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ABSTRACT
The self-immunopeptidome is the repertoire of all self-peptides that can be presented by the combina-
tion of MHC variants carried by an individual, defined by their HLA genotype. Each MHC variant
presents a distinct set of self-peptides, and the number of peptides in a set is variable. Subjects
carrying MHC variants that present fewer self-peptides should also present fewer mutated peptides,
resulting in decreased immune pressure on tumor cells. To explore this, we predicted peptide-
MHC binding values using all unique 8-11mer human peptides in the human proteome and all available
HLA class I allelic variants, for a total of 134 billion unique peptide--MHC binding predictions. From these
predictions, we observe that most peptides are able to be presented by relatively few (< 250) MHC,
while some can be presented by upwards of 1,500 different MHC. There is substantial overlap among
the repertoires of peptides presented by different MHC and no relationship between the number of
peptides presented and HLA population frequency. Nearly 30% of self-peptides are presentable by at
least one MHC, leaving 70% of the human peptidome unsurveyed by T cells. We observed similar
distributions of predicted self-immunopeptidome sizes in cancer subjects compared to controls, and
within the pan-cancer population, predicted self-immunopeptidome size combined with mutational
load to predict survival. Self-immunopeptidome analysis revealed evidence for tumor immunoediting
and identified specific peptide positions that most influence immunogenicity. Because self-
immunopeptidome size is defined by HLA genotypes and approximates neoantigen load, HLA genotyp-
ing could offer a rapid predictive biomarker for response to immunotherapy.
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Introduction

The Major Histocompatibility Complex (MHC) is encoded by
the genes of the Human Leukocyte Antigen (HLA) locus. HLA
genes show high allelic variation, resulting in MHC molecules
that have different peptide binding preferences, mainly due to
variation at anchor positions within the MHC binding groove.1

We define a self-immunopeptidome as the repertoire of all self-
peptides that can be presented by the specific combination of
class I MHC variants carried by an individual. For a given cell,
only a subset of the entire possible self-immunopeptidome is
presented dependent on the transcriptional profile of that cell
type. A self-immunopeptidome is highly personalized, depend-
ing on the specific HLA genotype of an individual. Some
individuals have large self-immunopeptidomes able to present
a wide range of peptides, whereas other individuals will have
small self-immunopeptidomes, presenting a more limited set of
peptides.

Tumor neoantigens are mutated self-peptides presented by
tumor cell MHC molecules, and are capable of eliciting anti-
cancer T cell responses.2–8 In principle, individuals with large
self-immunopeptidomes should be more able to present
a diversity of neoantigens (due to a general increased ability

to present peptides) and these individuals may, therefore, be
better able to mount natural immune responses to control
malignant cell growth. Indeed, there is evidence for improved
response to cancer immunotherapies for individuals having
higher diversity of their class I HLA loci.9 It is possible that
individuals with smaller self-immunopeptidomes would be
more vulnerable to immune threats such as cancer and/or
infectious disease. In the context of immune surveillance of
cancer, it has been observed that in individuals with cancer,
mutations that are poorly presented across a range of MHC
occur at higher frequencies than mutations that are readily
presented by many MHC,10 suggesting that tumor cells can
exploit gaps in the self-immunopeptidome, and that indivi-
duals with smaller self-immunopeptidomes will have greater
cancer risk.

Here, we measured the range of self-immunopeptidome
sizes present in human cohorts by predicting, computation-
ally, the fraction of the human proteome able to be presented
by each class I MHC molecule. These predictions are
designed to provide a relative measure of how well each
MHC molecule presents human peptides, utilizing all pep-
tides in the canonical human reference proteome. Notably,
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these predictions do not include information such as expres-
sion level in different cell types, antigen processing require-
ments, or non-canonical peptides derived from proteasomal
splicing.11,12 By performing this exhaustive computation up-
front, we were then able to query the results for any given
individual with a known HLA class I genotype to predict the
overall size of their self-immunopeptidome. Our analysis of
The Cancer Genome Atlas (TCGA) data revealed a small but
statistically significant decrease in size of predicted self-
immunopeptidomes for cancer subjects compared to non-
cancer subjects. We also explored the phenomenon of
immune-editing13 by predicting the immunogenicity of
mutations. Here, immunogenicity of a mutation is defined
by the number of mutant peptide-MHC pairs (neoantigens)
containing the mutation that are predicted to bind MHC-I
with IC50 < 500 nM. We compared the immunogenicity of
mutations found in cancer subjects to sets of matched in
silico generated mutations. By this approach we identified
the amino acid positions in peptide epitopes that have the
strongest influence on immunogenicity.

