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Abstract

DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events
distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing
multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show
that Schizosaccharomyces pombe Rad4TopBP1 AAD–defective strains are DNA damage sensitive during G1/S-phase, but not
during G2. Using lacO-LacI tethering, we developed a DNA damage–independent assay for checkpoint activation that is
Rad4TopBP1 AAD–dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction
between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb253BP1. Consistent with a
model where Rad4TopBP1 AAD–dependent checkpoint activation is ssDNA/RPA–independent and functions to amplify
otherwise weak checkpoint signals, we demonstrate that the Rad4TopBP1 AAD is important for Chk1 phosphorylation when
resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4TopBP1 AAD acts additively
with a Rad9 AAD in G1/S phase but not G2. We propose that AAD–dependent Rad3ATR checkpoint amplification is
particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein–
chromatin interactions.
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Introduction

The DNA damage checkpoint is an elaborate signal transduc-

tion pathway that monitors the integrity of the DNA, prevents cell

cycle progression and promotes appropriate DNA metabolism [1]

reviewed in [2]. The DNA damage sensors associated with

checkpoint activation define two separate DNA structure-depen-

dent signal transduction cascades. Each pathway engages a

phospho-inositol-3 kinase-like protein kinase (PIKK); either the

Ataxia Telangiectasia Mutated (ATM) or the Ataxia Telangiec-

tasia and Rad3 related (ATR) kinase [3]. ATM detects DNA

double strand breaks (DSBs) by interaction with the Mre11-

Rad50-Nbs1 repair complex, while ATR primarily senses single

stranded-DNA (ss-DNA) through interactions with RPA. Both

ATM and ATR are conserved in the model organisms S. pombe and

S. cerevisiae.

For ATR to recognise a DNA lesion, single-stranded DNA

(ssDNA) needs to be formed - for example by DNA repair-

dependent DNA processing [4] or following the replication

machinery encountering the unrepaired lesion [5]. Once ssDNA

is generated, it is immediately coated by replication protein A

(RPA) (Reviewed in: [6]). Multiple ATR molecules are initially

recruited to ssDNA regions via ATRs obligate binding partner,

ATRIP, which binds directly to RPA [7,8]. ATR-ATRIP

recruitment to ssDNA-RPA is necessary for ‘‘basal’’ ATR

activation, but is insufficient for full checkpoint activation: co-

recruitment of a second complex consisting of three PCNA-like

proteins, Rad9, Hus1 and Rad1 (known as the 9-1-1 clamp) is also

necessary. 9-1-1 is loaded in parallel to ATR recruitment at 59

ssDNA/dsDNA junctions by the checkpoint clamp loader Rad17-

RFC[2–5] [9,10,11]. (Figure 1A).

When ATR-ATRIP is first loaded at the site of ssDNA, its

‘‘basal’’ kinase activity promotes phosphorylation of its immediate

neighbours, including ATRIP [12,13], an in trans phosphorylation

of a residue within ATR itself, T1989 [14], and the subunits of the

9-1-1 clamp [15,16]. Dependent on the concomitant recruitment

of 9-1-1, a further protein, TopBP1, is recruited [17]. TopBP1 is

recruited via an interaction between its BRCT (1+2) domains and

a constitutive phosphosphorylation on the C-terminus of Rad9

[18,19]. Similarly in both yeast systems, Saccharomyces cerevisiae and

Schizosaccharomyces pombe, the TopBP1 homologs, Dpb11 and Rad4

respectively, are recruited by the phosphorylation of the C-

terminus of Rad9Ddc1 creating a binding site for a pair of BRCT

domains (Figure 1A). In S. pombe, the C-terminal phosphorylations

occur on Rad9 at residues T412 and S423 [20]. This subsequently

recruits Rad4TopBP1 via interaction with BRCT pair (3+4).

However, unlike in mammalian cells, T412 and S423 in S. pombe

are directly targeted by Rad3ATR in response to its ssDNA/RPA
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binding and concomitant 9-1-1 loading [16,20,21]. Despite these

differences, in both S. pombe [20] and mammalian cells [14],

Rad4TopBP1 recruitment promotes the formation of a Rad3ATR/9-

1-1/Rad4TopBP1 complex (Figure 1A). However, the mode of

interaction of Rad3ATR and Rad4TopBP1 within this complex has

not been defined in S. pombe.

Mammalian TopBP1 can directly activate ATR-ATRIP both

in vitro in the absence of ssDNA/RPA and when over-expressed

in cells. TopBP1-dependent ATR activation requires an ATR

activation domain (AAD) situated between the 6th and 7th

BRCT domains [17] and mutation of a conserved aromatic

residue within this unstructured region, W1147, prevents this

mode of ATR activation. The AAD contacts a region within the

C-terminus of ATR, between the kinase and FATC domains

[22], which has been termed the PIKK Regulatory Domain

(PRD). Mutation of a conserved PRD residue, K2598, similarly

abolishes TopBP1-dependent ATR activation. In both mam-

malian cells and Xenopus extracts the interaction between

TopBP1 and ATR-ATRIP appears to be essential for check-

point activation in response to replication stress [17,22],

although the initial in trans phosphorylation of ATR on T1989,

reportedly essential for full ATR activation, is TopBP1-

independent [14].

In the budding yeast model system, the intrinsically disordered C-

terminal extension of the TopBP1 homolog, Dpb11TopBP1, contains

an AAD which interacts with and activates Mec1ATR via a pair of

aromatic residues, W700 and Y735 [22,23,24,25]. Interestingly, in

S. cerevisiae, at least two distinct Mec1ATR activation domains have

been identified: in addition to the Dbp11TopBP1 AAD, the C-

terminal tail of Ddc1Rad9 (S. cerevisiae homolog of the 9-1-1 subunit

Rad9) contains an AAD that can directly stimulate Mec1ATR

activity in vitro and contributes to checkpoint activation in vivo

[11,26]. The key residues in Ddc1Rad9 required for Mec1ATR

activation are W352 and W544. W352 resides on the surface of the

PCNA-like domain, while W544 lies within the intrinsically

disordered C-terminus. In vivo the Ddc1Rad9 AAD is essential for

Mec1ATR activation when S. cerevisiae cells are in G1 [24,26], while

the Ddc1Rad9 AAD acts redundantly with the C-terminal AAD of

Dpb11TopBP1 during checkpoint activation in G2. It is proposed

that, at least in S. cerevisiae, a minimum of one other protein contains

an equivalent AAD (Reviewed in [27]).

