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Abstract

μ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the CRYM 
gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it 

binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine 

reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations 

in CRYM can result in non-syndromic deafness, while its aberrant expression, predominantly 

in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and 

inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% 

of individuals expressing ≥13 fold more CRYM mRNA than the median level. Ablation of the 

Crym gene in murine models results in the hypertrophy of fast twitch muscle fibers and an 

increase in fat mass of mice fed a high fat diet. Overexpression of Crym in mice causes a 

shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via 

β-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The 

history, attributes, functions, and diseases associated with CRYM, an important modulator of 

metabolism, are reviewed.
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Thyroid hormones (THs) are essential regulators of gene expression and metabolism 

and their precise control is therefore crucial to maintaining homeostasis and adapting to 

different environmental conditions. TH regulation is achieved at many levels and through 

multiple means, including synthesis, secretion, uptake into tissues, intracellular processing 

by deiodinases, and potentially binding to proteins involved in intracellular storage. Here, 

we review the TH binding protein, μ-crystallin (CRYM), that may play a key role in the 

latter process, intracellular sequestration and storage.
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T3 and T4 thyroid hormone (TH) are produced in the thyroid, though the thyroid 

primarily produces T4 and less than 20% of the TH it releases is T3 (Abdalla and 

Bianco 2014). Triiodothyronine (T3) is primarily produced peripherally in the body via 

the monodeiodination of thyroxine (T4) (Chopra 1977). THs typically act as transcription 

factors by binding to thyroid hormone receptors (TRs). T3 has a 10-fold higher affinity 

for TRs than T4 and therefore, it is a more potent transcription factor (Abdalla and 

Bianco 2014). Liganded and unliganded TRs act as strong regulators of metabolism and 

thermogenic homeostasis (Larsen et al. 1981) primarily by affecting transcription of genes 

containing thyroid response elements (Brent 2012).

The ability to bind TH with high affinity suggests that μ-crystallin may play a role in 

regulating TH levels by controlling the availability of TH to interact with receptors, with 

possible downstream consequences to physiology and metabolism. Reed et al. (2007) have 

observed on a 2D proteomic gel of skeletal muscle biopsies taken from 3 individuals with 

FSHD and 2 healthy individuals that μ-crystallin showed increased expression and was 

the only differentially expressed protein in comparing individuals with facioscapulohumeral 

muscular dystrophy (FSHD) to healthy individuals (Reed et al. 2007). In order to study 

increased levels of skeletal muscle μ-crystallin, which was at that time a candidate for 

the then unknown pathological protein in FSHD, they constructed a transgenic mouse 

specifically overexpressing μ-crystallin in skeletal muscle, the Crym tg mouse. At the time, 

little was known about the pathological agent in FSHD, although Double Homeobox 4 

(DUX4) is now widely believed to determine disease pathology (Tawil et al. 2014).

Crym tg mice were created to specifically overexpress μ-crystallin in skeletal muscle by 

placing the mouse Crym open reading frame under the control of the human skeletal 

actin promoter (ACTA1) and the human slow troponin I enhancer (TNNI1). The transgenic 

plasmid incorporated randomly into intron 12 of the Cntn6 gene after oocyte injection. The 

resultant transgenic mice were bred to homozygosity to be used to measure the effects of 

high μ-crystallin expression in skeletal muscle (Kinney et al. 2021).

Discovery of μ-Crystallin

μ-Crystallin was first identified in 1957 by Tata who called the protein a thyroxine-binding 

protein (Tata 1958). Hashizume et al. subsequently showed the same protein that they 

called Factor b, could bind T3 and T4 in the presence of NADH or preferably NADPH 

(Hashizume et al. 1986), the latter dinucleotide causing the increased binding capacity 

of cytosolic 3,5,3’-triiodo-L-thyronine (T3)-binding protein (CTBP), the next name for 

μ-crystallin (Hashizume et al. 1989a). NADP bound to CTBP (μ-crystallin) enhanced the 

presence of T3 in the nucleus of rat kidney cells at sites that differed from other nuclear 

T3 sites (Hashizume et al. 1989b), whereas NADPH diminished the amount of nuclear T3 

(Hashizume et al. 1989c). Maximal activation by NADP or NADPH was at concentrations of 