Results

Exhaustive binding prediction of all self-peptides to
MHC-I

The complete human reference proteome was downloaded
from EMBL-EBI, containing 21,006 protein and 71,173 addi-
tional isoform sequences. Typically, class I MHC peptides are
restricted to 8-11mer peptides due to the closed ends of the
MHC binding groove.14 As such, all possible 8-11mer peptides
were extracted from this reference sequence using a sliding
window, yielding over 146,000,000 peptides, of which
46,029,730 are unique. For each of the 46,029,730 unique
8-11mer peptides we predicted binding to each of 2,915 HLA
class I alleles available in NetMHCpan v3.0. Executing these
134,176,662,950 binding predictions required over 110 CPU
years of compute (see Methods) and provides a new predicted
human immunopeptidome resource. We tested whether an
IC50- or rank-based threshold would better represent the num-
ber of observed MHC-eluted peptides using mass spectrometry
(MS) data (see Methods: Selecting the most suitable binding
prediction threshold). For 66 MHC alleles with Human pep-
tide data available from SysteMHC Atlas15 MS data, we com-
pared the number of unique peptides predicted to bind using
the two thresholds to the number of peptides observed to bind
these MHC using MS data. By Spearman’s rank correlation,
thresholding by IC50 yielded a better correlation to the
observed peptide data than thresholding by rank (IC50

ρ = 0.558, p = 1.1 × 10−6, Supplementary Figure 1; Rank
ρ = 0.314, p = 0.010). Importantly, this demonstrates that the
number of predicted self-peptides as defined by IC50 < 500 nM
correlates with observed experimental data. We filtered the
output to include the 987,968,036 pMHCs (0.7 % of all combi-
nations tested) that had predicted IC50 < 500 nM and this set
was used to calculate predicted self-immunopeptidome sizes.
The results of this compute are now made available for
researchers, obviating the need for these computational predic-
tions to be repeated (http://doi.org/10.5281/zenodo.1453418).

MHC frequency in NetMHCpan training data correlates
weakly with peptide presentation properties

As HLA alleles with greater representation in the NetMHCpan
training data likely have more reliable binding predictions, we
computed the correlation between the fraction of all unique
human peptides presented by an MHC and the number of data-
points for the HLA allele encoding that MHC variant in the
NetMHCpan training data (http://tools.immuneepitope.org/sta
tic/main/binding_data_2013.zip, summarized in Supplementary
Table 1). We observed a weak correlation between the fraction of
all unique human peptides predicted to be presented by an MHC
and the number of datapoints in the training data (Spearman
ρ = 0.388, p = 5.5 × 10−5). We saw no difference in the fraction
of all unique human peptides presented by an MHC for MHC
included in the training data vs. those with no training data
(p = 0.1185, T test). To further address peptide- binding prediction
reliability for HLA alleles lacking training data, we used the
SysteMHC Atlas MS data to determine the number of distinct
MHC-eluted peptides identified byMS thatwere also identified via
self-immunopeptidome predictions, for alleles that are or are not
present in the NetMHCpan training data (Supplementary Figure
2). The proportion of MS-observed peptides predicted by self-
immunopeptidome analysis is not significantly different for alleles
that are in the NetMHCpan training data (mean ± SD:
0.619 ± 0.24, n = 42) compared to alleles not present in the training
data (0.511± 0.21, n = 24; p = 0.061, T test). This demonstrates that
potential bias from training of the peptide-
binding predictions is not a significant factor when predicting
the self-immunopeptidome. Extending this analysis, we compared
the identities of self-peptides predicted to be presented by each of
six cell lines (taking into account the class I HLA types of each cell
line) to the peptides identified directly by MS and reported in the
SysteMHC Atlas (Supplementary Figure 3). This analysis shows
that, on average, 81.6 % of peptides observed by MS analysis are
predicted by the self-immunopeptidome analysis. The predicted
self-immunopeptidome includes many additional peptides not
observed byMS analysis because the self-immunopeptidome ana-
lysis included the entire proteome, whereas only a subset of the
proteomewill be expressed within a specific cell line. Additionally,
MS analysis has limited sensitivity and does not provide an
exhaustive view of the peptides present on the surface of the cell.
Further discrepancies between the observed and predicted pepti-
domes may be derived from non-canonical proteasome-spliced
peptides (discussed above) or polymorphisms present in these cell
lines.

As a separate test, we checked for any effect that HLA popu-
lation frequency may have on the size of predicted self-
immunopeptidomes. This was done using the 330 HLA alleles
with non-zero population frequencies in the USA National
Marrow Donor Program (NMDP) Caucasian dataset from
http://www.allelefrequencies.net,16 selected as most ethnicities
within the TCGA dataset are Caucasian. We observed no sig-
nificant correlation between population frequency and fraction
of unique peptides presented (Spearman ρ = −0.096, p = 0.082).
For single MHC molecules, fractions of unique peptides ranged
from 0.0 % (HLA-B*15:137) to 4.5 % (HLA-A*02:229) of all
8-11mer self-peptides (Figure 1(a)).Within the set of all peptides
comprising the predicted human immunopeptidome, most
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peptides are able to be presented by relatively few (< 250) MHC,
while some can be presented by upwards of 1,500 differentMHC
(Figure 1(b)). Taking all 2,915 MHC together, 29.7 % of all
8-11mer self-peptides are predicted to be presented, showing
that there is significant overlap between the repertoire of pep-
tides presented by different MHC. Additionally, these compre-
hensive peptide-MHC binding predictions suggest, within the
limits of the accuracy of these predictions, that over 70 % of the
human peptidome is unable to be presented by MHC and is not
surveyed (nor naturally tolerized) by T cells.