We have previously shown that S. pombe Rad4TopBP1 is not

required for the Rad3ATR-dependent and DNA damage-depen-

dent phosphorylation of Rad26ATRIP or the 9-1-1 clamp subunits

[16,20], demonstrating that Rad3ATR is active at sites of DNA

damage in the absence of activation by the Rad4TopBP1 AAD.

However, the presence of Rad4TopBP1 is clearly required to form a

robust Rad3ATR/9-1-1/Rad4TopBP1 complex [20], to recruit the

Crb253BP1 mediator protein [28,29] and for Rad3ATR to

phosphorylate downstream substrates such as Chk1-S345 [30]

and promote robust checkpoint activation.

To further explore the role of Rad4TopBP1 in checkpoint

activation in S. pombe we identified and characterised the

Rad4TopBP1 AAD. We show that Rad4TopBP1 can interact with

Rad3ATR via its AAD and that the AAD contributes to Rad3ATR

activation in vivo. We observe that the biological function of the

Rad4TopBP1 AAD is most important in G1/S phase, when

resection is limited, and that reducing DSB resection in G2

following ionising radiation results in compromised Chk1

phosphorylation in the absence of Rad4TopBP1 AAD function.

In order to separate out and study Rad4TopBP1 AAD-dependent

Rad3ATR activation we developed a Rad4TopBP1 AAD-dependent

lacO-LacI checkpoint activation system for S. pombe and used this

to show that Rad4TopBP1 AAD-dependent Rad3ATR activation is

also dependent on histone H2A phosphorylation. Consistent

with a role for this chromatin modification, mutations in Crb2

that interfere with phospho-binding by Crb2 also decrease

Rad4TopBP1 AAD-dependent checkpoint activation. Thus, the

Rad4TopBP1 AAD-dependent Rad3ATR activation pathway is

chromatin dependent, implying a role in checkpoint amplification

and maintenance.

Results

In S. cerevisiae, two aromatic residues, W700 and Y735 were

identified as critical for Dbp11TopBP1 AAD activity [24,25]. We

similarly created an alignment of Rad4TopBP1 with the C-terminal

tails of a variety of TopBP1 homologs and identified a short

sequence encompassing Y599 in S. pombe (Figure 1B, 1C), which

we subsequently confirmed as defining the AAD activity of

Rad4TopBP1 (see below). To characterise the function of the

Rad4TopBP1 AAD, we separately mutated the conserved aromatic

amino acid to create strain rad4-Y599R or deleted the minimal

conserved motif to create rad4-D[595–601].

To establish if the Rad4TopBP1 AAD interacts with Rad3ATR we

expressed and purified recombinant Rad4[288–648] (that includes

BRCT (3+4) and the unstructured C-terminal tail) as a fusion with

GST. Constructs containing a mutation in either the AAD

(Y599R), deletion of residues 643–645 encompassing a putative

cyclin binding motif (RxL), or mutation of a CDK phosphoryla-

tion site (S641A) were similarly purified. Wild-type and all the

mutated recombinant proteins, when incubated with yeast

extracts, bound to and co-purified the control interacting

partner of Rad4TopPB1, Cdc13CyclinB (unpublished data). Wild-

type Rad4-GST also co-purified Rad3ATR-Myc from extracts

prepared from 3myc-rad3 cells (Figure 1D). In contrast, the amount

of Rad3ATR-Myc pulled-down with recombinant AAD-mutated

Rad4TopBP1-GST was reproducibly reduced (n = 4). Neither

Rad3ATR-myc nor Cdc13CyclinB were pulled-down with a GST-

only control. We conclude that, in vitro, this residue of Rad4TopBP1

is part of a Rad4TopBP1 interaction domain for Rad3ATR,

consistent with it having the properties of an AAD. We also note

that the interaction with Cdc13CyclinB is not abolished by loss of the

RxL motif and that mutation of S641 affects the Rad4TopBP1:

Rad3ATR interaction in vitro (Figure 1D, lane 4).

Author Summary

DNA structure–dependent checkpoint activation and the
amplification of checkpoint signals are carefully modulated
to allow the checkpoint kinases to delay mitosis and
regulate DNA metabolism. While much work has gone into
understanding how this checkpoint functions, the mech-
anism by which the checkpoint signal is amplified is less
clear. We have characterised a conserved domain in the
Schizosaccharomyces pombe TopBP1 homolog, Rad4TopBP1

(also known as Cut5) that is capable of activating the ATR
homolog Rad3ATR. We demonstrate that this domain is not
required for initial checkpoint activation, but functions to
amplify the checkpoint signal, likely when the presence of
single-stranded DNA is limiting. Our data suggest that the
function of the Rad4TopBP1 ATR-Activation Domain (AAD) is
mediated by interactions between checkpoint proteins
and phosphorylated histone H2A, which is itself promoted
by Rad3ATR. We propose that the resulting amplification of
the checkpoint signal is particularly important in G1-S
phase, when resection is limited.

Function of S. pombe TopBP1-AAD
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rad4-AAD mutants show checkpoint defects associated
with S phase

Both rad4-Y599R and rad4-D[595–601] displayed normal cell

cycle progression (data not shown), indicating that, as is observed

in S. cerevisiae [24], the Rad4TopBP1 AAD is not required for

unperturbed DNA replication. In response to UV, MMS and HU

treatment, rad4-Y599R and rad4-D[595–601] cells showed inter-

mediate sensitivity when compared to rad4+ and checkpoint

defective rad3D (Figure 1E and Figure S1A). To establish if the

sensitivity to DNA damage correlated with a defective G2 DNA

damage checkpoint, we monitored cell cycle progression after cells

were synchronised in G2 and UV-irradiated. Following exposure

to 50 Jm-2 (Figure 2A), rad4-Y599R cells displayed premature

release from cell cycle arrest (,20 min earlier than rad4+ after

50 Jm-2). We next monitored the sensitivity and checkpoint

response to ionising radiation. rad4-Y599R mutant cells displayed

only very mild sensitivity to IR (Figure 2B) and the checkpoint was

mildly extended (Figure 2C). We do not know the reason for the

slight extension of the G2 delay: no obvious increase in numbers or

duration of Rad22Rad52 foci were observed, indicating no

significant delay to DSB repair (Figure S1B).

