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Substantial evidence implicates abnormal protein kinase function in various aspects of
Parkinson’s disease (PD) etiology. Elevated phosphorylation of the PD-defining pathological
protein, α-synuclein, correlates with its aggregation and toxic accumulation in neurons,
whilst genetic missense mutations in the kinases PTEN-induced putative kinase 1 and
leucine-rich repeat kinase 2, increase susceptibility to PD. Experimental evidence also links
kinases of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling
pathways, amongst others, to PD. Understanding how the levels or activities of these
enzymes or their substrates change in brain tissue in relation to pathological states can
provide insight into disease pathogenesis. Moreover, understanding when and where
kinase dysfunction occurs is important as modulation of some of these signaling pathways
can potentially lead to PD therapeutics. This review will summarize what is currently
known in regard to the expression of these PD-implicated kinases in pathological human
postmortem brain tissue.
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INTRODUCTION
Studies of the postmortem human brain have been invaluable
in gaining insights into the etiology of Parkinson’s disease (PD),
an increasingly common movement disorder resulting from the
early selective loss of dopamine producing neurons in the substan-
tia nigra. Dr. Fritz Lewy discovered the eponymous intracellular
inclusion bodies synonymous with PD (Rodrigues et al., 2010).
Drs. Tretiakoff, Hassler, and others were able to demonstrate
degeneration of the substantia nigra in PD (Hassler, 1938). Post-
mortem brain studies were integral to the experiments of Carlsson
and colleagues and their discoveries on the therapeutic potential of
exogenous dopamine treatment for PD patients (Carlsson, 1959)
and more recently, the work of Braak and others has suggested that
PD spreads through the brain in a predictable or staged fashion
(Braak et al., 2003; Halliday et al., 2008).

The Braak staging hypothesis is modeled on the toxic spread
and accumulation of α-synuclein, a 17–18 kDa presynaptic protein
encoded by the SNCA gene. Point mutations in, or multiplications
of, the SNCA gene cause familial PD in an autosomal-dominant
fashion (Polymeropoulos et al., 1997), whilst genome-wide asso-
ciation studies conclude that common variations in the SNCA
gene increase the risk of sporadic PD (Pihlstrom and Toft, 2011).
Moreover, α-synuclein is the predominant component of Lewy
bodies, where it accumulates in an aggregated form (Spillantini
et al., 1997). Hence, α-synuclein is proposed as a key protein
in the pathogenesis of PD. Accumulating evidence suggests that
α-synuclein acts in a prion-like manner, inducing the aggregation
of healthy α-synuclein and propagating the spread of PD from
neuron to neuron (Olanow and Brundin, 2013). The aggregated
and proposed toxic form of α-synuclein is hyperphosphorylated
(Oueslati et al., 2010). In disease free conditions only 4% of total

α-synuclein is phosphorylated in brain, but in PD and related
synucleinopathies, >90% of α-synuclein deposited in Lewy bodies
is phosphorylated (Fujiwara et al., 2002; Anderson et al., 2006).
In particular, phosphorylation of pathological α-synuclein on
serine 129 (S129) is prevalent in PD postmortem brain (Fuji-
wara et al., 2002; Anderson et al., 2006; Zhou et al., 2011; Lue
et al., 2012; Walker et al., 2013). Although the biological con-
sequences of α-synuclein phosphorylation remain inconclusive,
there is much interest in the identification of the kinases mediat-
ing this event. A number of candidate kinases, including members
of the polo-like kinase (PLK), casein kinase (CK), and G protein
coupled receptor kinase (GRK) families have subsequently been
identified.

In addition to the hyperphosphorylation of α-synuclein, kinase
dysfunction is also genetically linked to PD. In particular, mis-
sense mutations in the leucine-rich repeat kinase 2 (LRRK2) are
causal for autosomal-dominant familial PD (Paisan-Ruiz et al.,
2004; Zimprich et al., 2004), whilst multiple mutations in the
PTEN-induced putative kinase 1 (PINK1) protein are causative
for familial PD in a recessive fashion (Valente et al., 2004).
Moreover, common polymorphisms identified by genome-wide
association in loci encoding cyclin G-associated kinase (GAK) and
serine/threonine kinase 39 [STK39, more commonly known as
STE20-related proline alanine-rich kinase (SPAK)], have impli-
cated these kinases as susceptibility enzymes for sporadic PD
(Pankratz et al., 2009; Nalls et al., 2011; Sharma et al., 2012).

Finally a myriad of laboratory studies have focused on kinase
signaling in PD. Kinases remain attractive targets for the treat-
ment of many human diseases. Kinases of the MAPK and PI3K
signaling pathways including extracellular signal related protein
kinase (ERK), c-Jun N-terminal kinase (JNK), p38, protein kinase
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B (PKB), and mammalian target of rapamycin (mTOR) make
particularly attractive targets for PD through their ability to
coordinate and regulate cell survival, apoptosis, inflammation,
and autophagy.

KINASES MEDIATING α-SYNUCLEIN S129
PHOSPHORYLATION IN PD
The exact mechanism resulting in the pathological accumula-
tion of S129 phosphorylated α-synuclein is unclear. A number
of kinases phosphorylate α-synuclein at this residue in vitro with
accumulating evidence for a role in vivo (Figure 1). Understanding
how this major pathological protein becomes hyperphosphory-
lated and the extent to which post-translational modifications
impact upon the aggregation and prion-like spread of α-synuclein
could provide key insight into PD etiology.

POLO-LIKE KINASES (PLKs)
Polo-like kinases (PLKs) comprise a serine/threonine kinase fam-
ily containing an N-terminal kinase catalytic domain and a
C-terminal polo-box domain (PBD) that is involved in substrate
binding and regulation of kinase activity. Five mammalian PLK
family members from three subfamilies have been identified,
including the PLK1 subfamily, the PLK4 subfamily, and the PLK2
subfamily (containing PLK2, PLK3, and PLK5; de Carcer et al.,
2011b). The study of PLKs has focused primarily on their crit-
ical roles in the cell cycle (Winkles and Alberts, 2005); however,
recent studies suggest PLKs also have important roles in terminally
differentiated cells of the nervous system (Seeburg et al., 2005).