0.1 μM and 25 μM respectively, 20 and 4 times less, respectively, than physiological levels 

(Hashizume et al. 1989d), suggesting that μ-crystallin in cells was likely to be bound to both 

NADP and NADPH. CTBP was shown to increase cellular and nuclear uptake of T3 as well 

as decrease cellular and nuclear efflux of T3 in addition to suppressing expression of thyroid 

hormone responsive genes (Mori et al. 2002). Kobayashi et al. (1991) further characterized 
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μ-crystallin as a dimer of two identical 38,000 Da subunits. At the time, it was referred to as 

p38CTBP, to distinguish it from a 58 kDa thyroxine-binding protein, p58CTBP (Hashizume 

et al. 1989a). Wistow and Kim (1991) gave μ-crystallin its current name after they found the 

protein highly expressed in the lens of some marsupials. More recently, μ-crystallin has been 

shown to function as a ketimine reductase in addition to its activity as a NADPH-regulated 

thyroid hormone binding protein (Hallen et al. 2011; Hallen et al. 2015a, b; Hallen and 

Cooper 2017).

Temporospatial expression of CRYM

μ-Crystallin is predominantly expressed in the cerebral cortex, heart, skeletal muscle, 

prostate, and kidney (Thul et al. 2017). Temporally, Crym expression in mice gradually 

increases from embryonic day 10.5 until its zenith at embryonic day 14.5, when the brain 

and inner ear have the highest expression. Expression subsequently decreases gradually 

and falls sharply postnatally in most tissues. Some Crym expressing organs such as the 

renal medulla of the kidney increase in expression of Crym postnatally while other organs 

continue to express Crym, albeit at lower levels than in utero (Smith et al. 2019). CRYM 
mRNA in humans is expressed at its highest levels in the basal ganglia of the brain followed 

by the heart; at the protein level, μ-crystallin is most highly expressed in the basal ganglia, 

cerebral cortex, kidney and prostate (data obtained from the normalized Consensus Dataset 

of the Human Protein Atlas) (Uhlen et al. 2015). Subcellularly, μ-crystallin localizes to 

the cytosol (Kobayashi et al. 1991). In humans, μ-crystallin is also expressed in the inner 

ear where two, rare mutations, X315Y and K314T, cause Deafness, Autosomal Dominant 

40 (Abe et al. 2003). There are no other illnesses in which CRYM has been implicated, 

although it’s aberrant expression has been associated with amyotrophic lateral sclerosis 

(Fukada et al. 2007; Daoud et al. 2011; Hommyo et al. 2018), facioscapulohumeral muscular 

dystrophy (FSHD) (Reed et al. 2007; Vanderplanck et al. 2011), endotoxin-induced uveitis 

(Imai et al. 2010), schizophrenia (Middleton et al. 2002; Miklos and Maleszka 2004), and 

Huntington’s Disease (Francelle et al. 2015).

Thyroid hormones and their receptors

THs are crucial affecters of metabolism and thermogenesis, with 30% of resting energy 

expenditure under their control (Silva 2005). Significant changes in the levels of THs 

lead to illness. Hypothyroidism can cause depression, cardiovascular disease, fatigue and 

lethargy, and weight gain, among other consequences (Bello and Bakari 2012). Conversely, 

hyperthyroidism results in a wide range of largely distinct maladies, such as heart 

palpitations, fatigue, weight loss, and muscle weakness, among others (Mansourian 2010). 

Given their centrality to biological systems, the production of THs is under tight regulation.

Regulation and synthesis of thyroid hormones.

TH production is governed by the Hypothalamic-Pituitary-Thyroid axis (Mendoza and 

Hollenberg 2017). Thyrotropin-releasing hormone neurons located in the paraventricular 

nucleus of the hypothalamus control secretion of thyrotropin releasing hormone (TRH) in 

response to THs (Morley 1979; Yarbrough 1979), Agouti Related Peptide (AgRP) (Fekete et 

al. 2002), Neuropeptide Y (NPY) (Fekete et al. 2001), cocaine and amphetamine-regulated 
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transcript (Serrano et al. 2014; Fekete et al. 2000), norepinephrine (Zimmermann et al. 