We next examined Chk1 phosphorylation status in rad4+ and

rad4-Y599R cells as a surrogate for checkpoint activation

(Figure 2D). In response to 200 Jm-2 UV irradiation, asynchro-

nously growing rad4-Y599R cells displayed reduced Chk1 phos-

phorylation when compared to rad4+ cells, consistent with the

partial checkpoint defect observed. Conversely, in response to IR,

no significant difference is seen between rad4-Y599R and rad4+. An

upstream target of Rad3ATR is the C-terminus of histone H2A

[31,32]. To establish if the UV-specific defect in Rad3ATR-

dependent phosphorylation is specific to Chk1, we monitored

cH2A formation following either UV or IR treatment (Figure 2E).

As was seen for Chk1 phosphorylation, a significant decrease in

cH2A is observed in rad4-Y599R cells following UV but not IR

treatment when compared to rad4+ cells.

The pattern of DNA damage sensitivity seen for rad4-Y599R

cells is consistent with a specific sensitivity within S phase. .70%

of fission yeast cells in an asynchronous culture are in G2 and

mitosis is followed rapidly by S phase: G1 is extremely short. In

response to IR, the G2 DNA damage checkpoint is robustly

activated and DNA repair completed before cells pass through

mitosis and into S phase [33]. Thus, following IR, relatively few

cells replicate damaged DNA. Conversely, the G2 checkpoint is

not robustly activated following UV [34] and the majority of UV-

irradiated cells pass through mitosis and enter S phase with

damaged DNA. To monitor S phase-specific events, we thus

examined cH2A induction in cells treated with either hydroxyurea

(HU), an inhibitor of ribonucleotide reductase, or Camptothecin

(CPT), an inhibitor of topisomerase I (Figure 2F). Consistent with

both agents manifesting cytotoxicity in S phase, cH2A levels were

significantly reduced when comparing rad4-Y599R with rad4+ cells.

Finally, since replication of UV damaged DNA induces Cds1Chk2

activity [35], we monitored the kinase activity of immuno-

precipitated Cds1Chk2 following UV irradiation of rad4-Y599R

and rad4+ cells (Figure 2G). Cds1Chk2 activation was reproducibly

lower for rad4-Y599R, indicating an impaired S phase checkpoint

activation (n = 3).

The rad4-AAD mutants are sensitive to DNA damage in S-
phase

If the rad4-Y599R mutant is deficient in activation of Rad3ATR

in S phase, we would anticipate increased sensitivity to IR within S

phase when compared to rad4+ cells. To test this possibility, rad4-

Y599R mutant and rad4+ cells where either synchronised in G2

cells using cdc25-22 or in G1 using a cdc10-m17. Following the

block, cells were released by reducing the temperature and cell

cycle progression was monitored by FACS analysis (Figure 3A,

3B). Cells were irradiated with 50 Gy IR at the times indicated.

rad4-Y599R cells showed significant increased sensitivity when

compared to rad4+ when irradiated in S phase, but not when

irradiated in G2, when S phase is complete (i.e. see Figure 3B). In

an equivalent cdc25-22 block and release experiment, we

monitored Chk1 phosphorylation and cH2A induction

(Figure 3C). Unlike when asynchronous rad4-Y599R cells are

irradiated (.70% of such cells are in G2), when rad4-Y599R cells

were irradiated in early-mid S phase, Chk1 phosphorylation was

moderately reduced for the first 40 minutes after irradiation and

cH2A levels were similarly decreased when compared to rad4+.

Interestingly, following progression through S phase and into G2

(150 minute time point), Chk1 phosphorylation levels increased

significantly in rad4-Y599R cells, although the same was not seen

for cH2A levels.

To determine that the use of cdc25-22 synchronisation was not

generating an artefact (Cdc25 is an activator of Cdc2-Cyclin B,

which itself is required for normal DNA damage responses in G2

[36]), we used the alternative method of synchronisation where

cells were arrested in G1 using cdc10-M17 and released directly

into S phase (Figure 3D). Unlike IR treatment of asynchronous

cultures where equivalent levels of cH2A were observed (Async

IR), treatment of rad4-Y599R cells at 30, 60 or 90 minutes after

release from arrest resulted in decreased cH2A levels and Chk1

phosphorylation when compared to rad4+ control cells.

LacO array-dependent checkpoint activation in S. pombe
requires the Rad4TopBP1 AAD

In S. cerevisiae, co-localisation of two or more checkpoint proteins

to arrays of lacO repeats bypasses the requirement for DNA

damage in Mec1-mediated checkpoint activation [37]. To

establish the role of the Rad4TopBP1 AAD in a what has previously

been characterised as an RPA-ssDNA independent system,

rad4TopBP1, rad9 and rad3ATR were each fused to a construct

encoding GFP, the E. coli lac-repressor (LacI) and a nuclear

localization signal (NLS); GFP/LN (Figure 4A). The resulting

plasmids express the fusion construct under the control of a

thiamine-repressible (nmt41) promoter. We established that each of

the fusion constructs were functional by expressing them

Figure 1. Conservation of the Rad4TopBP1 ATR-Activation Domain. A. Cartoon showing the interactions of the fission yeast homolog of
TopBP1 (Rad4) during checkpoint activation. See text for details. B. Schematic representation of TopBP1 homologs. BRCT domains are boxed. Those
conserved with the yeast homologs are shown in blue (1+2) and red (4+5). The position of the conserved AAD aromatic residue is indicated in green.
C. Corresponding amino acid sequence alignment. The region deleted in rad4-D[595–601] is boxed. Conserved residues are in bold and the aromatic
residue starred. D. Recombinant GST and GST-fusion proteins were used for affinity capture from soluble myc-rad3 S. pombe extracts. Cdc13CyclinB was
detected with a-Cdc13, Rad3ATR with a-Myc. E. Spot-test analysis of UV and MMS sensitivity for the indicated strains. Serial dilutions of logarithmically
growing cells were plated onto YE plates containing the indicated drugs. rad4+ indicates the RMCE control strain (rad4+ locus flanked by loxP and
loxM sites, see reference 56) and acts as a control for the defined rad4 alleles (where the same arrangement of lox sites flank the mutated gene at the
rad4 locus).
doi:10.1371/journal.pgen.1002801.g001