In particular, PLKs 1–3 are capable of phosphorylating
α-synuclein (de Carcer et al., 2011a,b). Comparative studies sug-
gest that PLK2 and PLK3 directly phosphorylate α-synuclein at
Ser129 in vitro with high stoichiometry, whilst PLK4 is unable to
phosphorylate α-synuclein at this residue (Anderson et al., 2006;
Inglis et al., 2009). The low kinase activity of PLK4 against α-
synuclein, and other substrates, is partially explained by its unique
structure, with only a single polo-box in the PBD, resulting
in a much-reduced electropositive environment in its substrate-
binding site (Mbefo et al., 2010). Human PLK5 lacks a functional
kinase domain due to a premature stop codon in exon 6 and is
therefore unable to phosphorylate α-synuclein.

Increasing PLK2 or PLK3 significantly up-regulates α-synuclein
Ser129 phosphorylation (Mbefo et al., 2010; Waxman and Giasson,
2011), whilst their inhibition or reduction remarkably decreases
α-synuclein phosphorylation in both cell and animal models
(Inglis et al., 2009; Waxman and Giasson, 2011). This has led
to efforts to generate small molecule PLK inhibitors for poten-
tial therapeutic use (Bowers et al., 2013; Fitzgerald et al., 2013;
Bergeron et al., 2014). The utility of such compounds, however,
has been questioned by a recent study showing that Ser129 phos-
phorylation by PLK2 is required for autophagic degradation of
α-synuclein (Oueslati et al., 2013). In this study overexpression of
PLK2, as opposed to inhibition, prevented the toxic accumulation
of α-synuclein in rodent models, suggesting more work is required
to delineate the exact role of PLKs in α-synuclein pathology.

In addition, studies investigating the association of PLKs with
α-synuclein pathology / phosphorylation in human brain are lack-
ing. The central nervous system has relatively high levels of PLK2,
3, and 5, low levels of PLK1 and seems to lack PLK4 (Winkles
and Alberts, 2005; de Carcer et al., 2011a,b). PLK2 and PLK3 are
expressed in most regions of the brain, but surprisingly there
is almost no expression of either PLK2 or PLK3 in the cerebel-
lum (Winkles and Alberts, 2005; de Carcer et al., 2011b). Whether
PLK2 or PLK3, the main family members that can phosphory-
late α-synuclein are increased, or indeed more active, in PD brain
remains to be determined. The recent identification of autophos-
phorylation sites on PLK2 (Rozeboom and Pak, 2012) and other
potential selective substrates (Salvi et al., 2012) could allow read-
outs of PLK2 activity to be examined in PD brain. It would be
of interest to determine if the phosphorylation of such substrates
correlated to levels of α-synuclein phosphorylation in pathology
rich brain regions in PD cases.

CASEIN KINASES (CKs)
Casein kinases (CKs) comprise a ubiquitously expressed ser-
ine/threonine kinase family (Peters et al., 1999) containing two
members, CK1 and CK2, which differ substantially in terms of
structure, localization and function (Perez et al., 2011). CK1 con-
sists of a small N-terminal lobe, a large C-terminal lobe and a
catalytic cleft where ATP and substrates bind (Cheong and Vir-
shup, 2011). To date, at least seven CK1 isoforms (α, β, γ1–3, δ,

FIGURE 1 | Kinases phosphorylating α-synuclein. The domain structure of α-synuclein showing phosphorylation at serine 129 by members of the polo-like
kinase (PLK), casein kinase (CK), and G protein coupled receptor kinase (GRK) families. Pathogenic α-synuclein missense mutations are indicated with arrows.
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and ε) and their various splice variants, ranging from 22 to 55 kDa,
have been localized within the membrane, nucleus, and cyto-
plasm of eukaryote cells, and additionally in the mitotic spindles
of mammalian cells (Fish et al., 1995). All CK1 isoforms are highly
homologous in their kinase domains (Knippschild et al., 2005),
presenting a strong preference for “primed,” pre-phosphorylated
substrate. However, they can also phosphorylate related unprimed
sites under certain conditions (Cheong and Virshup, 2011).

In contrast to CK1, CK2 is a tetrameric enzyme assembled from
two catalytic subunits (CK2α and CK2α′) and a regulatory subunit
(CK2β dimer). The two catalytic subunits α and α′ share 90%
sequence homology in their N-terminal region, but the regulatory
subunit β does not have any similarity to the other two subunits.
CK2 is found in many organisms and tissues and nearly every
subcellular compartment. It can phosphorylate more than 300
substrate proteins (Meggio and Pinna, 2003) involved in diverse
cellular processes including cell division, proliferation, apoptosis,
and DNA repair.

Both CK1 and CK2 can constitutively phosphorylate
α-synuclein at Ser129 in vitro (Okochi et al., 2000; Waxman and
Giasson, 2008), and inhibition of CK1 or CK2 reduces α-synuclein
Ser129 phosphorylation in vivo (Okochi et al., 2000; Ishii et al.,
2007; Waxman and Giasson, 2008), with CK2 inhibition seem-
ingly more efficient at reducing phosphorylation (Ishii et al.,2007).
However, at least one study failed to find an effect of CK1 inhi-
bition on α-synuclein Ser129 phosphorylation in a cellular model
(Waxman and Giasson, 2011). This discrepancy could result from,
at least partially, the specificity of CK1 inhibitors and more
studies are needed to define the relationship between CKs and
α-synuclein.

In pathological human brain CK1δ co-localizes predominantly
with tau-containing inclusions such as neurofibrillary tangles,
and does not co-localize with α-synuclein in Lewy bodies in PD
(Schwab et al., 2000). In contrast, CK2β regulatory subunits are
present in the halo region of Lewy bodies in PD substantia nigra
(Ryu et al., 2008), suggesting that CK2 may be more pathologically
relevant to PD. More work is required to determine any correla-
tions between CK isoforms and the pathological accumulation of
phosphorylated α-synuclein in PD.

G PROTEIN COUPLED RECEPTOR KINASES (GRKs)
G Protein coupled receptor kinases comprise a serine/threonine
kinase family that regulate G protein-coupled receptors (GPCRs)
by phosphorylating their intracellular domains after their asso-
ciated G proteins have been released and activated (Gurevich
et al., 2012). Structurally, GRKs contain a central catalytic domain
flanked by an N-terminus containing a regulator of G protein sig-
naling homology domain and a variable length C-terminal end.
Based on sequence homology and tissue expression, GRKs are
further classified into three subfamilies: the rhodopsin kinase or
visual GRK subfamily (GRK1 and GRK7), the β-adrenergic recep-
tor kinases subfamily (GRK2 and GRK3), and the GRK4 subfamily
(GRK4, GRK5, and GRK6; Gurevich et al., 2012; Kamal et al.,
2012).