The distribution of predicted self-immunopeptidome sizes
are similar between cancer and non-cancer datasets

The self-immunopeptidome presented by any individual is
dependent on the up to six different class I HLA alleles encoded
by their genome. We define the self-immunopeptidome size for
an individual to be the size of the (possibly) overlapping sets of
distinct 8-11mer peptides predicted to be presented by each of
their MHC-I. To compare the distribution of predicted self-
immunopeptidome sizes for individuals with cancer compared
to those without, we used data from TCGA17 and the NMDP.18
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Figure 1. (a) Fraction of the human peptidome predicted to be presented by each of 2,915 class I MHC. MHC are plotted along the x-axis in increasing fraction
(y-axis). Gray points are all MHC combined, and the overlaid blue points identify those from the specific gene (HLA-A, -B, or -C) in each panel. Black circles show the
population frequency, when available, of that allele in the USA NMDP Caucasian dataset. (b) Number of MHC predicted to present each presented peptide. Peptides
are plotted along the x-axis in increasing numbers of MHC (y-axis), with each peptide length in separate panels (8mer: n = 1,522,052, 9mer: n = 4,667,489, 10mer:
n = 4,704,530, 11mer: n = 2,790,531). (c) Distribution of predicted self-immunopeptidome sizes from NMDP and TCGA. Density plot showing the relative frequency
(y-axis) of predicted self-immunopeptidomes of varying sizes (x-axis). TCGA (orange) subjects, on average, have smaller predicted self-immunopeptidomes than
NMDP (gray) donors.
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We obtained class I HLA types for the TCGA dataset, pre-
dicted using OptiType19 as part of “The Immune Landscape of
Cancer”,17 and for the NMDP dataset18 where typing was done
by PCR- and amplicon sequencing-based techniques. As most
ethnicities in the TCGA dataset are Caucasian, and to control for
potential confounding effects of varying allele usage in different
ethnicities, we filtered the TCGA and NMDP data to exclude
non-Caucasian subjects for this analysis only. The resulting
distributions of predicted self-immunopeptidome sizes for
both TCGA and NMDP datasets are shown in Figure 1(c)
(TCGA 1,767,986 ± 561,474 (mean ± SD), n = 6,415; NMDP
1,797,092 ± 553,010 (mean ± SD), n = 7,867). Predicted self-
immunopeptidome sizes for TCGA are slightly smaller than the
NMDP distribution (p = 1.9 × 10−3, two sample T test), though
the distributions are not distinct enough to have any practical
utility in predicting if an unknown subject would belong to
either group.

In cancer, predicted self-immunopeptidome size
correlates with predicted neoantigen load and
progression free interval

Despite there being only a small difference in predicted self-
immunopeptidome size between cancer and non-cancer data-
sets, predicted self-immunopeptidome size may have a clinically
relevant effect within the cancer dataset.We hypothesized that in
TCGA, individuals with larger self-immunopeptidomes would
have improved outcomes due to there being a higher probability
of mutations in these tumors generating neoantigens.

As SNV neoantigen data from TCGA was calculated as the
number of pMHC containing a mutated amino acid,17 we can
combine the coding SNV mutational load and predicted self-
immunopeptidome size in these subjects to approximate their
SNV neoantigen load. If we express the predicted self-
immunopeptidome size as a fraction of all unique peptides that
are presented by that genotype, and multiply this by the coding
SNV mutational load to get an approximated SNV neoantigen
load, we observe a strong positive correlation between approxi-
mated SNV neoantigen load and TCGA SNV neoantigen load
(Pearson r = 0.987, p < 2.2 × 10−16). This result suggests that
using a combination of coding mutational load and predicted
self-immunopeptidome size together, as approximated SNV
neoantigen load, could be very useful as an indicator of tumor
immunogenicity because it does not require exhaustive neoanti-
gen predictions to be performed.

To test the utility of predicted self-immunopeptidome size as
a measure of tumor immunogenicity in a pan-cancer context, we
performed Cox proportional hazard survival analysis on the
TCGA data using progression free intervals as the endpoint.20

In a multivariate Cox-PH model containing race, age, gender
and cancer type as covariates, increases in predicted self-
immunopeptidome size alone did not significantly decrease the
hazard rate, (HR = 0.930 for an increase in predicted self-
immunopeptidome size of 1 million peptides, p = 0.082, 95%
CI: 0.856–1.001; details of full model in Supplementary Table 2).
However, when switching the predictor from predicted self-
immunopeptidome size to the approximated SNV neoantigen
load described above, a significant protective effect is observed
(HR = 0.995, p = 3.2 × 10−3, 95% CI: 0.991–0.998; details of full

model in Supplementary Table 3). We obtain comparable results
when using either the comprehensive TCGA SNV neoantigen
load or number of coding SNV mutations (Supplementary
Tables 4 and 5) and observe that these models all fit the data
equally well (AIC = 25,348.62 using coding SNV count;
AIC = 25,347.65 using approximated SNV neoantigen load;
25,349.47 using comprehensive TCGA SNV neoantigen load),
demonstrating that in the context of outcomes, predicted self-
immunopeptidome size andmutational load combine to provide
the same clinical information obtained by comprehensive
neoantigen predictions.