Function of S. pombe TopBP1-AAD
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individually in the corresponding null mutants. Each was able to

suppress the DNA damage sensitivity (and for rad4TopBP1, the

thermosensitivity) of the appropriate mutant, although for rad4-

GFP/LN genotoxin resistance was not restored to wild-type levels

(Figure S1C–S1E). When expressed in cells harbouring 256

repeats of the lac operator sequence (lacO) integrated at the ura4+

locus, each fusion protein formed a single nuclear focus. No foci

were detected in cells devoid of lacO arrays (Figure 4B).

We used Chk1 phosphorylation as a readout for DNA damage

checkpoint activation (Figure 4C). Following thiamine removal

(induction takes between 12 and 16 hours [38]), Chk1 became

phosphorylated in lacO containing cells, but not in lacO-negative

control cells, when either Rad3ATR, Rad4TopBP1 or Rad9 LacI

fusion proteins were expressed. Similar results were obtained when

each pair-wise combinations of two fusion proteins were expressed

(Figure 5B). In S. pombe, DNA damage checkpoint activation

results in cell cycle arrest and cell elongation. Elongated cells were

observed upon expression of single fusion proteins (data not

shown), confirming checkpoint activation. From these data we

conclude that, in S. pombe, as in mammals [39] tethering of any of

these single checkpoint proteins to a lacO array is sufficient to

activate the DNA damage checkpoint and that, in contrast to the

analogous experiments reported for S. cerevisiae, forced co-

localisation of two checkpoint proteins is not required [37].

Figure 2. Checkpoint activation in response to genotoxic stress. A. rad4+ and rad4-Y559R strains were synchronised in G2 by lactose gradient
centrifugation, mock irradiated or irradiated with 50 Jm-2 of UV. Cell septation index, which reflects progression through mitosis, was observed to
monitor G2 arrest. B. Spot-test analysis of IR sensitivity for the indicated strains. rad4+ indicates the RMCE control strain (rad4+ locus flanked by loxP
and loxM sites). C. rad4+ and rad4-Y559R cells were synchronised in G2 by lactose gradient centrifugation, mock irradiated or irradiated with either
375 Gy or 500 Gy IR. Cell septation index was observed to monitor G2 arrest. D. Western blot analysis over time of HA-Chk1, detected with a-HA, in
response the indicated dose of UV or IR in rad4+ and rad4-Y599R (AAD-defective). * indicates phospho Chk1. E. Analysis of cH2A induction after the
indicated doses of IR and UV treatment (20 minutes after irradiation). cH2A is detected with a-pS129 Ab. F. Equivalent analysis for cH2A after cell
growth in the indicated doses of HU (1 hour) and CPT (30 mins). G. Cds1Chk2 kinase activity. Cds1 was immuno-precipitated from rad4+ or rad4-Y559R
strains with a-Cds1 one hour after UV irradiation and equivalent amounts of protein tested for kinase activity against MBP. Note the non-specific
band in the input, which, following IP, does not resolve from Cds1. The experiment was repeated three times and the relative induction for rad4-
Y599R compared to wild type is shown on the right. rad4+ indicates the RMCE [56] control strain.
doi:10.1371/journal.pgen.1002801.g002
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To establish if the Rad4TopBP1 AAD is involved in this damage-

independent mode of checkpoint activation, we tested if Rad3ATR

tethering could result in Chk1 phosphorylation in a rad4-Y599R

mutant background (Figure 5A). While Rad3-GFP/LN expression

resulted in induced Chk1 phosphorylation in rad4+ cells, Rad3-

GFP/LN expression did not increase Chk1 phosphorylation in

rad4-Y599R cells, demonstrating a role for the Rad4TopBP1 AAD.

Next we established if expression and tethering of the AAD-

Figure 3. The Rad4TopBP1 AAD is defective in checkpoint activation in S phase. A. rad4+ and rad4-Y599R mutant cells were synchronised in
G2 by cdc25 arrest and released into the cell cycle (experimental schematic: top). DNA content was assessed by FACS analysis (left) and cells were
irradiated (50 Gy) either in mid or late S phase. Viability was assessed by colony formation (right). B. cdc10-m17 rad4+ and cdc10-m17 rad4-Y599R cells
were synchronised in G1 and exposed to 50 Gy IR either before, 40 min after or 100 min after release (G1/S, mid S, late S/G2). % cell survival of rad4-
Y599R compared to WT is shown. Error bars: standard deviation (n = 3). C. An equivalent experiment was performed to assess phospho-Chk1 (*) and
cH2A induction over time by western blot with a-HA or a-pS129 following 50 Gy IR. D. As an alternative synchronisation strategy, rad4+ and rad4-
Y599R mutant cells were synchronised in G1 by cdc10-m17 arrest and released into S phase and irradiated (50 Gy). cH2A was monitored using a-
pS129. Chk1 phosphorylation was monitored using a-HA. A representative FACS profile of untreated cultures is shown below. * indicates phospho
Chk1.
doi:10.1371/journal.pgen.1002801.g003

Function of S. pombe TopBP1-AAD
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defective Rad4-Y599R protein to lacO arrays was able to activate

the checkpoint (Figure 5B). No induction of Chk1 phosphorylation

was observed. Furthermore, while co-expression and tethering

Rad3ATR and Rad9, or of Rad3ATR and Rad4TopBP1 resulted in

checkpoint activation (Figure 5B), we observed that co-expression

of Rad3ATR with Rad4TopBP1-Y599R mutant protein did not

result in Chk1 phosphorylation. This data suggests that the AAD-

defective mutant protein can act as a dominant negative, at least in

this specific situation, preventing the endogenous wild-type

Rad4TopBP1 from functioning with the tethered Rad3ATR to

activate the checkpoint. It also supports the idea that the

Rad4TopBP1 AAD domain is required for the activation of

Rad3ATR and not simply recruiting it.