Exactly which GRK isoforms phosphorylate α-synuclein under
pathological conditions is unclear. In vitro GRK2 preferen-
tially phosphorylates α and β synuclein isoforms while GRK5

prefers α-synuclein as a substrate (Pronin et al., 2000). However,
knockdown of either GRK5 or GRK2 failed to diminish the phos-
phorylation of α-synuclein in cell models (Sakamoto et al., 2009;
Liu et al., 2010). In contrast, knockdown of GRK3 or GRK6 sig-
nificantly decreased α-synuclein Ser129 phosphorylation levels
(Sakamoto et al., 2009), suggesting further work is required to
verify the role of GRK isoforms in phosphorylating α-synuclein.

G protein coupled receptor kinase isoforms, 2, 3, 5, and 6, are
highly expressed in the human brain. In PD brain, however, GRK
protein levels tend to be lower than controls (Bychkov et al., 2008)
with conflicting reports regarding the co-localization of GRK5 in
Lewy bodies (Arawaka et al., 2006; Takahashi et al., 2006).

OVERVIEW OF KINASES INVOLVED IN α-SYNUCLEIN S129
PHOSPHORYLATION IN PD
Understanding events that promote α-synuclein pathology is
increasingly important as evidence suggests a pathogenic prion-
like spread of α-synuclein in PD (Olanow and Brundin, 2013;
Recasens et al., 2014). There are now multiple human brain tis-
sue studies using the methods developed by Braak and colleagues
to observe the progression of pathology in PD brain showing
that substantial α-synuclein S129 phosphorylation precedes the
aggregation of α-synuclein in Lewy bodies (Zhou et al., 2011;
Lue et al., 2012; Walker et al., 2013). Stoichiometrically, PLK2
seemingly contributes most to such α-synuclein S129 phospho-
rylation; however, studies with PLK2 knockout mice show that
other kinases also contribute (Bergeron et al., 2014). Information
from other PD models, however, remains controversial on the role
α-synuclein S129 phosphorylation plays in disease pathogenesis,
with some studies suggesting that S129 phosphorylation promotes
α-synuclein oligomerization and/or toxicity (Chen and Feany,
2005; Febbraro et al., 2013) whilst others suggest that phospho-
rylation reduces toxicity or has no effect (McFarland et al., 2009;
Oueslati et al., 2010; Sato et al., 2013; Escobar et al., 2014). This
makes determining other relevant kinases difficult and informa-
tion on any differences between species and models (acute versus
chronic) will need further consideration. More data from infor-
mative staged human brain studies as well as from primate models
with acute and chronic phases is likely to assist with clarifying
the role of α-synuclein S129 phosphorylation over the course of
PD. It is also important to note that other post-translation mod-
ifications of α-synuclein, such as ubiquitylation or nitrosylation,
may equally contribute to the pathological process (Oueslati et al.,
2010), with similar staged human brain and primate model data
on the relative contributions of different protein modifications yet
to be published.

KINASES GENETICALLY IMPLICATED IN PD
Monogenetic causes of PD presently account for less than 10%
of all cases (Gasser, 2009). However, the identification of genetic
causes has invigorated PD research by providing new avenues of
mechanistic investigation and therapeutic treatment. Missense
mutations in LRRK2 and PINK1 cause PD in an autosomal-
dominant or recessive manner, respectively, whilst common
variations in the LRRK2 and loci encoding the GAK and STK39
genes have been implicated as risk factors for PD (Sharma et al.,
2012). Understanding how mutations in these kinases alters their

Frontiers in Molecular Neuroscience www.frontiersin.org June 2014 | Volume 7 | Article 57 | 3

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


Dzamko et al. Parkinson’s disease kinases in the brain

function and the biological processes they regulate has great
potential for uncovering initiating events leading to the onset of
PD.

LEUCINE-RICH REPEAT KINASE 2 (LRRK2)
Mutations in the LRRK2 gene were discovered as causal for PD
in 2004 (Paisan-Ruiz et al., 2004; Zimprich et al., 2004). Subse-
quently, some 40 missense mutations have been described across
the LRRK2 protein with six of these demonstrated as pathogenic
(Paisan-Ruiz, 2009). Collectively these LRRK2 mutations account
for the majority of autosomal-dominantly inherited PD (Kett and
Dauer, 2012). LRRK2-associated PD is largely clinically and patho-
logically indistinguishable from sporadic PD (Healy et al., 2008),
suggesting that understanding LRRK2 function has implications
for all forms of PD. Moreover, large-scale genome-wide associa-
tion studies show that common variations in non-coding regions
of the LRRK2 gene also confer greater risk for sporadic PD (Satake
et al., 2009; Simon-Sanchez et al., 2009; Sharma et al., 2012).

Leucine-rich repeat kinase 2 is a 286 kDa multi-domain con-
taining member of the receptor interacting protein kinase (RIPK)
family. LRRK2 has N-terminal ankyrin repeats, leucine-rich
repeats, a ras of complex (ROC) GTPase domain with adjoining
C-terminal of ROC (COR) domain, a serine/threonine protein
kinase domain and C-terminal WD40 repeats. Intriguingly, the
majority of the pathogenic mutations lie in the catalytic domains
of LRRK2. The most common mutation results in the substitution
of glycine to serine (G2019S) in the activation loop of the pro-
tein kinase domain resulting in a constitutive threefold increase in
LRRK2 kinase activity (West et al., 2005; Jaleel et al., 2007). The
next most common mutations, substitution of arginine to either
histidine (R1141H), cysteine (R1441C), or glycine (R1441G) lie
in the GTPase domain. Some evidence suggests that these muta-
tions also increase kinase activity (Sheng et al., 2012), potentially
by trapping LRRK2 in a GTP bound active state (Liao et al., 2014).
It has previously been shown that GTP binding is required for
LRRK2 kinase activity (Taymans et al., 2011) and a complex rela-
tionship exists between the two domains (Taymans, 2012). The
increase in catalytic kinase activity with LRRK2 mutations has led
to the development of LRRK2 kinase inhibitors as potential PD
therapeutics (Deng et al., 2012) and much interest has focused on
determining the targets of LRRK2 kinase activity (Dzamko and
Halliday, 2013). One such robust effect for LRRK2 kinase activ-
ity is to mediate the phosphorylation-dependent interaction of
LRRK2 with isoforms of the 14-3-3 adaptor protein (Dzamko
et al., 2010); however, consensus regarding the PD-relevant
physiological functions of LRRK2 has remained largely elusive.