2001), and leptin (Harris et al. 2001). These factors are directly and indirectly regulated 

by environmental stimuli such as cold exposure (Sotelo-Rivera et al. 2017), teat suckling 

(Sanchez et al. 2001), and shortage of food (Legradi et al. 1997; Mihaly et al. 2000) and the 

TH feedback loop, among other factors (Rodriguez-Rodriguez et al. 2019).

Upon secretion of TRH by the hypothalamus, the hormone enters fenestrated primary portal 

capillaries connected to the anterior pituitary pars distalis (Rodriguez-Rodriguez et al. 2019). 

TRH binding to its receptor (TRH receptor 1) in the anterior pituitary induces the synthesis 

and release of thyroid stimulating hormone (TSH) (Snyder and Utiger 1972; Heuer et al. 

2000). TSH then travels via the bloodstream to the thyroid gland where it binds TSH 

receptors (Schaefer and Klein 2011). This binding promotes the synthesis and release of 

the THs, T3 and T4. Approximately 80% of THs produced by the thyroid gland are T4 

(Pirahanchi et al. 2000) while 80% of T3 comes from the peripheral deiodination of T4 

(Schimmel and Utiger 1977), with the remaining T3 fraction generated by the intrathyroidal 

deiodination of T4 and by the direct synthesis of T3 within the thyroid gland itself (Deme et 

al. 1975; Kubota et al. 1984). T3 and T4 then travel via the bloodstream to peripheral organs, 

where they are taken up.

Thyroid hormone transport.

THs are transported into cells primarily by SLC16A2 (MCT8), SLC16A10 (MCT10), and 

SLCO1C1 (OATP1C1) which are largely specific transporters for T3 and T4 (Visser et al. 

2011). THs are also transported through more broadly acting transporters as well, such as 

SLC10A1 (Friesema et al. 1999; Visser et al. 2010), ABCB1 (efflux) (Mitchell et al. 2005), 

SLC7A5 and SLC3A2 (LAT1 and 4F2hc respectively, acting as a heterodimer), SLC7A8 
and SLC3A2 (LAT2 and 4F2hc respectively, acting as a heterodimer) (Jansen et al. 2005), 

and thirteen organic anion transporting polypeptides (OATP) (Jansen et al. 2005). Once in 

the cell, deiodinases remove one or more iodine atoms from T4 or T3 to convert T4 into T3 

or reverse T3 (rT3). T3 and rT3 can be converted into T2. Deiodinase 1 (DIO1) is responsible 

for the production of T3, rT3, and T2. Deiodinase 2 (DIO2) produces T3 from T4, and T2 

from rT3. Finally, deiodinase 3 (DIO3) is capable of producing rT3 and T2 from T4 and T3 

respectively (Pihlajamaki et al. 2005; Williams and Bassett 2011). rT3 and T2 are largely 

inactive biologically (Beckett and Arthur 1994; Senese et al. 2014).

Thyroid receptors.

In mammals, THs, primarily in the form of T3, bind to nuclear TRs α1 (Sap et al. 1986; 

Weinberger et al. 1986), β1 (Jhanwar et al. 1985), β2 (Hodin et al. 1989), β3 [rodent only] 

(Williams 2000), and β4 (Tagami et al. 2010). T3 can also bind to mitochondrial TRs p43 

(Casas et al. 1999) and p28 (Sterling et al. 1984), and to the plasma membrane TR p30 

TRα1 (Kalyanaraman et al. 2014). A number of additional isoforms of the TR subunits 

can be generated through alternative splicing of the THRA and THRB genes, including 

Δα1, Δα2 (Chassande et al. 1997), α2, α3, αΔE6 (Pantos and Mourouzis 2018), and Δβ3 

[rodent only] (Williams 2000). These do not bind TH and most instead act in a dominant 

negative fashion, competing against TH bound TRs for TRE sites in the genome (O’Shea 

and Williams 2002; Casas et al. 2006; Raparti et al. 2013; Watanabe and Weiss 2018).
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T3 binds to TRs with a KD = 0.06 nM. T4 can also bind to thyroid hormone receptors, 

though with a much lower affinity, KD = 2 nM (Sandler et al. 2004). TH binding to 