H2A phosphorylation is required for Rad4TopBP1 AAD–
dependent checkpoint activation

While Rad3ATR kinase activity is essential for Chk1 phosphor-

ylation in response to DNA damage [40], it also depends on the 9-

1-1 clamp, the Rad17 clamp loader and the Crb253BP1 mediator.

To characterise the dependencies for lacO-dependent checkpoint

activation we examined which checkpoint genes were required for

Chk1 phosphorylation during Rad3ATR tethering (Figure 5C).

Rad3ATR-GFP/LN was expressed in lacO-positive strains deleted

for rad1, rad9 (encoding 9-1-1 components), rad17 (clamp loader)

and crb2. Each was required for Chk1 phosphorylation. Thus,

Rad3ATR tethering is not sufficient for checkpoint activation: the

clamp loader, the 9-1-1 clamp complex and the Crb2 mediator are

all required and this artificial checkpoint activation system does

not bypass the usual requirements. However, Brc1, the proposed

MDC1/PTIP ortholog is not required for Chk1 phosphorylation

in this system (Figure S1F)

In both S. pombe and S. cerevisiae recruitment of the 53BP1 ortholog

(Crb2 and Rad9 respectively) to chromatin in response to IR

requires prior phosphorylation of histone H2A [32,41,42]. In

addition to H2A phosphorylation, recruitment also requires the

largely constitutive methylation of a further histone residue, H3K79

in S. cerevisiae or H4K20 in S. pombe. These modifications are effected

by distinct methylransferases in the two yeasts: Dot1 methylates

H3K79 in S. cerevisiae [43] while Set9 methylates H3K20 in S. pombe

[44,45]. In S. pombe it has been demonstrated that the C-terminal

BRCT domains of Crb253BP1 binds directly to cH2A [42] while the

Tudor domain binds directly to di-methylated H3K20 [46]. Both

interactions are required for Crb253BP1 chromatin association and

show an epistatic relationship [45].

Using our Chk1 phosphorylation assay in response to Rad3ATR

tethering, we tested two strains harbouring charge reversal

mutations of residues within the phospho-acceptor site of the C-

terminal Crb253BP1 BRCT domains, crb2-K617E and crb2-K619E

(Figure 5C) that disrupt the interaction with cH2A [42]. Chk1

phosphorylation was reduced in both mutants. We next estab-

lished if checkpoint activation by Rad3ATR tethering was affected

in cells containing mutants in the two H2A genes that replace the

phosphorylated residue with alanine, hta1-S129A hta2-S128A [32].

Chk1 phosphorylation was not observed in this background

(Figure 5D), indicating that the Rad3ATR tethering-dependent and

Rad4TopBP1 AAD-dependent checkpoint activation acts in the

context of chromatin modification.

Rad4TopBP1 tethering bypasses the requirement for Rad9
C-terminal phosphorylation

Upon activation of the DNA damage checkpoint in S. pombe,

Rad3ATR phosphorylates the Rad9 C-terminus on T412 and this

is required to recruit Rad4TopBP1 [20]. Recruitment of Rad4TopBP1

allows subsequent recruitment of Crb253BP1 and consequent Chk1

activation [29]. A similar requirement for TopBP1 recruitment via

Rad9 C-terminal phosphorylation is also evident in S. cerevisiae and

Figure 4. Checkpoint protein recruitment to chromatin causes
checkpoint activation. A. Schematic of constructs used. B. Indicated
constructs were expressed in either a strain containing 256 integrated
lacO repeats at the ura4+ locus (lacO positive) or in an isogenic control
(lacO negative) and GFP visualised in fixed cells. Arrow indicates a
visible foci (t = 24 hours). C. The phosphorylation status of Chk1 was
detected with a-HA over 24 hours following induction of the indicated
fusion construct in lacO negative or lacO positive cells by withdrawal of
thiamine. * indicates phospho Chk1. Note that nmt1 induction occurs
approximately 14–18 hours after thiamine withdrawal.
doi:10.1371/journal.pgen.1002801.g004
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mammalian cells [19,47,48]. As expected, expression of Rad3ATR-

LacI in cells harbouring a rad9-T412A mutation did not result in

Chk1 phosphorylation (Figure 5E) implying that lacO-recruited

Rad3ATR must phosphorylate endogenous Rad9 to promote

Rad4TopBP1 recruitment to activate the checkpoint.

We reasoned that the requirement for Rad9-T412 phosphor-

ylation during activation by Rad3ATR tethering may solely be to

bring the Rad4TopBP1 AAD into proximity of Rad3ATR. In this

case, we should be able to bypass the requirement for Rad9-T412

phosphorylation specifically for checkpoint activation by Rad3ATR

tethering by recruiting both Rad3ATR and Rad4TopBP1 at the same

time. Indeed, Chk1 phosphorylation was restored when we co-

expressed Rad3ATR-LacI and Rad4TopBP1-LacI in a rad9-T412A

mutant background (Figure 5E). Since checkpoint activation by

co-expression of Rad3ATR-LacI and Rad4TopBP1-LacI remains

lacO dependent (Figure S1G), these data suggest that Rad4TopBP1

AAD can activate the Rad3ATR-dependent checkpoint cascade in

the absence of the recruitment activity of the Rad9 C-terminal tail.

The Rad4TopBP1 AAD is important when resection is
limiting

We have shown that the Rad4TopBP1 AAD functions to protect

cells from insult during S phase, but is not required for G2 checkpoint

activation after IR. Further, we demonstrated that when rad4-Y599R

(AAD-defective) mutant cells were synchronised in S phase,

phosphorylation of both Chk1 and H2A in response to IR treatment

was reduced when compared to rad4+ cells. The increase in Cdc2-

Cdc13ClyclinB (CDK) activity as cells progress from S phase into G2

[49] is known to establish conditions conducive to HR by regulating

factors required for DNA resection [36,50,51]. A consequence of this

is that, in response to IR treatment but not in response to UV

treatment, ssDNA RPA is predicted to be more prevalent in G2 cells

when compared to G1/S phase cells. We thus predicted that

reducing resection rates associated with IR treatment in G2 cells

would create a dependency for full Chk1 phosphorylation on the

Rad4TopBP1 AAD and thus that Chk1 phosphorylation would be

reduced in rad4-Y599R strains compared to rad4+ strains in response

to an equal dose of IR.