LRRK2 mRNA expression shows a widespread neuronal local-
ization in human brain; however, intriguingly, only weak levels
are detected in the substantia nigra (Higashi et al., 2007; Sharma
et al., 2011). Moreover, decreased LRRK2 mRNA was found in
certain non-nigral regions of PD brain (cerebellum, amygdala,
frontal cortex, and cingulate gyrus; Sharma et al., 2011), suggest-
ing a pathogenic role for LRRK2 outside of nigral neurons. This
contrasts with the increased levels of LRRK2 protein reported in
PD brain regions with pathological accumulation of α-synuclein
(Cho et al., 2013; Guerreiro et al., 2013). The exact nature of the
relationship between LRRK2 and α-synuclein is somewhat unclear

as postmortem localization studies have produced conflicting
results. Some studies have demonstrated localization of LRRK2 to
α-synuclein pathology (Miklossy et al., 2006; Alegre-Abarrategui
et al., 2008; Qing et al., 2009; Sharma et al., 2011) whilst others have
not (Giasson et al., 2006; Higashi et al., 2007; Melrose et al., 2007;
Waxman et al., 2009). Studies comparing different LRRK2 anti-
bodies have shown that discrepancies in LRRK2 tissue localization
likely occurs through use of antibodies unsuitable for immuno-
histochemistry (Biskup et al., 2007; Melrose et al., 2007; Davies
et al., 2013). Indeed, recent data using more rigorous methods
shows LRRK2 and α-synuclein co-localize in a small proportion
of PD pathologies (Guerreiro et al., 2013). Despite such data, fur-
ther work is required to define the relationship between LRRK2
expression and protein levels, between LRRK2 and α-synuclein
increases and aggregation, and indeed determine if these proteins
interact in the same molecular pathway.

As LRRK2 is also expressed by glial cells in normal human
brain (Miklossy et al., 2006) and in tissue culture, and its expres-
sion in glia is increased by interferon gamma (Gardet et al., 2010)
and bacterial lipopolysaccharide (LPS; Moehle et al., 2012), the
neuroinflammation prevalent in PD affected regions may pro-
mote the expression changes observed for LRRK2 specifically in
microglia rather than neurons. It will also be important to cor-
relate any changes in LRRK2 expression to cell type. The recent
demonstration that there is a primate specific LRRK2 promoter
that differentiates primate expression of the protein in the brain
from that observed in rodents (West et al., 2014) underlies the
requirement for further observations in staged human tissue spec-
imens in order to determine the role of LRRK2 kinase function in
PD pathogenesis.

PTEN-INDUCED PUTATIVE KINASE 1 (PINK1)
Homozygous missense mutations in the PINK1 gene were identi-
fied as a cause of familial PD in 2004 (Valente et al., 2004). Around
50 missense mutations have subsequently been identified across
the PINK1 protein in a number of populations (Kawajiri et al.,
2011). Mutations in PINK1 are the second most common cause of
recessive PD (following mutations in the ubiquitin ligase Parkin)
and are thought to contribute to 1–8% of familial PD (Kawajiri
et al., 2011). Unlike LRRK2, PINK1 mutations reduce kinase activ-
ity and cause an atypical form of PD characterized by an early
age of onset and slower clinical progression (Abou-Sleiman et al.,
2006; Woodroof et al., 2011).

The PINK1 protein comprises a serine/threonine protein kinase
domain, a N-terminal mitochondrial targeting motif and a trans-
membrane domain located between the two. The mitochondrial
targeting motif is required for recruitment of PINK1 to mitochon-
drial membranes. Following recruitment in healthy mitochondria,
PINK1 is enzymatically cleaved to produce a shorter fragment,
which is degraded by the proteasome (Narendra et al., 2010). In
this way, PINK1 is maintained at very low levels. Pharmaco-
logical uncoupling of the mitochondrial membrane leading to
a loss of membrane potential; however, results in inhibition of
PINK1 cleavage and its accumulation on depolarized mitochon-
drial membranes (Matsuda et al., 2010; Narendra et al., 2010). The
kinase activity of PINK1 is also increased under these conditions
with PINK1 undergoing autophosphorylation (Kondapalli et al.,
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2012). Intriguingly, Parkin is then also recruited to depolarized
mitochondria where it is phosphorylated and activated by PINK1
(Matsuda et al., 2010; Kondapalli et al., 2012). Parkin then medi-
ates the degradation of dysfunctional mitochondria by mitophagy
(mitochondrial autophagy). Therefore, the two proteins responsi-
ble for the majority of familial early onset PD appear to function in
the same pathway important for the regulation of mitochondrial
quality control. Whether this is the pathway ultimately responsible
for loss of neurons in PD is still unclear (Grenier et al., 2013) and it
should be noted that PINK1 has also been implicated in other bio-
logical processes such as neurite maintenance (Dagda et al., 2014)
and inflammation (Lee and Chung, 2012; Kim et al., 2013) among
others.