Differential patterns of peptide presentation derived
from in vivo and in silico mutations are consistent with
immunoediting

We hypothesized that evidence of immune surveillance and
immune evasion would be detectable by comparing pMHCs
derived from TCGA SNVs to pMHCs originating from in
silico generated random mutations which have not under-
gone immunoediting. For every TCGA subject, we used the
predicted SNV neoantigens from above.17 Then, we gener-
ated a matched set of in silico coding SNVs (with amino
predicted pMHCs from these in silico SNVs. As expected,
there is a high correlation between the number of TCGA and
in silico mutant pMHCs per subject (Pearson r = 0.999, p -
< 2.2 × 10−16), as these were derived from the same number
of starting mutations and the same set of HLA alleles. We
further stratified the TCGA predicted pMHCs by the expres-
sion of the source mutation. For each of 5,748 TCGA sub-
jects that we have RNA-seq data for, we classified each of the
1,181,367 coding SNVs as expressed if there were at least 3
sequence reads containing the variant base. We identified
evidence of expression for 417,335 (35 %) of these coding
SNVs.

To investigate the effect of immune editing in the TCGA
subjects, we compared the predicted immunogenicity of
expressed SNVs, non-expressed SNVs, and random in silico
generated SNVs. Predicted immunogenicity was calculated as
the number of neoantigens per SNV. Within each subject,
potential neoantigens are defined as the subset of the up to
38 peptides (all 8-11mers containing the variant) × up to 6
HLA alleles = up to 228 peptide-MHC pairs that are pre-
dicted to bind. Importantly, every SNV may generate zero or
a few neoantigens. We hypothesized that there would be fewer
neoantigens per expressed TCGA SNVs (lower predicted
immunogenicity) because this pool would have been depleted
by neoantigen-reactive T cells. Indeed, we observed fewer
neoantigens per expressed SNV compared to both in silico
and non-expressed SNVs (Figure 2(a); p < 2.2 × 10−16, paired
T tests), and more neoantigens per non-expressed TCGA
SNV than per random SNV (Figure 2(a); p = 1.9 × 10−14,
paired T test). When looking at each cancer site individually,
the trend of more neoantigens per non-expressed SNV and
fewer neoantigens per expressed SNV was maintained for all
cancer sites except LIHC, CESC, BLCA, and SKCM
(Supplementary Figure 5). It should be noted that unlike
other TCGA cancer sites, the majority of SKCM samples are
from lymph node metastasis,20 and as such they represent
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tumors at a different stage of development and with biased
immune cell content compared to the rest of the dataset.

Directly comparing numbers of neoantigens per SNV from
expressed and non-expressed SNVs in each TCGA subject, we
observe that the general trend of more neoantigens per non-
expressed SNV (as shown in Figure 2(a)) appears to reverse for
samples that have greater than two neoantigens per expressed
SNV (Figure 2(b)). One interpretation of this observation is that
tumors with higher numbers of neoantigens per expressed SNV
have been able to retain more expressed neoantigens because

they have suppressed the immune response bymechanisms such
as an immunosuppressive microenvironment or downregula-
tion of MHC. To explore this further, we classified samples as
having a suppressed immune response if they met the following
criteria: (1) they have more neoantigens per expressed SNV than
neoantigens per non-expressed SNV, and (2) they have greater
than two neoantigens per expressed SNV. Survival analysis
comparing these two groups supports this notion (Figure 2(c)),
with the samples having a putatively suppressed immune
response showing decreased PFI (HR = 1.138, p = 0.027, 95%

0

1

2

3

4

5

Non-Expressed
SNVs

In silico
SNVs

Expressed
SNVs

N
eo

an
tig

en
s 

pe
r S

N
V

0

1

2

3

4

5

0 1 2 3 4 5

Neoantigens per expressed SNV
N

eo
an

tig
en

s 
p

er
 n

on
−

ex
p

re
ss

ed
 S

N
V

Cancer type

BRCA

GBM

LGG

THCA

COAD

LIHC

READ

STAD

CESC

OV

UCEC

HNSC

SKCM

LUAD

LUSC

BLCA

KIRC

KIRP

PRAD

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500 10000
Days

P
ro

p
or

tio
n 

Fr
ee

 o
f E

ve
nt Normal Immune Response

(a) (b)

(c)

Suppressed Immune Response
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CI = 1.015–1.275; multivariate Cox-PH model with cancer type,
age, race and gender as covariates).

Relative depletion of variants in MHC-binding anchor
positions of peptide epitopes identify potentially
immunogenic positions

We were interested in whether different amino acid positions
within neoantigens show different signatures of immunogeni-
city. Given that expressed mutations from TCGA exist within
established tumors and coexist with the host immune system,
neoantigens originating from these mutations were not immu-
nogenic enough to result in tumor eradication within these
subjects. One factor that may influence immunogenicity is the
position within the presented peptide that the variant resides.21

We investigated whether there was a bias in the usage of posi-
tions within the peptide for the variant amino acid for neoanti-
gens from expressed TCGA variants compared to random, in
silico generated mutations. We noted that an important factor to
consider is whether, for each neoantigenic peptide, the corre-
sponding wildtype peptide is also predicted to bind to the same
MHC. If the wildtype peptide is also presented, this would be
expected to result in T cell tolerance to the wildtype peptide and
may highlight certain amino acid positions as being relevant to
breaking or taking advantage of this pre-existing tolerance when
mutated. To investigate this, we looked up wildtype pMHC
binding scores for all expressed TCGA and in silico mutations
in our predicted human immunopeptidome dataset. All analysis
was performed on the set of neoantigens where both the mutant
and matched wildtype peptides were predicted to bind.