To test this prediction we examined the induction of Chk1

phosphorylation in response to 100 Gy IR in exo1D rad4+ and

exo1D rad4-Y599R cells (Figure 6). First we established that, when

exo1 was deleted, Rad11RPA foci were reduced in number,

consistent with the expectationt hat resection is decreased in this

background (Figure 6A). In contrast to rad4+ cells, where exo1

deletion did not reduce Chk1 phosphorylation levels, Chk1

phosphorylation was reduced to approximately 50% when exo1

was deleted in AAD-defective cells. Previous work in both budding

and fission yeasts has indicated that, in the absence of resection,

Chk1 phosphorylation can occur through an alternative double

strand break end-dependent Tel1ATM pathway, as opposed to the

canonical resection and ssDNA/RPA-dependent Rad3ATR path-

way [52]. Such a response could potentially mask some aspect of

defects seen in the exo1D background. Thus, we first confirmed

that loss of tel1 alone does not influence Chk1 phosphorylation in

our assay (Figure S1H) and then concomitantly deleted Tel1ATM in

both rad4+ and rad4-Y599R strains (Figure 6B, 6C). In the tel1D
exo1D background, Chk1 phosphorylation was decreased by

approximately 50% for both rad4+ and rad4-Y599R when compared

to the exo1D alone background. These data are consistent with a

general increase in Tel1-dependent checkpoint signalling when

Figure 5. Genetic requirements for lacO-dependent Chk1 phosphorylation. * indicates phospho Chk1. A. The phosphorylation status of
Chk1 was detected with a-HA over 24 hours following induction of Rad3-GFP/LN in lacO positive cells in the genetic background indicated. Increased
time is indicated by the wedge. B. Equivalent experiments assessing Chk1 phosphorylation in rad+ lacO positive cells upon induction of the indicated
constructs. C. Chk1 phosphorylation was assessed upon expression of Rad3-GFP/LN in the indicated genetic backgrounds at t = 22 hours. D. The
phosphorylation status of Chk1 was assessed following induction of Rad3-GFP/LN in lacO positive cells in rad+ and the indicated double mutant
where H2A cannot be phosphorylated. E. The indicated constructs were expressed in rad+ or rad9-T412 cells and Chk1 phosphorylation monitored.
Rad9 T412 phosphorylation is required for the interaction of 9-1-1 complex with Rad4TopBP1.
doi:10.1371/journal.pgen.1002801.g005
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resection is reduced by exo1 deletion. In the background of the rad4-

Y599R mutation, this is superimposed on a decrease in Rad3ATR-

dependent signalling caused by the reduced resection.

The Rad4TopBP1 and Rad9 AADs co-operate in G1/S
A second ATR activation domain has recently been identified in

the S. cerevisiae Ddc1Rad9 C-terminal tail [26]. Mutations in this

domain define a function in Mec1ATR activation during G1,

complementary to the function of the Dpb11TopBP1 AAD in

promoting robust checkpoint activation in G2 in this organism

[24]. Sequence alignments show that the two key Ddc1Rad9 AAD

aromatic residues are conserved in S. pombe as Y271 (equating to

W352Sc within the PCNA-like domain) and W348 (equating to

W544Sc in the intrinsically disordered C-terminal tail) ([26] and

Figure 7A, 7B).We thus created an rad9-AAD mutant by mutating

both aromatic residues to alanine.

Figure 6. Chk1 phosphorylation is reduced in rad4-Y599R mutant cells when exo1 is deleted. A. exo1+ (WT) and exo1 deleted cells
harbouring a rad11RPA-GFP allele were assayed for the number of Rad11RPA foci either with no treatment or after 100 Gy ionising radiation. B. Chk1
phosphorylation (*) was monitored using a-HA following 100 Gy IR in the indicated strains (immediately after irradiation). C. The phosphorylated
(reduced mobility) bands were quantified relative to unphosphorylated Chk1 for each strain indicated. Error bars are the standard deviation from the
mean (n = 3).
doi:10.1371/journal.pgen.1002801.g006
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Analysis of the resulting rad9-AAD strain demonstrates no clear

sensitivity to DNA damaging agents that create problems during S

phase, including CPT, MMS and UV (Figure 7C) or in G2 to IR.

However, some increased sensitivity is evident to CPT and MMS

when the Rad4TopBP1 AAD mutant is present in the same strain.

We next assayed the ability of rad9-AAD mutants to activate Chk1

in response to either IR or UV treatment. Consistent with the lack

of sensitivity, the level of Chk1 phosphorylation after IR was not

reduced (Figure 7D), either in rad9-AAD mutant alone or in the

rad9-AAD rad4-Y599R double mutant when compared to the rad4-

Y599R single. In response to UV treatment, there was again no

decrease observed for the single rad9-AAD mutant, but a further

and reproducible decrease was seen for the rad9-AAD rad4-Y559R

double mutant when compared to rad4-Y599R alone (Figure 7E).

Thus, the putative Rad9-AAD domain in S. pombe plays, at most,

only a minor role in activating Rad3ATR in response to DNA

damage and this is only revealed in the absence of the Rad4TopBP1

AAD.