Detailed in-situ hybridization studies using rodent brain
demonstrate that PINK1 mRNA is expressed throughout the brain
with the strongest signal in neurons of the olfactory bulb, neocor-
tex, prefrontal cortex, piriform cortex, hippocampus, amygdala,
brainstem, and cerebellar Purkinje cells (Taymans et al., 2006).
Similarly, in human brain, PINK1 mRNA is widely expressed
in neurons with highest signals recorded for the temporal cor-
tex, amygdala, substantia nigra, cerebellar Purkinje cells and the
dentate nucleus (Blackinton et al., 2007). PINK1 mRNA is unde-
tectable in glial cells (Taymans et al., 2006; Blackinton et al., 2007)
and is not different in the substantia nigra of sporadic PD patients
compared to controls (Blackinton et al., 2007). The mRNA dis-
tribution of PINK1 has been largely confirmed at the protein
level with the exception that PINK1 immunoreactivity was also
observed in glia, albeit with weak staining compared to neuronal
staining (Gandhi et al., 2006). PINK1 is predominantly localized
to mitochondria and does not change in amount or localiza-
tion in the brain of patients with idiopathic PD, although PINK1
immunoreactivity is detected in ∼10% of brainstem Lewy bodies
(Gandhi et al., 2006). Interestingly, a case report describing the
neuropathology of an early onset PINK1 homozygous mutation
patient showed a pattern of Lewy body pathology with atypi-
cal Braak Lewy body staging (Samaranch et al., 2010). This was
due to the absence of Lewy bodies, and indeed cell loss in the
locus coeruleus, potentially helping to explain the longer disease
duration of PINK1-associated PD (Samaranch et al., 2010). Col-
lectively these studies suggest that alterations in PINK1 function,
rather than protein levels, likely contribute to PD. This is consistent
with observations that the majority of described PINK1 mutations
result in a loss of kinase activity (Woodroof et al., 2011). Whether
PINK1 autophosphorylation or PINK1-induced Parkin phospho-
rylation are altered in sporadic PD, and how this correlates to
mitochondrial health and/or neuronal loss, would be interesting
to explore.

CYCLIN G-ASSOCIATED KINASE (GAK)
The Ser/Thr protein kinase GAK was originally identified via
its interaction with cyclin G and cyclin-dependent kinase 5
(CDK5; Kanaoka et al., 1997). The kinase domain is located at
the N-terminus and a leucine-zipper region is located at the C-
terminus. The majority of the protein comprises a TAG domain
that has 80% identity to the auxilin protein (Kanaoka et al.,
1997). Both auxilin and GAK play key roles in the uncoating of
clatherin-coated vesicles and the regulation of clatherin-mediated

endocytosis (Eisenberg and Greene, 2007). The latter is completely
blocked in GAK deficient mouse embryonic fibroblasts (Lee et al.,
2008). GAK also plays a key role in brain development. Condi-
tional deletion of GAK in mouse brain resulted in marked cell loss
and morphological changes in new-born pups, potentially due to a
lack of proliferation of neural progenitor cells in the subventricu-
lar zone of the hippocampus. Conditional GAK knockout mice die
soon after birth whilst conventional GAK knockouts are embry-
onic lethal (Lee et al., 2008). Moreover transgenic mice expressing
kinase inactive GAK die within 30 min of birth due to respira-
tory dysfunction (Tabara et al., 2011). Respiratory problems are
also associated with use of gefitinib (Tabara et al., 2011), an anti-
cancer epidermal growth factor receptor (EGFR) inhibitor that
also inhibits GAK.

Single nucleotide polymorphisms in the GAK locus were first
associated with PD susceptibility following genome-wide associa-
tion analysis of a large number of familial PD patients (Pankratz
et al., 2009). The association has since been robustly replicated in
different populations (Rhodes et al., 2011; Sharma et al., 2012).
One GAK SNP, rs1564282 is associated with higher expression of
α-synuclein in PD brain, and when GAK mRNA was knocked
down with siRNA, there was accumulation of α-synuclein in cell
culture models (Dumitriu et al., 2011). This provides some bio-
chemical evidence for a role for GAK in PD, although the toxic
effects of GAK knockdown/inhibition suggest that GAK is unlikely
to be dramatically decreased in PD brain. Moreover, an alternative
microarray based study has shown that GAK mRNA expression is
increased in the substantia nigra of PD patients (Grunblatt et al.,
2004). Intriguingly, GAK has also been proposed to interact with
LRRK2 and potentially help co-ordinate the clearance of trans-
Golgi derived vesicles (Beilina et al., 2014); however, GAK protein
expression in PD brain and any association with PD pathology has
been poorly explored.

SERINE/THREONINE KINASE 39 (STK39)
Serine/threonine kinase is more commonly referred to in the lit-
erature as SPAK. The majority of work on SPAK has focused on
the enzymes role as a regulator of the Na+/Cl− and Na+/K+/2Cl−
ion co-transporters, NCC and NKCC, respectively. In response to
osmotic stress SPAK is activated by phosphorylation at T233 in its
activation loop by isoforms of WNK (with-no lysine) kinases and
in turn phosphorylates NCC/NKCC to promote transporter activ-
ity (Richardson and Alessi, 2008). These ion co-transporters are
major drug targets of current anti-hypertensive medications and
evidence suggests that inhibition of SPAK may also lower blood
pressure (Richardson and Alessi, 2008; Glover and O’shaughnessy,
2011). Indeed, variations in the STK39 gene have been implicated
in hypertension in the Amish population through genome-wide
association, with the resulting non-coding mutations increasing
the allelic expression of SPAK (Wang et al., 2009a). This associa-
tion, however, has failed to reach significance in other populations
(Cunnington et al., 2009; Persu and Vikkula, 2011).

Genome-wide association studies have also implicated vari-
ations in the STK39 locus with PD. First identified through
large-scale meta-analysis (Liu et al., 2011; Nalls et al., 2011), the
association of STK39 SNPs with PD has been subsequently repli-
cated in Asian and Caucasian populations (Lill et al., 2012; Sharma
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et al., 2012). The three reported STK39 SNPs associating with PD
differ from the reported SNP for hypertension. Whether these
polymorphisms affect SPAK expression is unknown.

Studies using rats show that SPAK is highly expressed in the
nervous system, especially brain where it is detected in neurons,
Purkinje cells and choroid epithelial cells (Ushiro et al., 1998). Glial
cells do not show immunoreactivity for SPAK (Ushiro et al., 1998).
In developing brain, SPAK plays a role in the regulation of Cl−
concentration and in-turn release of the neurotransmitter GABA
(Delpire and Austin, 2010). SPAK has also been suggested to act
as a stress-response kinase with its overexpression or activation
leading to increased phosphorylation of p38 MAPK (Yan et al.,
2007). Whether levels of SPAK protein, phosphorylation of SPAK
T233 or phosphorylation of the SPAK ion transporter substrates
are altered in PD brain has not been investigated.