TRs alters the conformation of the protein affecting its ability to bind DNA (Apriletti et 

al. 1998). TRs act as transcriptional regulators as ligand-bound or unbound monomers, 

homodimers, heterotrimers, homotrimers (Mengeling et al. 2005), or most commonly as 

heterodimers with retinoid X receptors (RXR) (Velasco et al. 2007). TRs bind to thyroid 

hormone response elements (TREs), sequences in the genome that regulate transcription 

of associated genes. There are three consensus TRE sequences: direct repeat 4 (DR4) 

AGGTCAnnnnAGGTCA, a palindrome AGGTCATGACCT, and an inverted palindrome 

with a 6 base pair gap (IP6) TGACCTnnnnnnAGGTCA (Liu et al. 2020). Both unliganded 

and ligand-bound TRs can bind TREs to repress or promote transcription (Graupner et al. 

1989). Some TRE sites are bound by unliganded TR and prevent transcription until TH 

binds to the receptor, while some TRE sites are repressed by TH-bound TR. The same 

is true with TRs acting as transcriptional activators (Eckey et al. 2003). There are many 

different ways activation or repression of gene expression can occur through the multitude 

of THs, TRs, RXRs, TREs, and various combinations thereof. The diversity of mechanisms 

by which THs can act through TRs, RXRs and TREs may help explain its ability to regulate 

so many different cellular and bodily functions and physiology, and why regulation of the 

unifying factor, TH, is so important.

μ-Crystallin (CRYM).

CRYM, the gene encoding CRYM mRNA and the μ-crystallin protein, is located at 16p12.2 

in the human genome. The gene is 64.2 kb long, encoding a protein of 314 amino acids 

with a calculated molecular mass of 33.8 kD. Similarly, in mice, the Crym gene is located 

at 7qF2, is 15.7 kb long, and encodes a 313 amino acid protein, with a calculated molecular 

mass of 33.5 kD. μ-Crystallin binds strongly to T3 with a KD = 0.3 nM (Beslin et al. 1995) 

[see also Hallen et al. 2015a]. The crystal structure of mouse μ-crystallin has been solved to 

1.75 Å. Five residues in the protein form a potassium ion binding pocket: Leu130, Gly219, 

Cys283, Lys285, and Thr287 (Borel et al. 2014). T3 binds to murine μ-crystallin through the 

hydrophobic interactions of Phe58, Phe79, and Val49 as well as Arg229. Ser228 and Arg47 

form hydrogen bonds with T3. Finally, Lys75, Arg118, Ser228, and Leu292 interact with T3 

through water molecules (Borel et al. 2014).

μ-Crystallin in animals.

μ-Crystallin may play a role in adapting metabolism to meet the specific energetic 

requirements determined by genetic and environmental factors. Joshi et al. showed in 2017 

that the sleeping breath rate of female Crym knockout (KO) mice was higher than controls 

(Joshi et al. 2019). Serum T3 and T4 concentrations are decreased while influx and efflux of 

T3 is increased in Crym KO mice (Suzuki et al. 2007). It’s possible that Crym KO mice have 

higher levels of anaerobic glycolysis due to lower levels of free cytoplasmic TH, causing an 

increased buildup of lactate, which may be indirectly cleared by a higher breath rate (Ducros 

and Trippenbach 1991). Indeed, Crym KO mice had hypertrophy of glycolytic fast twitch 

Type IIb muscle fibers (Seko et al. 2016) and when Crym KO mice were placed on a high 

fat diet they had increased fat mass as assayed by computer tomography compared to control 

mice on the same diet (Ohkubo et al. 2019).
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μ-Crystallin appears to play an important role in environmental and metabolic adaptation in 

other mammals as well. CRYM levels in the hypothalamus of dogs are significantly lower 

than in the hypothalami of wolves and coyotes (Saetre et al. 2004). This may be a difference 

in regulation of TRH production since TRH is produced in the hypothalamus which 

ultimately causes the production of TH. TH in the hypothalamus acts in a negative feedback 

loop to inhibit the production of TRH (Fekete and Lechan 2007). Lower levels of CRYM in 

the hypothalami of dogs may allow for greater inhibitory effects of TH on TRH production, 

reflecting adaptation to differences in food availability and shelter of domesticated dogs 