Discussion

Understanding the mechanism of ATR activation is an

important facet of gaining insight into how cells respond to

unwanted DNA structures, itself a key aspect in maintaining

genomic integrity. TopBP1 was initially implicated in the ATR-

dependent checkpoint in fission yeast and later this was extended

to higher eukaryotes [53]. TopBP1 is a multi-BRCT-domain

containing protein that acts to scaffold proteins during both the

Figure 7. Analysis of the Rad9-AAD. A. Schematic representation of Rad9 homologs. The PCNA-like domain is boxed. The position of the
conserved AAD aromatic residues are indicated in green. B. Corresponding amino acid sequence alignment. Conserved residues are in bold. The two
aromatic residues are starred. C. Spot test analysis of sensitivity of the indicated strains to genotoxic treatments indicated. rad9+ indicates the RMCE
control strain [56]. D. Western blot analysis of Chk1-HA, detected with a-HA, in response the indicated dose of IR in rad9+, rad9-AAD, rad4-Y599R and
rad9-AAD rad4-Y599R double mutants. * indicates phospho Chk1. Quantification of the blot is given on the right. E. An equivalent experiment for the
indicated doses of UV. Experiments for D and E have been reproduced three times and the normalised quantifications are shown graphically on the
right. Error bars: standard deviation of the mean.
doi:10.1371/journal.pgen.1002801.g007
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initiation of DNA replication and in response to DNA damage, a

function dependent of the phospho-binding ability of the BRCT-

domain pairs within TopBP1 [25]. In addition to scaffolding

phospho-proteins, TopBP1 was shown to be able to directly

activate ATR in Xenopus and human cells through a small

domain of TopBP1 which is not part of any BRCT pair [17]. The

ATR activating domain is sufficient, both in vitro and in vivo, to

activate ATR - although it is not always necessary for ATR

activation and the pathway in which this TopBP1 AAD domain

functions is yet to be fully understood. It has recently been shown

in S. cerevisiae that the AAD of the TopBP1 homolog (Dpb11) is

also able to activate the ATR homolg (Mec1). However, the

Dpb11 AAD plays a relatively minor role in checkpoint activation

which is specific to G2 phase [24]. In S. cerevisiae, a second ATR

activation domain within the C-terminal tail of the 9-1-1 subunit,

Ddc1Rad9 acts to help activate ATR in G1 and G2 and it is only

when the function of this AAD is ablated a role for the Dpb11

AAD becomes apparent [26]. However, loss of both domains does

not prevent checkpoint activation entirely, suggesting other AADs

or modes of activation. Conversely, in the Xenopus system, ATR

activation via the TopBP1 AAD is evident in S phase.

Here we show that, in S. pombe, the activation of the ATR

homolog (Rad3) by a Rad4TopBP1 AAD is conserved. We

demonstrate that the Rad4TopBP1 AAD makes a contribution to

checkpoint activation and that this is specific to G1/S phase and is

not evident in G2. Note that log phase S. pombe spend little, if any,

time in G1 and thus, while we can arrest cells before the onset of

replication with cell cycle mutants, we cannot make a clear

physiological distinction between G1 and S phase. We go on to

demonstrate that, when DNA resection was limited in G2 by

ablation of the Exo1 nuclease, checkpoint activation in response to

DNA damage during G2 becomes partially dependent on the

Rad4TopBP1 AAD, mimicking what we observed in G1/S cells. This

leads us to propose that there is a threshold of ssDNA required for

activation of the DNA damage checkpoint and that the Rad4TopBP1

AAD serves to amplify checkpoint signals when ssDNA is limiting.

We next used a genetic system to separate Rad3ATR activation

from the production of DNA damage and therefore ssDNA, thus

allowing us to assess the pathway of Rad3ATR activation

dependent on the Rad4TopBP1 AAD. In this system, specific

checkpoint proteins are recruited to a defined chromatin locus

through dsDNA:protein binding [37,39]. Interestingly, recruit-

ment of any one of the three checkpoint proteins (Rad3ATR,

Rad4TopBP1 and Rad9) tested was sufficient to generate a

checkpoint response and these responses followed the expected

dependencies. This suggests that the recruitment of multiple copies

of a single checkpoint protein results in the formation of active

checkpoint complexes that utilise the endogenous proteins. Using

this system, we observed that the ability of the Rad4TopBP1 AAD to

activate Rad3ATR is fully dependent on phosphorylation of H2A

(cH2A) and requires the ability of Crb2 to bind cH2A. This leads

us to conclude that, in the absence of ssDNA, the ATR activation

domain of Rad4TopBP1 is particularly important for Rad3ATR

activation and acts in a chromatin:protein interaction dependent

manner. Taking these data together with the requirement of the

Rad4TopBP1 AAD to amplify checkpoint signals in either G1/S or

G2 when resection was limited, we propose that Rad4TopBP1 acts

to amplify the checkpoint in a chromatin-dependent manner when

single-stranded DNA levels are limiting. We can therefore

hypothesise that there is a threshold level for the amount of active

Rad3ATR required for a full checkpoint response. When ss-DNA is

limited, such as in S-phase, the chromatin-dependent Rad4TopBP1

AAD-dependent pathway for Rad3ATR activation becomes

important to amplify the levels of activated Rad3ATR to obtain a

full checkpoint response (Figure 8).

In addition to analysing the Rad4TopBP1 AAD, we also created a

mutant predicted to disable the Rad9 equivalent of the S. cerevisiae

Ddc1Rad9 AAD and analysed the effect of this mutant in

checkpoint activation. Unlike in S. cerevisiae, we observed no

significant effect on DNA damage-induced checkpoint activation

either in G1/S phase or G2. Although when combined with a

Rad4TopBP1 AAD mutant, an additive effect to S-phase but not G2

Figure 8. Updated model for the checkpoint response in S. pombe. Rad3ATR is initially activated via an ssDNA pathway which is independent
of the Rad4TopBP1 AAD (right side). However, a secondary pathway of Rad3ATR activation, which is dependent on cH2A, its interaction with Crb253BP1

and requires the Rad4TopBP1 AAD domain is important to amplify levels of activated Rad3ATR and thus Chk1(left side). This chromatin Rad4-AAD
pathway is of particular importance when the levels of ssDNA are low.
doi:10.1371/journal.pgen.1002801.g008
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DNA damage can be seen. This suggests that the Rad9 AAD acts

in a separate but redundant pathway for Rad3ATR activation in

G1/S with the Rad4TopBP1 AAD. It appears that, during

evolution, the mechanism of activating the ATR pathway has

diverged significantly with the roles of different ATR activating

domains being of more or less importance in different organisms.