OVERVIEW OF KINASES GENETICALLY IMPLICATED IN PD
There is much interest in LRRK2 as both a key to understand-
ing PD pathogenesis and a potential therapeutic target, as PINK1
mutations cause an atypical form of PD and the mechanism/s
of increased PD risk due to SPAK and GAK polymorphisms is
presently unclear. The mRNA expression of LRRK2 is decreased
in PD brain; however, LRRK2 protein is increased, at least in Lewy
body-rich regions at end-stage disease. Further work is required
to determine if LRRK2 protein is altered earlier in PD pathogen-
esis and in particular, as LRRK2 expression can be induced with
inflammatory agonists in microglia (Moehle et al., 2012), the cell
types expressing LRRK2 may be important. Localization studies of
LRRK2, and indeed PINK1 have proven difficult, as a number of
available antibodies are not optimal for this procedure. Moreover,
the kinase activity of LRRK2 has not been explored in PD brain.
This is potentially important as kinase inhibiting therapeutics are
being targeted toward LRRK2, even though it is unclear if the toxic
effects of LRRK2 mutations are kinase-dependent. At least one
risk variant reportedly decreases LRRK2 kinase activity (Rudenko
et al., 2012b) leading to suggestions that other functions of LRRK2
such as GTPase activity may be important (Rudenko et al., 2012a).
The identification of bona fide substrates for PINK1 and LRRK2
will be important for inferring any changes in enzymatic activity
in the PD brain.

KINASES EXPERIMENTALLY IMPLICATED IN PD
KINASES OF THE MITOGEN ACTIVATED PROTEIN KINASE (MAPK)
PATHWAY
The MAPK superfamily of serine/threonine protein kinases con-
sists of three major branches, the JNKs, the p38 kinases and the
ERKs (Figure 2; for review see Kyriakis and Avruch, 2012). The
three JNK isoforms (JNK1, JNK2, and JNK3) and four p38 iso-
forms (p38α, p38β, p38γ, and p38δ) are referred to as stress
activated protein kinases (SAPKs). In particular, JNK is acti-
vated by a number of environmental stresses implicated in PD
including, toxins, inflammatory agonists and misfolded protein-
induced ER stress. The activation of p38 is more restricted to
inflammatory agonists whilst the two ERK isoforms (ERK1 and
ERK2) are activated principally in response to mitogens, although
a high level of cross-talk exists between the different MAPK
branches. Upon activation, JNK, ERK, and p38 phosphorylate

a large number of substrates in a proline-directed manner. In
some instances substrates can be specific, such as JNK to phos-
phorylate the AP-1 transcription factor component c-Jun, or
ERK to phosphorylate the p90 ribosomal S6 kinase (RSK), or
shared, such as ERK and p38 to phosphorylate the mitogen and
stress activated kinase (MSK). Biologically, the MAPKs modu-
late a number of important functions including development,
immunity, apoptosis, cell growth and division, autophagy and
cell survival.

JNK and p38
c-Jun N-terminal kinase is robustly activated in common
toxin models of PD such as LPS, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA;
Choi et al., 1999; Saporito et al., 2000; Xing et al., 2007). Genetic
deletion of JNK2 and JNK3 protect against MPTP-induced neu-
rodegeneration in mice (Hunot et al., 2004) and kinase inhibitors
of JNK have neuroprotective effects in the MPTP (Saporito
et al., 1999; Wang et al., 2004, 2009b; Chambers et al., 2011)
and 6-OHDA (Chambers et al., 2013) models of PD. More-
over a host of anti-oxidant and anti-inflammatory compounds
offering varying degrees of neuroprotection in these models
are thought to have a mechanism of action, at least in part,
involving inhibition of JNK activation (Xing et al., 2007; Castro-
Caldas et al., 2012; Lee et al., 2013; Zhai et al., 2013). Genetic
deletion of the p38 substrate MK2, also protects against MPTP-
induced neurodegeneration in rodents, by reducing the neu-
roinflammation associated with MPTP lesions (Thomas et al.,
2008). Both JNK and p38 are also implicated in the death of
neuronal cells following treatment with another environmen-
tal toxin used to model PD, rotenone (Newhouse et al., 2004;
Gao et al., 2013), with inhibition of p38 potentially protec-
tive (Choi et al., 2014). Despite the evidence from cellular and
animal models, however, a clinical trial of the JNK inhibitor
CEP-1347 failed to show benefit in human PD patients (Inves-
tigators, 2007), possibly because of an absence of substantial
changes in these kinases in patients with chronic PD (Ferrer et al.,
2001).

Increased nuclear staining of the JNK substrate, c-Jun, has
been observed in the substantia nigra of PD patients (Hunot
et al., 2004). Translocation of c-Jun to the nucleus requires JNK
phosphorylation and is a surrogate marker of JNK activity. The
association between JNK and p38 and α-synuclein pathology has
also been explored in the substantia nigra and brainstem regions
of control and PD brain. In this study, granular phosphorylated
p38 immunoreactivity was observed in association with diffuse
α-synuclein pathology, more consistent with Lewy neurites than
Lewy bodies in the substantia nigra (Ferrer et al., 2001). In contrast,
phosphorylated JNK rarely stained Lewy body containing neu-
rons (Ferrer et al., 2001). There was also no association between
phosphorylated JNK immunostaining and apoptosis in PD sub-
stantia nigra neurons (Ferrer et al., 2001). These studies suggest
a potential early role for p38 in the formation of Lewy bodies
whereas JNK appears not to be involved. The protective effects of
JNK inhibitors may instead be mediated through glial cells. Fur-
ther studies could explore how JNK activity in glia relates to PD
pathogenesis.
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ERK
Extracellular signal related protein kinase is activated following
treatment of cells with 6-OHDA and MPTP and inhibitors of ERK
provide protection in these PD cell models (Kulich and Chu, 2001;
Gomez-Santos et al., 2002). ERK crosstalk also modulates protec-
tive effects of neurotrophins and anti-oxidant treatments (Chu
et al., 2004; Hetman and Gozdz, 2004).

In neurons in the substantia nigra of PD patients, phosphory-
lated ERK immunoreactivity shows granular aggregations, distinct
from the diffuse cytoplasmic localization of phosphorylated ERK
in cortical neurons from control and PD patients (Zhu et al.,
2002). The aggregated pattern of phosphorylated ERK staining
is also observed in pigmented neurons of the locus coeruleus in
PD patients, but is absent in glial cells. The levels of phosphory-
lated ERK increase in substantia nigra neurons in PD patients,
where the granular inclusions partly associate with mitochon-
dria and weakly with endosomes (Zhu et al., 2003). Increased
phosphorylation of ERK correlates with increased staining for the
ERK substrate RSK1 (Zhu et al., 2002) and total levels of ERK do

not differ between control and PD samples (Zhu et al., 2002), col-
lectively demonstrating an increase in ERK activity in PD brain.
ERK also associates with Lewy bodies, particularly the halo region
(Ferrer et al., 2001; Zhu et al., 2002, 2003). Moreover, granular
ERK inclusions are often seen in PD neurons devoid of α-synuclein
pathology and sometimes not seen at all in neurons with severe
α-synuclein pathology suggesting a potential early role for ERK in
PD pathogenesis (Zhu et al., 2002).

