination, proportions of one PCB congener in the medium were
obtained by adding the quantities released during the periods of 3 hours (e.g. proportion of one congener at 6 hours corresponds to the sum of this
congener released between 0 and 3 hours and between 3 and 6 hours). At each given time of lipolytic treatment, no differences were noted between
the proportions of each PCB (i.e. PCB-28, -118 and -153) in both conditions of contamination (i.e. congeners alone or in cocktail), either in the cells or
in the lipolytic medium (0.122,p,0.916). Only the percentage of PCB-153 in the lipolytic medium was lower when taken alone as compared to the
condition in cocktail after 3 hours of lipolysis (p = 0.046). Data represent the means of (i) three independent experiments 6 SEM for conditions with
one PCB congener alone, (ii) five independent experiments 6 SEM for conditions with the cocktail of PCBs.
doi:10.1371/journal.pone.0106495.g003
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153 exhibits a large electron-deficient zone. This characteristic

makes this congener rather lipophilic, which is reflected by the

higher partition coefficient n-octanol/water (log Kow = 6.80). On

the other hand, PCB-28 and PCB-118 have a reduced electron-

deficient zone, translated by lower log Kow (PCB-28: log

Kow = 5.71 and PCB-118: log Kow = 6.57). PCB-153 could thus

be more trapped within LDs than PCB-28 and PCB-118 and as a

consequence, be released more slowly.

In addition, it was previously observed that a small proportion

of PCB-153 was sequestrated in the cell membranes when isolated

primary adipocytes absorbed the PCB congeners present in the

culture medium for 2 hours [4]. It was not the case for PCB-28

and -118. Likewise, several studies showed that PCB-52 and -153,

two di-ortho-substituted PCBs, intercalate between membrane

phospholipids similarly to cholesterol and have an impact on the

membrane fluidity in fish, rodent and chicken cells [45–49]. In the

present study, the release of PCB-153 from adipocytes could thus

be slowed down by its association with cell membranes, as

compared to PCB-28 and PCB-118, two mono-ortho-substituted

congeners. The fact that PCB-153 has two chlorine atoms in the

ortho position on the biphenyl core induces a more perpendicular

layout of the phenyl rings. It means that PCB-153 occupies a

larger bulk than PCB-28 and PCB-118, which could be involved

in the sequestration of PCB-153 within membranes and its slower

mobilisation from adipocytes.

Previous findings from our group, investigating the uptake of

PCBs by differentiated adipocytes, highlighted that PCB-28 enters

the cells more rapidly than PCB-118 and PCB-153 [4]. If, during

lipolysis, a reuptake of PCBs by the cells occurs, PCB-28 might

thus be taken up more rapidly than the other congeners, which

could lead to an underestimation of the differences of mobilisation

kinetics during the lipolytic treatment.

Similar rate of release when PCBs are present alone or in
cocktail

In the in vivo situation, tissues are exposed to a cocktail of

contaminants that might interact with each other’s, regarding

either the toxicokinetics or the toxicodynamics of the molecules.

Here, we investigated the effect of a simple combination of PCBs

(three congeners) on their release by adipocytes during lipolysis.

To do this, the discharge of PCB-28, -118 and -153 from

adipocytes was followed either alone, or in cocktail (i.e. with two

other congeners). In the two conditions of contamination, the

dynamics of PCB release were similar, meaning that the

mobilisation of PCB congeners was not influenced by the presence

of other congeners within adipocytes in these experimental

conditions. As noted above, PCB-153 influences the properties

of cell membranes. One could thus have expected that this

congener could influence the dynamics of release of other PCBs

from the cells.

Conclusion

Our results showed an efficient accumulation of PCB-28, -118

and -153 in adipocytes. Once lipolysis was induced, the congeners

were massively mobilised from cells into the culture medium, in

parallel with the release of lipids. The dynamics of discharge

however differed between the three investigated congeners. The

release of PCB-153 was slightly but significantly slower than the

ones of PCB-28 and -118. The phenomenon might be explained

by the fact that PCB-153 is more lipophilic than the two other

congeners and could thus be more trapped in LDs. In addition,

PCB-153 being a di-ortho-substituted congener, it is more bulky,

which could be involved in its partial sequestration within cell

membrane [5] and its slower mobilisation from adipocytes. On the

other hand, the dynamics of mobilisation was not influenced by

the presence of the other two congeners.
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