We limited our analysis to 9mers, which are the most
common peptide length and have the most well-defined MHC-
binding interactions.22 Looking at neoantigens derived from
random, in silico generated mutations, we observe fewer var-
iants at positions 2 and 9 of these neoantigens compared to the
other positions when the corresponding wildtype peptide also
binds the MHC (Figure 3(a); top panel). This is expected, as
these positions are the most influential on peptide-MHC
binding and most likely to confer loss of MHC binding when
mutated;23 these are the two canonical MHC-binding anchor
positions. This trend is recapitulated in the neoantigens derived
from expressed TCGA mutations (Figure 3(a); bottom panel),
confirming that this effect is intrinsic to peptide-MHC bind-
ing and not an artifact of in silico mutagenesis. Ignoring wild-
type binding status yields a uniform distribution across the
possible variant positions (Supplementary Figure 6).

To control for this non-uniform distribution of variant
position usage, we directly compared the frequency that
each position is being used in the TCGA and in silico datasets.
Positions which are relatively depleted of mutations in the
expressed TCGA dataset relative to the random in silico data-
set may be the result of immune editing during tumor devel-
opment, deleting cells which carry mutations at these
positions. Similarly, positions which are relatively enriched
in the TCGA dataset may be non-immunogenic, being able
to persist while co-existing with the host immune system. To
identify positions that have an enrichment or depletion of
mutations in the TCGA dataset relative to the random in
silico mutation dataset, we first converted the raw count of

neoantigens with variants at each position into the frequency
that each variant position is used within each subject’s neoan-
tigen repertoire. For each subject, we then calculated the
difference in frequencies at each position between the TCGA
and random in silico derived mutations, and tested, over the
entire dataset, whether these differences were statistically
significant.

We observed a significant depletion of position 2 and 9
variants in TCGA neoantigen data compared to the in silico-
derived neoantigens (Figure 3(b)). Note that these positions held
the lowest number of mutations in both datasets because we
limited the data to cases where the wildtype andmutant versions
are both predicted to bind, and mutations at these positions will
typically impair peptide-MHC binding. However, mutations at
positions 2 and 9 do not always result in loss of binding, and in
some cases can even increase binding affinity.24 Therefore, the
relative depletion of TCGA position 2 and 9 variants relative to
in silico variants may be due to enhancement of immunogenicity
conferred by these mutations as a result of improved peptide-
MHC binding stability,25,26 or from changes to the peptide
conformation within the MHC binding groove. It is well estab-
lished that subtle changes to peptide conformation can have
large effects on T cell reactivity,27,28 exposing regions of the
peptide to the TCR that were previously concealed. Conversely,
we observe a relative enrichment of TCGA position 8 (so called
anchor-adjacent) variants, suggesting changes here are tolerated
because they do not increase immunogenicity (Figure 3(b)).
Features of this general trend of depletion at the anchors and
enrichment just interior to the anchors is seen across all peptide
lengths (Supplementary Figure 7). In the context of overcoming
existing T cell tolerance to wildtype peptides, these data suggest
that, counterintuitively, variants at anchor positions are themost
immunogenic and are selected against during tumor
development.

Discussion

We performed exhaustive binding predictions between every
unique 8-11mer peptide that exists in the reference human
proteome to nearly 3,000 MHC molecules available for predic-
tion – generating, to our knowledge, the largest set of peptide-
MHC binding predictions to date, and which can now serve as
a community resource. This resource supported the fast and
efficient characterization of thousands of individuals from
TCGA and NMDP for their predicted ability to present self-
peptides. It is important to note that these predictions ignore
protein expression and abundance in different cell types, anti-
gen processing requirements, epitope destruction, and issues
such as proteasome-generated spliced peptides that might
represent a substantial component of the self-
immunopeptidome.11,12 Currently, it is not possible to perform
our predicted self-immunopeptidome analysis for these spliced
peptides as there are no algorithms to predict their occurrence
nor are there well annotated databases of those that exist.

Individuals with cancer from TCGA have marginally smaller
predicted self-immunopeptidomes compared to non-cancer
NMDP individuals. More importantly, within the TCGA dataset
having larger predicted self-immunopeptidomes correlates with
better outcomes. This supports previous findings of anHLA-effect
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on survival.9,29,30 Additionally, predicted self-immunopeptidome
size and mutational load combine to approximate the neoantigen
load, and this strongly correlates with the actual predicted neoan-
tigen load (based on personalized binding predictions of all
mutant peptides to MHC), supporting the potential utility of
approximated neoantigen load as a clinical metric in assessing
the immunogenicity of tumors without the need to perform
more exhaustive neoantigen predictions. This approach may also
facilitate the calculation of approximated neoantigen loads in
subjects from all mutation types, not limited to SNVs, without

the additional neoantigen prediction processing required formore
complex mutation types.