KINASES OF THE PHOSPHOINOSITIDE 3-KINASE (PI3K) PATHWAY
The PI3K pathway controls cell survival and proliferation and thus
has been studied extensively in the context of cancer. PI3K is classi-
cally activated by tyrosine kinase receptors following their binding
of insulin or insulin like growth factors (e.g., IGF1; Figure 3). Acti-
vated PI3K phosphorylates membrane-associated phosphatidyli-
nositol 4,5-bisphosphate (PIP2) to produce phosphatidylinositol
2,4,5-triphosphate (PIP3), which results in recruitment of PKB
(also known as AKT; Figure 3). PKB is in turn phosphorylated
in its activation loop (at Thr308) by phosphoinositide-dependent

FIGURE 2 | Simplifed MAPK signaling. Receptor activation by growth
factors or mitogens triggers a signal cascade in which mitogen
activated protein kinase kinase kinases (MAPKKK) are activated and
in turn activate mitogen activated kinase kinases (MAPKK) and then

the mitogen activated protein kinases (MAPK), ERK, JNK, and P38.
Evidence suggests that this pathway is upregulated in PD
substantia nigra dopaminergic neurons, potentially contributing to cell
death.
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kinase 1 (PDK1) and at its C-terminal hydrophobic motif (Ser473)
by mTOR complex 2 (mTORC2). Activated PKB phosphorylates
a number of substrates including mTOR, to promote protein
synthesis and inhibit autophagy, glycogen synthase kinase 3β

(GSK3β), to induce glycogen and regulate glucose metabolism and
fork head box-O class (FOXO), a transcription factor regulating
genes essential for cell growth, proliferation, and survival.

PKB
Administration of 6-OHDA results in reduced PKB Thr308 and
Ser473 phosphorylation and marked loss of PKB activity in cell
culture and rodent PD models and a number of compounds that
stimulate PKB activity have demonstrated neuroprotection in this
model, as well as other PD toxin models, including MPTP and
rotenone (for review see Greene et al., 2011). Overexpression of
PKB in rodent brain also protects dopaminergic neurons from
6-OHDA-induced cell death (Ries et al., 2006) and activation of
PKB likely contributes to the neuroprotective effects of trophic
factors such as glial cell line-derived neurotrophic factor (GDNF;
Ugarte et al., 2003) and potentially to the effects of the monoamine
oxidase B inhibitor and PD drug rasagiline (Mandel et al., 2007;
Sagi et al., 2007).

In PD midbrain the phosphorylation of PKB Ser473 is reduced
in both cytosolic and membrane fractions (Timmons et al.,
2009). PKB and its phosphorylation at Ser473 are also robustly
detected in dopaminergic neurons of the substantia nigra and are
consequently reduced in PD with loss of these neurons. How-
ever, PKB immunoreactivity is still detected in surviving PD

dopaminergic neurons (Timmons et al., 2009). A second study has
confirmed reduced phosphorylation of PKB at both Thr308 and
Ser473 in PD substantia nigra dopaminergic neurons (Malagelada
et al., 2008). Results of this study suggest that reduced phos-
phorylation of PKB is restricted to dopaminergic neurons as
non-neuromelanin containing neurons of the midbrain expressed
similar levels of PKB and phosphorylated PKB in both control and
PD states. Interestingly, a robust increase in PKB and phosphory-
lated Ser473 PKB was detected in cells with glial morphology in
the substantia nigra region in PD (Timmons et al., 2009). Whilst
reduced PKB pathway activity in neurons may contribute to their
loss in PD, the contribution of increased PKB activity in glia to the
progression of PD has not been explored.

GSK3β
The two isoforms of GSK3, GSK3α, and GSK3β, are ubiqui-
tously expressed in the brain where they predominantly act to
regulate glucose metabolism. Inhibition of the GSK3β isoform
can protect against MPTP, 6-OHDA, and LPS-induced neurotox-
icity (Kozikowski et al., 2006; Wang et al., 2007; Morales-Garcia
et al., 2013) whilst its activation has been implicated in rotenone
toxicity (Hongo et al., 2012). GSK3β has also been implicated in
microglial-mediated inflammation (Yuskaitis and Jope, 2009) and
the neuroprotective effects of GSK3β inhibitors may be mediated,
at least in part, through anti-inflammatory actions (Yuskaitis and
Jope, 2009; Morales-Garcia et al., 2013).

In brain, increased total and phosphorylated GSK3β is detected
as punctate structures in the cytosol of pigmented neurons in PD

FIGURE 3 | Simplified PI3K signaling. Receptor-ligand binding results
in the activation of phosphoinositide 3-kinase (PI3K) that in turn
mediates the conversion of phosphatidylinositol 4,5-bisphosphate
(PIP2) to phosphatidylinositol 2,4,5-triphosphate (PIP3). PIP3 recruits
protein kinase B (PKB) where it is activated by phosphorylation
at Thr308 by phosphoinositide-dependent kinase 1 (PDK1) and

Ser473 by mammalian target of rapamycin (mTOR) complex 2
(mTORC2). PKB then further phosphorylates downstream substrates
to regulate cell survival and metabolic pathways. Evidence
suggests reduced PKB but increased mTOR and GSK3β activity in
PD, potentially contributing to protein accumulation and reduced
cell survival.
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substantia nigra (Nagao and Hayashi, 2009). GSK3β and phos-
phorylated GSK3β partly co-localize to the halo region of Lewy
bodies and also to Lewy neurites (Nagao and Hayashi, 2009).
GSK3β protein is also significantly increased in the striatum of
PD brains where its phosphorylation correlates with both tau
and α-synuclein pathology (Wills et al., 2010). This suggests a
potential role for GSK3β in promoting the early stages of tau
interaction with α-synuclein, leading to α-synuclein pathology in
PD. This could be important as genome-wide association studies
implicate polymorphisms in the MAPT and SNCA genes as the

most robustly reproducible risk factors for sporadic PD (Satake
et al., 2009; Simon-Sanchez et al., 2009).