It will be interesting to establish if the ATR activating domain of

TopBP1 in metazoan systems is particularly important in the context

of low levels of ssDNA and whether its function is dependent on

cH2AX, especially as a 53BP1(Crb2) and TopBP1 pathway for

checkpoint activation in G1 has been previously reported in the

mammalian system [54]. The differences in the dependencies of the

specific ATR activators in different cell cycle phases between S. pombe

and S. cerevisiae is not surprising as the checkpoint mechanism between

these organisms has diverged. For example, in S. cerevisiae, the S phase

checkpoint is activated independently of the 9-1-1 complex, whereas

in S. pombe and mammalian cells ATR activation appears to be largely

- if not entirely - dependent on 9-1-1 loading. Such distinctions are

likely a result of evolutionary adaptation to the different cell cycle

profiles of the two yeasts and it is interesting to note that significant

evolutionary plasticity surrounds the interface between TopBP1 and

the checkpoint apparatus. These distinctions will have to be

considered when extrapolating mechanistic data from yeast to

human systems. None the less, we believe that our findings shed light

on the role of TopBP1 AAD in DNA damage responses and offer

useful insights into metazoan mechanisms of DNA damage signalling.

Materials and Methods

S. pombe strain construction and biological methods
Standard S. pombe protocols were carried out as previously

described [55]. rad4 and rad9 mutant strains were created using

PCR site directed mutagenesis and integrated at their endogenous

locus using Cre recombinase-mediated cassette exchange [56] In

brief, this system uses a ‘‘base strain’’ which is engineered so that

the gene of interest is either replaced with the ura4 marker (i.e.

rad9), or in the case of essential genes (i.e. rad4) has the marker

integrated immediately after the stop codon. In both cases the

gene/marker and loci’s promoter region are flanked by loxP and

loxM sites. These two variant lox sites are incompatible with each

other. The marker (and, for essential genes, the actual gene also) is

then replaced by transforming in either the wild type (as a control:

rad+) or the various mutated copies on a plasmid. These are

flanked by the equivalent loxP and loxM sites and the plasmid

expresses Cre recombinase, which results in loxP:loxP and

loxM:loxM recombination. For cdc10-M17 synchronisation cells

were grown to log phase at the permissive temperature (25uC) and

shifted to the restrictive temperature of 36uC for 3.5 hours. Cells

were then either irradiated with the indicated dose of gamma

irradiation at 36uC and released at 25uC, or directly released at

25uC and irradiated at the given time points after release. cdc25-22

block and release [57] and lactose gradient synchronisation [12]

were performed as described previously. For FACS analysis cells

were resuspended in 50 mM tri-sodium citrate, 1 mg/ml final

concentration RNAseA [Sigma], stained with 5 mg/ml Propidium

iodide [Sigma] and analysed on FacsCalibur [Becton Dickinson].

Imaging
For live cell imaging concentrated culture was mounted onto a 2.5%

agar patch in standard YE medim [Microworks] and imaged on a

Deltavsion Microscope. Septation index was counted as previously

described [12]. lacO::NAT chk1-HA strains were created by inserting the

10 Kb lacO repeats into the PUC19 plasmid containing the NAT

marker and homology to ura4. This was integrated into the genomic

ura4 locus. The appropriate strains were transformed [58] with

pRep41-GFP-LacI-NLS (GFP/LN) into which either rad3 or rad9 had

been cloned in frame for N-terminal tagging or rad4 cloned in frame for

C-terminal tagging. Transformants were grown and expression of the

fusion protein induced by the removal of thiamine. All lacO repeats

were checked by Southern hybridisation.

Biochemical assays
Protein extracts for western were prepared by TCA (trichloro-

acetic acid) extraction from 16108 cells and resuspended in SDS

sample buffer [59]. Crude extracts for affinity analysis were

prepared by mechanical disruption in liquid nitrogen. Antibodies

used: a-HA [Santa cruz] 1:2500, a-Myc [Santa cruz] 1:2000, a-

GFP [Roche] 1:2500, a-H2ApS129 [Abcam] 1:2500 or 1:1000, a-

Tubulin [Sigma] 1:5000, a-Cdc2 Sc-53 [Santa cruz] 1:2500. a-

Cdc13 [Jacky Hayles] 1:500. a-Cds1 1:5000 [35]. The secondary

antibodies used were Hrp rabbit a mouse [Dako] 1:2500 or Hrp

swine a Rabbit [Dako]1:2500. Chk1-HA phosphorylation was

quantified as a percentage of total signal minus back ground on a

ImageQuant LAS 4000 [GE Healthcare]. Cds1 kinase assay was

carried out as described [35].

Supporting Information

Figure S1 A. Sensitivity of the indicated strains to HU. 10-fold

serial dilutions of 16107 cells/ml were spotted onto YEA. rad4+

indicates the RMCE control strain [56]. B. Rad22-GFP foci were

visualised by fluorescence microscopy before and after 40 Gy

ionising radiation: average of 2 experiments. C-E. pREP41-GFP/

LN fused to wild-type rad3, rad3 kinase dead (rad3KD) rad9 or rad4

were used to transform wild type (WT) or appropriate mutant

strains. Empty vector served as a control. Expression of the fusion

proteins was induced (thiamine withdrawal for 16 hours) and 10-

fold serial dilutions of 16107 cell/ml spotted onto selective media

plates without thiamine either with or without HU or UV

irradiation at the indicated doses. F. Rad3-GFP/LN (+R3) or an

empty vector control (+EV) was induced for 22 hours in either

rad4+, rad4-Y599R or brc1D cells harbouring the lacO array. Rad3-

GFP/LN expression was monitored 0 and 22 hrs after induction.

Chk1-HA phosphorylation was used as an indicator of Rad3-

dependent checkpoint activation. G. Rad3ATR and Rad4TopBP1,

when co-expressed as LacI fusions and co-recruited to a lacO array

can bypass the requirement for Rad9. Top panel: rad9 is required

when Rad3 is recruited alone. Bottom two panels: two

independent experiments showing co-recruitment bypasses rad9

and remains lacO-dependent. H. Deletion of tel1 alone does not

affect Chk1 phosphorylation. Quantification, relative to unpho-

sphorylated Chk1, of phosphorylated Chk1 following 100 Gy IR

in the indicated strains immediately after irradiation (a-HA). Error

bars are the standard deviation from the mean (n = 3).

(TIF)
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