versus wolves and coyotes. Mukai et al. (2009) used microarrays and qPCR to measure 

decreased levels of CRYM in the hypothalamus of song sparrows in autumn compared to 

spring, possibly implicating μ-crystallin again in controlling metabolic rate in relation to 

seasonal changes and the availability of food. Hinaux noted polymorphisms present in crym 
in Astyanax mexicanus surface fish compared to the same species of fish that dwell in 

caves devoid of any light and plentiful food sources (Hinaux et al. 2015). Curiously, the 

skeletal muscles of the cavefish are resistant to insulin, and the fish have a lower metabolic 

rate and higher percent of body fat than their surface-dwelling cousins (Ojha and Watve 

2018). Chinese Erhualian pigs express 16-26 times more CRYM in their subcutaneous fat 

than in their visceral fat (intramuscular, retroperitoneal, and mesenteric adipose tissue) and 

CRYM is one of only seven genes specifically enriched in subcutaneous fat compared to 

visceral fat pads (Liu et a. 2019). Similarly, humans express 2.6-3.0 times more CRYM in 

their subcutaneous fat compared to their visceral fat (Serrano et al. 2014). Taken together, 

these observations suggest that μ-crystallin may play a role in the metabolic adaptation of 

organisms to the energy requirements and food availability in their environments.

μ-Crystallin as a ketimine reductase.

Although μ-Crystallin accounts for approximately a quarter of total lens protein in some 

Australian marsupials, the protein does not share sequence homology with other crystallins 

(Wistow and Kim 1991). Rather, mammalian μ-crystallin shares 31–33% amino acid 

sequence identity with bacterial ornithine cyclodeaminases (Kim et al. 1992) and 30% 

sequence identity with archaeal AF1665 AlaDH (Gallagher et al. 2004), suggesting a 

potential role for μ-crystallin in amino acid metabolism. Consistent with this, μ-crystallin 

is a ketimine reductase and uses both NADH and NADPH as a cofactor (Hallen et al. 

2011). μ-Crystallin acts on naturally occurring ketimines present in lysine degradation, Δ1-

piperideine-2-carboxylate (P2C) and an analog of P2C, Δ1-pyrroline-2-carboxylate (Pyr2C), 

at neutral pH (7.2) and more efficiently at an acidic pH (5.0) (Hallen et al. 2011; Hallen 

et al. 2015a, b; Hallen and Cooper 2017). Interestingly, μ-crystallin’s activity as a ketimine 

reductase is competitively inhibited by sub-nanomolar concentrations of T3 and T4, with 

KI= 0.60 nM and KI= 0.75 nM, respectively (compared to T3, which binds with a KD = 0.3 

nM) (Beslin et al. 1995). T2 and rT3 only minimally inhibit μ-crystallin (Hallen et al. 2015). 

μ-Crystallin has been proposed to play a role in the pipecolate pathway, the dominant lysine 

degradation pathway in the brain, as opposed to the saccharopine pathway, which breaks 

down lysine in the rest of the body (Hallen and Cooper 2017).
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CRYM and disease

CRYM expression in the brain.

Crym is highly specific to certain regions and cell types in the brain. Kim et al. (1992) 

were the first to measure μ-crystallin in the brain of kangaroo and humans in 1992. Arlotta 

et al. (2005) identified μ-crystallin expression in some corticospinal motor neurons and 

subcerebral neurons of layer V of the cerebral cortex. There is increased staining of μ-

crystallin in the hippocampus with higher expression distal to the dentate gyrus of mice, and 

gradually diminishing proximally (Lein et al. 2007). Fink et al. (2015) showed μ-crystallin 

expression in the cortex to be limited to spinally projecting corticospinal motor neurons, and 

not in layer V neurons sending projections either intracortically or corticofugally. They also 

documented μ-crystallin in the dorsal, lateral, and ventral funiculi of the cervical and lumbar 

spinal cord and spinal gray matter of mice.

CRYM mRNA in man is expressed in most areas of the brain assessed by GTEx (amygdala, 

anterior cingulate cortex, caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, 

hippocampus, nucleus acumbens, putamen) but not in the substantia nigra or the spinal cord 

(GTEx Consortium 2013). The absence of CRYM mRNA in human spinal cord does not 

agree with the findings of Fink et al. (2015) in mice. This incongruency may be due to a 

difference in species, condition, or due to temporal expression of mRNA versus protein. At 

the mRNA level the nucleus acumbens expresses the most CRYM (GTEx Consortium 2013). 