mTOR
The mTOR kinase exists in two complexes termed mTORC1 and
mTORC2, with mTORC2 regulating PKB activity and mTORC1
regulating protein synthesis and autophagy (Laplante and Saba-
tini, 2012). The phosphorylation of mTORC1 by PKB promotes
protein synthesis and inhibits autophagy. Reduced phosphoryla-
tion of PKB in PD brain may therefore be expected to promote

FIGURE 4 | Kinases implicated in Parkinson’s disease (PD). PD is
characterized by the loss of pigmented dopaminergic neurons in the
substantia nigra region of the midbrain. A number of biological processes
have been implicated in this neuronal loss including mitochondrial

dysfunction, oxidative stress, autophagy, and inflammation. In the substantia
nigra, a number of kinases impacted by these processes combine to promote
the accumulation of phosphorylated α-synuclein and induce conditions that
reduce cell viability.
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autophagy; however, this process is clearly dysregulated in PD
as autophagy markers are also significantly decreased in PD sub-
stantia nigra (Chu et al., 2009; Alvarez-Erviti et al., 2010). Indeed,
evidence suggests that dysfunctional autophagy pathways play a
key role in the pathogenesis of PD (Lynch-Day et al., 2012). More-
over, the mTOR inhibitor (and therefore autophagy inducing)
rapamycin prevents MPTP-induced neurodegeneration (Dehay
et al., 2010; Liu et al., 2013). Rapamycin also has protective prop-
erties in rotenone and α-synuclein PD models (Pan et al., 2009;
Spencer et al., 2009; Crews et al., 2010; Xiong et al., 2011) sug-
gesting inhibition of mTORC1 has potential as a treatment for
PD.

Protein levels of neuronal mTOR were significantly increased
in the temporal cortex of cases with dementia with Lewy bodies,
particularly in neurons displaying accumulation of α-synuclein
(Crews et al., 2010). In comparison, brain tissue from cases with
Alzheimer’s disease had normal levels of mTOR in the temporal
cortex (Crews et al., 2010). Up-regulation of mTOR is consis-
tent with a phenotype of increased protein synthesis and reduced
autophagy, promoting the accumulation of potentially toxic pro-
teins. In the context of PD, increased mTOR would likely aid the
propagation of α-synuclein, however, whether changes in mTOR
are associated with the spread of α-synuclein pathology in PD
brain is unknown.

OVERVIEW OF KINASES EXPERIMENTALLY IMPLICATED IN
PD
It is evident from human tissue studies, particularly those focused
on the nigral dopaminergic system, that inflammatory pathways
are activated in PD and autophagy pathways are impaired. PD
brain tissue samples from different brain regions at different stages
of pathology could inform on the order of these events and pro-
vide more insight into whether certain kinases are causal for PD
pathologies. The discovery that certain toxins (MPTP, rotenone,
LPS, 6-OHDA) induce a selective loss of dopaminergic neurons
in rodent models has facilitated a wealth of information regard-
ing the order of the biological processes leading to such neuronal
death as well as signaling proteins mediating these events. While
these toxin-based models do not replicate all the features of spo-
radic PD, such as an age-dependent phenotype and the presence
of α-synuclein pathology, they have implicated a range of kinases
as important in the process. It will be important in many instances
to use pathologically staged human brain tissue to validate the
expression of kinases and their isoforms and any disease-associated
changes identified experimentally in mice.

ADDITIONAL KINASES AND OVERALL CONCLUSIONS
In addition to the kinases discussed above, a number of other
kinases are emerging as having potential roles in PD pathogenesis
and/or potential therapeutic targets. These include CDK5, a kinase
whose activity is increased by MPTP treatment and inhibition
attenuates MPTP-induced neuronal loss (Smith et al., 2003; Qu
et al., 2007). The eIF2alpha kinase (also known as PERK), whose
inhibition was recently shown to attenuate neurodegeneration in
prion-infected mice (Moreno et al., 2013), and AMP-activated
protein kinase (AMPK), a major metabolic regulatory enzyme
whose activation has been associated with neuroprotection in a

number of PD models (Wu et al., 2011; Bayliss and Andrews, 2013;
Dulovic et al., 2014; Li et al., 2014). AMPK is also activated by
thiazolidinones (Fryer et al., 2002), compounds that have neuro-
protective properties in a number of settings (Carta, 2013). Of
these kinases, CDK5 and PERK have been studied in PD brain,
with CDK5 localizing to Lewy bodies (Brion and Couck, 1995;
Nakamura et al., 1997) and PERK increased in PD substantia nigra
neurons (Hoozemans et al., 2007). PERK levels also correlated with
α-synuclein deposition (Hoozemans et al., 2007), making PERK in
particular a very interesting candidate for further study.

Thus, a number of protein kinases have been implicated in the
pathogenesis of PD covering a diverse array of biological func-
tions including oxidative stress, inflammation, and autophagy
(Figure 4). However, delineating the exact order by which these
biological functions go wrong in PD brain is still a major challenge,
despite the staging methods now in more common use. It is likely
that some kinases are more important for initiating the disease
whilst others are more important for disease propagation. In this
regard, the majority of brain tissue work to date has focused on the
substantia nigra region in PD, a region mostly at end-stage pathol-
ogy in patients dying with PD. Thus brain tissue studies using this
region are not informative on early pathogenic events, and assess-
ment of this region provides limited information on the cause or
consequence of many findings. With a greater understanding of
how PD spreads throughout the brain in a staged fashion, brain
regions can be selected to determine biochemical responses across
the disease spectrum, particularly assessing regions with evidence
of only early perturbations indicative of PD. Such an approach
should provide some insight into which processes may precede
PD pathology and which processes may propagate PD pathology.
This is important for determining when potential therapies, such
as kinase inhibitors, are likely to exert maximum efficacy. It is also
important to recognize potential caveats of postmortem studies
such as postmortem delay, comorbidities, and drug regimes, even
though many caveats can be controlled with appropriate sample
selection. In the absence of animal models that replicate all the
cardinal features of PD, human pathological postmortem brain
tissue remains an important resource to understand the biochem-
ical details of PD and to verify cell and animal model hypothesis
testing.
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