Immunoediting is a well accepted phenomenon that
occurs during cancer development.31 By comparing observed
mutations from immune-exposed TCGA tumors to in silico
generated mutations, we were able to detect signals of
immune-evasion within the TCGA data. It is important to
note that our in silico mutations are random and do not
necessarily confer the same cancer growth advantage, or in
fact any biological relevance, that is likely found in the set of
TCGA mutations and thus are used as a measure of baseline
pMHC generation. Compared to in silico mutations, we
observed a general trend of decreased immunogenicity for
expressed TCGA mutations, and an increase for non-
expressed mutations. This supports the view that the major-
ity of TCGA tumors are immune-edited, as we see higher
immunogenicity from non-expressed SNVs than would be
expected by chance. This could be the result of immune-
editing over time shaping the mutational profile of these
cancer cells through accumulation of mutations that would
be potentially immunogenic if expressed, but are immuno-
logically inconsequential when present in non-expressed
genes. Under this framework, we also identified samples
that showed evidence of a suppressed immune response,
permitting relatively more immunogenic mutations in
expressed genes. These subjects demonstrate decreased pro-
gression free survival, supporting the concept that these
individuals harbour tumours which have suppressed the
natural immune response to the tumor.

Given that highly immunogenic mutations could be rapidly
recognized by the immune system and cancer cells containing
these mutations would not survive, we assume that the muta-
tions we see have decreased immunogenicity. By comparing the
variant positions within the presented peptides to the positions
containing the in silico mutations, we were able to identify
positions which were depleted (more immunogenic) and
enriched (less immunogenic). Immunogenic positions were
canonical MHC binding positions, likely resulting in significant
changes to the topography of the presented peptide and a greater
likelihood of breaking T cell tolerance, or increasing the stability
of the peptide-MHC complex.21 Non-immunogenic positions
were anchor-adjacent. Changes in anchor-adjacent positions
may represent an optimization between effects on MHC-
binding and visibility of the variant to the T cell receptor. This
is supported by work describing positions important for MHC
binding and T cell interaction,21,32–34 summarized in Figure 4.
These observations on the relative importance of certain posi-
tions in influencing the immunogenicity of peptides may help
refine epitope immunogenicity prediction algorithms.

Our findings were generalizable across cancer types, with
the identification of immune-edited tumours not being
restricted to any one cancer type. Similar efforts to characterize
different immune subtypes within TCGA have recently been
undertaken.17 Based on gene expression data, six immune sub-
types were identified in TCGA tumours, described according to
different immune pathways that are most active in each sub-
type. Across these TCGA immune subtypes, our measure of
average mutation immunogenicity (neoantigens per expressed
SNV) was smaller for subjects in the immunologically quiet
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Figure 3. (a) Counts of neoantigens containing the variant at each position
within the peptide. Variants occur in positions 2 and 9 at the lowest frequency.
This trend is consistent for both random in silico derived mutations (top panel)
and TCGA-derived mutations (bottom panel). (b) Differences in frequency (y-axis)
of the variant amino acid being in each position (x-axis) of a presented peptide
for TCGA mutations compared to random mutations. Mean values are shown
(points), with lines showing 95% confidence intervals of the means. Positions
with significant enrichment or depletion (padj < 0.05, T test) are displayed larger
and colored orange. Only data for 9mers shown; 189,057 TCGA neoantigens and
200,688 in silico neoantigens for 5,482 subjects.
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(C5) cluster, though this may be due to a higher number of
zero counts in this cluster due to a relative dearth of mutations.

Given the TCGA tumor samples were obtained pre-
treatment, our measure of immunogenicity is relevant within
the context of the natural immune response. These predictions
and trends may not extend to cases where immunotherapies are
used to modulate the immune response – pMHCs present in
these immune-exposed samples which are assumed to be not
naturally immunogenic may still form potent immune targets
for immunotherapies. Future studies applying similar compara-
tive approaches to the mutational landscapes of tumors before
and after immunotherapy would be useful in identifying pre-
dictive measures of immunogenicity in these contexts.

Methods

Reference proteome

The human reference proteome was downloaded from EMBL-
EBI (http://ftp.ebi.ac.uk/pub/databases/reference_proteomes/
QfO/Eukaryota/UP000005640_9606.fasta.gz and http://ftp.
ebi .ac.uk/pub/databases/reference_proteomes/QfO/
Eukaryota/UP000005640_9606_additional.fasta.gz), using the
April 2016 Qf0 release. This contained references for 21,006
protein sequences from the canonical set of proteins, plus
71,173 additional isoform sequences. These were combined
for the complete analysis to ensure all unique peptides which
exist in the human reference proteome were captured.