Because labeling for μ-crystallin can clearly delineate the neuronal structures in the brain 

many researchers use its expression as a regional marker.

Huntington’s disease.

μ-Crystallin’s increased presence and function in the brain may have implications for 

disease. CRYM expression is significantly decreased in human caudate nucleus and 

cerebellum in individuals with Huntington’s disease (Hodges et al. 2006). Crym also 

shows decreased expression in the brains of R6/2, BACHD, and Knock-In 140 CAG mice 

(Brochier et al. 2008; Francelle et al. 2015), murine models of Huntington’s disease, and 

may play a neuroprotective role in striatal medium-size spiny neurons in Huntington’s 

disease (Francelle et al. 2015).

Amyotrophic Lateral Sclerosis.

μ-Crystallin has also been associated with amyotrophic lateral sclerosis (ALS). In a mouse 

model of familial ALS, SOD1L126delTT, Crym shows an approximately 26-fold increase in 

expression in the spinal cord from pre-symptomatic to post-symptomatic mice (Fukada et al. 

2007). Two mutations, R169C and H16P, in CRYM have been associated with sporadic ALS 

(Daoud et al. 2011); a recurrent mutation has also been identified in a mixed pool of familial 

and sporadic ALS patients (Pensato et al. 2020). The human CRYM gene is approximately 

2.7 Mb away from a 37.8 Mb locus with genetic linkage to familial ALS (Sapp et al. 2003). 

μ-Crystallin progressively decreases in expression in the pyramidal tracts in ALS patients, 

in a mosaic expression pattern and leading to its total absence in the distal regions of the 

pyramidal tract (e.g., lateral and anterior corticospinal tracts of the spinal cord). Hommyo et 

al. (2018) suggest that this expression pattern may reflect the “dying back” phenomenon, in 
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which progressive neurodegeneration begins with more distal tissues and axons. In addition, 

miR-155 and miR-142, predicted to be regulators of CRYM, are increased in the spinal cord 

of individuals with sporadic ALS (Figueroa et al. 2016).

Schizophrenia.

Individuals with schizophrenia show decreased CRYM in Brodmann area (BA) 9 of the 

dorsal prefrontal cortex (PFC) (Middleton et al. 2002; Arion et al. 2007), as well as BA 

46 of the PFC at the mRNA (Martins-de-Souza et al. 2009a) and protein level (Martins-de-

Souza et al. 2009b). Martins-de-Souza et al. (2010) reported the decreased expression of 

μ-crystallin in the mediodorsal thalamus of the brain in individuals with schizophrenia as 

well as a negative correlation between μ-crystallin levels and duration of the disease. By 

contrast, Hakak et al. (2001) reported increased levels of CRYM in BA 46 of the PFC 

in individuals with schizophrenia. μ-Crystallin also increases in the corpus callosum of 

individuals with schizophrenia (Sivagnanasundaram et al. 2007).

CRYM is not implicated broadly in many neurologic disorders, however. For example, 

no associations between major depressive disorder or bipolar disorder have been observed 

(Johnston-Wilson et al. 2000; Beasley et al.2006).

CRYM as a potential therapeutic for psychiatric disorders.

CRYM appears to play an important, though yet unknown, role in the brain. Walker 

et al. (2020) show that Crym overexpression in the medial amygdala of adult mice 

can recapitulate the transcriptional and behavioral effects of adolescent social isolation. 

Amazingly, social isolation of adult mice does not result in these same changes, suggesting 

that Crym overexpression in the medial amygdala of adult mice can revert the brain to 

a more plastic state associated with adolescence (Walker et al. 2020). This raises the 

eventual possibility, though technically still unachievable, that overexpressing CRYM in 

human medial amygdala could be used to reprogram individuals to become more resilient to 

some psychiatric disorders (Walker et al. 2020).

CRYM and non-syndromic deafness.

Autosomal dominant deafness-40 (DFNA40), a non-syndromic deafness in man, is the only 

disease that is currently known to be caused by mutations in CRYM. It is not associated 

with any intellectual, structural or other dysfunctions. Two heterozygous mutations were 

identified at the C-terminus of μ-crystallin, X315Y and K314T. The K314T mutation 

segregated in an autosomal dominant fashion, while the X315Y mutation was a de novo 
change (Abe et al. 2003). A third heterozygous mutation, P51L was later found to associate 

with DFNA40. This mutation also segregates in an autosomal dominant fashion, further 

confirming the inheritance pattern of DFNA40 (Wang et al. 2020). The severity of hearing 

loss varies with the mutations noted above. Moderate bilateral hearing impairment (50–60 

dB) has been observed in the individual with the X315Y mutation, starting at 19 months of 

age and progressing to a hearing loss of 70 dB by age 13. Individuals with the K314T show 

severe bilateral hearing loss (80–90 dB) starting at 1 year old, with no further progression 

(Abe et al. 2003). Individuals with the P51L mutation have moderate to severe hearing 
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loss (50–110 dB) without progression, though only one individual was followed for 4 years 

(Wang et al. 2020).

Correlating these auditory changes with changes in the activities of μ-crystallin is 

challenging. The X315Y mutation in μ-crystallin showed a similar binding affinity to T3 as 

wild type μ-crystallin, but the K314T mutation in μ-crystallin was unable to bind to T3 at all 

(Oshima et al. 2006). When expressed in COS-7 cells, the X315Y mutation in μ-crystallin 

localizes to vacuoles and the K314T mutation in μ-crystallin localizes perinuclearly, in 

contrast to the wild type protein, which is cytoplasmically distributed (Abe et al. 2003). 

Although CRYM-X315Y can bind T3, its sequestration in vacuoles may reduce its access 

to cytoplasmic THs. Alternatively, these μ-crystallin mutants may affect potassium ion 

recycling of the endolymph, a function of lateral fibrocytes of the spiral ligaments and the 

spiral limbus fibrocytes, where Crym is highly expressed (Abe et al. 2003)

Genetics of CRYM

CRYM has a mutation rate of 10−4.9127 mutations per chromosome (Samocha et al. 2014), 

which is outside of the definition of a constrained gene (Samocha et al. 2014), i.e. a 

gene in which mutations are likely deleterious and result in their negative selection and 

removal from the gene pool. Congruent with the mutation rate, there are 209 “common” 

mutations (variants with a minor allele frequency [MAF] of at least 1%) in the 1000 

Genomes Phase 3 dataset (www.internationalgenome.org/data). However, there is only one 

common exonic variant, rs34045013, a synonymous mutation in exon 8. Rs34045013 is only 

a common variant in African populations; its MAF does not rise to a frequency of 1% in 

European, East Asian, South Asian, or American populations in the 1000 Genomes Phase 3 

dataset, though it is a common variant in the African American population examined in the 

GO Exome Sequencing Project (Tennessen et al. 2012). To the best of our knowledge, 

there are no CRYM null individuals. One individual has been identified with copy 

number loss of one chromosome [GRCh37/hg19 16p12.2(chr16:21313377-21947230)x1] 

where exon 1 of CRYM transcript variant 1 (RefSeq ID: NM_001888.5), the longer 

of the two CRYM variants observed in humans, is lost. A second individual shows 

a homozygous deletion [GRCh37/hg19 16p12.2(chr16:21300997-21308651)x0] of either 

intron 1 of CRYM transcript variant 1, or the putative promoter/upstream region of CRYM 
transcript variant 2 (RefSeq ID: NM_001376256.1). In contrast to the absence of CRYM 
null individuals, there are 22 individuals with a CRYM copy number gain (3 copies as 

opposed to the normal 2 [diploid] copies) and one individual with maternal uniparental 

disomy without copy number change in NCBI ClinVar.

Rs3848259 is a “common” variant that occurs in the 5’ untranslated region (UTR) of CRYM 
transcript variant 1 and is upstream of CRYM transcript variant 2. Rs3848259 is present 

in approximately 24.8% of the European population while being present in only 5.0% 

of the African population according to data from the ALFA Project (Phan et al. 2020). 