Condensing the proteome

Within the reference proteome, a specific 8-11mer peptide
sequence may occur multiple times (non-unique peptides).
To reduce the amount of computation required, we will only
compute peptide-MHC binding for the set of unique 8-11mer
peptides. All unique 8-11mer peptides were extracted from
the complete proteome and written to a file. However, we
determined that the compute time per peptide using
NetMHCpan 3.022 is significantly sped up by providing
NetMHCpan with longer protein sequences and having it
automatically extract all n-mers by sliding window rather
than providing each n-mer individually (two orders of mag-
nitude, data not shown). To take advantage of this, we desired
a set of amino acid sequences which, when parsed with
a sliding window, only contain peptides from these unique
sets, and only contain each peptide exactly once. To achieve

this, we re-assembled all unique n-mers into sets of artificial
protein sequences using the following greedy algorithm (in
pseudocode):

for n in [8,9,10,11]:

start a set of artificial proteins Sn
for peptides of length n;

for each unique peptide of length n:

if the first or last n-1 amino
acids of the peptide matches the
last or first n-1 amino acids of
any artificial protein in Sn:

extend that artificial pro-
tein with the additional N-
or C-terminal amino acid;

else:

start a new artificial protein
in Sn with the peptide
sequence;

end for;

end for;

This resulted in four sets of artificial protein sequences (one for
each peptide length) containing each unique 8-11mer peptide
exactly once when parsing with a sliding window. This shrunk
the amino acid space required to be explored from the 36,688,307
amino acids of the reference × 4 peptide lengths = 146,753,228
total amino acids to 12,600,566 (for 8mers) + 12,635,023 (for
9mers) + 12,734,064 (for 10mers) + 12,835,955 (for 11mers)
= 50,805,608 total amino acids (34 % of the reference).

Selecting the most suitable binding prediction threshold

Within the literature, multiple thresholds are used to classify
pMHC binders using NetMHCpan algorithms.22,35–37 The
two most common thresholds to classify binders are
a binding affinity threshold (IC50 < 500 nM), and a rank-
based threshold (Percentile Rank < 2 %). While the most
correct threshold is as-of-yet undiscovered, and likely will
depend on the source of the data being used (self vs. mutated
vs. infectious agent peptides), these two thresholds have been
demonstrated to provide useful and informative results.10,38,39
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in the literature. Two positions representing the minimization of effects on interactions with both MHC and TCR are denoted with arrows.
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To determine which of these two thresholds would perform
best for our purposes of estimating the size of the set of self-
peptides presented by each class I MHC, we used publicly
available mass-spectrometry (MS) data from SysteMHC
Atlas.15 All datasets containing Human peptide data in the
context of MHC class I molecules were downloaded from
systemhcatlas.org on February 7, 2018 (n = 194). These data
comprised 66 MHC molecules (15 HLA-A, 34 HLA-B, 17
HLA-C) and 135,092 total pMHC interactions.

We performed binding predictions using NetMHCpan
3.022 for all unique 8-11mer peptides obtained from a 10%
random subsample of the human proteome (proteins were
randomly selected from the human proteome until 10% of the
total human proteome length was achieved, results from this
depth correlate strongly with those from the full dataset, data
not shown) to all class I MHC molecules available for predic-
tion. For each MHC, we tallied the number of pMHC by
either the IC50 < 500 nM, or the Rank < 2 % threshold. For
66 MHC alleles with Human peptide data available from
SysteMHC, we compared the number of unique peptides
predicted to bind using the two thresholds to the number of
peptides observed to bind these MHC using MS data.

By Spearman’s rank correlation, thresholding by IC50 yields
a better correlation to the observed peptide data than thresh-
olding by rank (IC50 ρ = 0.558, p = 1.1 × 10−6, Supplementary
Figure 1; Rank ρ = 0.314, p = 0.010). To control for any effect
that sample size might have in the SysteMHC data, we gener-
ated a linear model using either IC50- or Rank-based threshold
counts to explain the observed peptide counts, with the number
of samples in SysteMHC data for each MHC as a covariate.
Using this model, we found the counts using the IC50-based
threshold to be a better predictor of the number of in vivo
presented peptides (IC50 adjusted R2 = 0.686; Rank adjusted
R2 = 0.591). Therefore, we used the IC50 < 500 nM threshold to
predict pMHC binding.

Running peptide-MHC binding predictions

Calls to NetMHCpan were batched into sets of approximately
1,000 artificial proteins and a single HLA and split into
1,676,125 separate jobs to run on a compute cluster. As the
size of each artificial protein varied, proteins were sorted by
length and then distributed across all jobs to ensure that on
average each job had a similar number of total peptides to be
predicted (and thus took a similar length of time to complete).
On average, each job took 35 minutes, totaling over 110 CPU
years to complete all predictions.

Comparing distributions of predicted
self-immunopeptidome sizes

For a cancer dataset, we used HLA data from The Cancer
Genome Atlas (TCGA)17 Class I HLA calling was performed
using OptiType19 for 9,957 samples. For a non-cancer dataset,
we obtained HLA genotypes from the National Marrow
Donor Program (NMDP).18 Class I HLA typing was per-
formed using a mix of DNA and sequence-based techniques
for 13,996 participants. For each individual, we calculated
their predicted self-immunopeptidome size as the number of

distinct peptides predicted to bind to their set of class
I MHCs. To control for any effect from differing ethnicities
skewing the frequencies of certain HLA alleles between the
two datasets, we first restricted our data to the individuals
with Caucasian ethnicity (TCGA n = 6,415, NMDP
n = 7,867). We then tested if the two distributions were
statistically different from each other by performing a T test.

Tallying mutations and neoantigens in TCGA

TCGA mutation information was tallied by Ellrott et al.40 and
downloaded from the Genomic Data Commons (GDC)
(https://gdc.cancer.gov/about-data/publications/mc3-2017; id:
8b851024-2915-4d66-8a84-d03199b616fd; filename: mc3.
v0.2.8.CONTROLLED.maf.gz). Class I HLA genotypes were
performed by Thorsson et al.17 and downloaded from the
GDC (https://gdc.cancer.gov/about-data/publications/panim
mune; id: cf05dd5-9653-497a-8c7e-45ba0d1d237a; filename:
OptiTypeCallsHLA_20171207.tsv). pMHC predictions were
performed as described in Thorsson et al.17

Survival analysis in TCGA

TCGA clinical data was obtained from Liu et al.20 Supplementary
Table S1. Cox proportional hazard models were built using the
survival package in R, using the progression free interval variable
“PFI.1” from Liu et al.20 Covariates in survival models were “age at
initial pathologic diagnosis”, “gender”, “race”, and “cancer type”.
Tumor stage was only available for a subset of cancer sites, so was
excluded as a covariate from these pan-cancer survival models.

Comparing presentation of TCGA mutations (in vivo) to
simulated mutations (in silico)

All non-synonymous SNVs from the TCGA mutation file
were used, and the frequency of every possible amino acid
change was tallied (Supplementary Figure 4). These amino
acid change frequencies were then used to generate a pool
of 50,000 random amino acid changes across the reference
human proteome. First, 50,000 positions were randomly
selected across the proteome. For each position, the reference
amino acid was randomly mutated to a different amino acid
using the measured amino acid change frequencies from the
TCGA data. All peptides containing these mutations had
pMHC predictions generated for all available HLA alleles
(5,456,375,705 unique combinations), and results were stored
in a database for querying.

For each TCGA subject, a random sample of the above
simulated mutations was selected to match the size of the
number of non-synonymous SNVs from that subject. Of
these selected mutations, all pMHCs corresponding to this
subset of random mutations and that TCGA subject’s specific
HLA genotype were selected and tallied, acting as a matched,
simulated pMHC repertoire.

Identification of expressed SNVs in TCGA

To determine if a TCGA SNV is expressed, we used the
Samtools41 v0.1.8 mpileup command to obtain all bases
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seen at the genomic coordinate of the SNV from the RNA-
seq bam file of that subject. An SNV was classified as
expressed if the mutated base was observed at least three
times.

Measuring differences in variant position usage from
TCGA pMHCs compared to in silico pMHCs

This analysis was performed for each peptide length sepa-
rately. For each subject, we first enumerate the variant posi-
tion usage within the peptides from TCGA pMHCs, and
repeat this for the in silico pMHCs. For each subject, we
then filter the data to retain positions which have at least
one pMHC with the variant at that position from both the
TCGA and in silico sets. We then calculate the frequency that
each position is used by dividing the count of each position by
the number of peptides of that length in the subject. We then
calculate delta, the difference in these frequency values for the
TCGA pMHCs compared to the in silico pMHCs. For each
position, we perform a T test on these delta values to see if
there is evidence that they are significantly different from
zero. For visualization, we plot the mean of these delta values
for each position, with bars showing the 95% confidence
interval on the mean as reported by the T test. We use the
Bonferroni correction to adjust the p-values for multiple
testing.

Code and data availability

All custom code relating to the prediction of the self-
immunopeptidome is available at https://github.com/scottd
brown/self-immunopeptidome_cancer/. The predicted human
immunopeptidome dataset is available at http://doi.org/10.
5281/zenodo.1453418.

Abbreviations

UCEC Uterine corpus endometrial carcinoma
THCA Thyroid carcinoma
TCGA The Cancer Genome Atlas
STAD Stomach adenocarcinoma
SNV Single Nucleotide Variant
SKCM Skin cutaneous melanoma
SD Standard Deviation
READ Rectum adenocarcinoma
PRAD Prostate adenocarcinoma
pMHC Peptide-MHC
PFI Progression Free Interval
OV Ovarian serous cystadenocarcinoma
NMDP National Marrow Donor Program
MS Mass Spectrometry
MHC Major Histocompatibility Complex
LUSC Lung squamous cell carcinoma
LUAD Lung adenocarcinoma
LIHC Liver hepatocellular carcinoma
LGG Brain lower grade glioma
KIRP Kidney renal papillary cell carcinoma
KIRC Kidney renal clear cell carcinoma
HR Hazard Ratio
HNSC Head and neck squamous cell carcinoma
HLA Human Leukocyte Antigen
GBM Glioblastoma multiform
Cox-PH Cox proportional hazard

COAD Colon adenocarcinoma
CI Confidence Interval
CESC Cervical squamous cell carcinoma and endocervical

adenocarcinoma
BRCA Breast invasive carcinoma
BLCA Bladder urothelial carcinoma
AIC Akaike Information Criteria
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