Furthermore, rs3848259 is located in a DNase hypersensitive region (Miga et al. 2015), a 

ZIC3 and ZNF341 transcription factor binding site (Fornes et al. 2020), and a CpG island 

(Gardiner-Garden and Frommer 1987). Rs3848259 alters one of the two most conserved 

base pairs in the DNA binding sequence motif of ZIC3, CC(C/T)GCTGGG (Ahmed et al. 
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2020) (underlined), from a cytosine to a guanine. This may inhibit the transcription factor 

ZIC3 from binding to the 5’UTR/genic upstream region potentially affecting transcription 

of CRYM. In one of the two consensus DNA binding motifs in ZNF341, rs3848259 affects 

a non-conserved base pair in the sequence, TGGAACAGCCNC (underlined) (Beziat et al. 

2018; Frey-Jakobs et al. 2018).

Because it is located in an epigenetically active region in the 5’UTR of CRYM transcript 

variant 1 and upstream of CRYM transcript variant 2, rs3848259 and its effects on ZIC3 and 

ZNF341 binding may alter transcription of CRYM in the approximately 25% of individuals 

of European descent and 5% of individuals of African descent in whom this common variant 

is found. Humans display a wide range of expression of CRYM in skeletal muscle. In 803 

transcriptomes in GTEx Analysis V8, CRYM levels vary from 0 transcripts per million 

(TPM) to 39.1 TPM with a median of 0.1584 TPM. Most people express little to no CRYM 
in their skeletal muscle, yet 15.44% express 2 TPM of CRYM or more, and 5.85% of 

people express CRYM at levels of 10 TPM or greater (GTEx Consortium 2013). SNPs like 

rs3848259 as well as other factors may play a role in the large degree of heterogeneity of 

CRYM expression seen skeletal muscle.

Effects of high Crym expression

μ-Crystallin has been shown to modulate TH levels. Precise control of TH levels is crucial 

to physiology and metabolism. Serious diseases can arise from inadequate or overabundant 

levels of TH. Nevertheless, the most abundant tissue in humans, skeletal muscle, displays a 

wide range of CRYM levels (GTEx Consortium 2013). What effects does μ-crystallin have 

in individuals who express high levels of μ-crystallin? Kinney et al. explored this question 

with a transgenic murine model that specifically overexpresses Crym in skeletal muscle 

(Kinney et al. 2021).

Along with a 27.5- to 154-fold increase of Crym mRNA and a 2.6-to 147.5-fold increase 

of μ-crystallin protein, depending on which skeletal muscle was assayed, Kinney et al. 

(2021) observed a 192-fold increase in T3 in extracts of tibialis anterior (TA) muscle and 

a 1.2-fold decrease of serum T4 in Crym tg mice compared to control mice. Both changes 

were significant. The large increase in intramuscular T3 due to the increased expression of 

Crym may be the cause for some of the phenotypes they observed in Crym tg mice.

Crym tg mice have a decreased respiratory exchange ratio (RER), a metric that can be 

used to discriminate between carbohydrates and fat as energy sources (Lusk 1924). This 

decreased RER in Crym tg mice corresponds to a 13.7% shift towards increased utilization 

of fat as an energy source compared to controls. Consistent with this, gene ontology (GO) 

enrichment analysis of RNA-seq transcriptomic and LC.MS/MS proteomic data revealed 

significantly enriched ontological terms involving metabolism and muscle contraction. 

Kinney et al. (2021) found that almost all fiber types in Crym tg mouse soleus (but not 

TA) muscle had a smaller minimum Feret’s diameter. Other groups have shown that slow 

twitch muscles like the soleus (Close 1965) mostly utilize β-oxidation of fat as opposed to 

fast twitch muscles that primarily utilize glycolysis of carbohydrates (Kalmar et al. 2012) 

and have smaller fiber sizes (Schiaffino and Reggiani 2011). Thyrotoxic doses of TH cause 
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shifts in slow twitch mouse soleus, but not in fast twitch extensor digitorum longus (Freake 

and Oppenheimer 1995) muscle towards faster twitch characteristics such as shortened 

isometric twitch duration and increased rate of tension development (Fitts et al. 1984). By 

these metrics, TH has a greater impact on slow twitch muscle than fast twitch muscle. Taken 

together, the shift in metabolism from glycolytic towards β-oxidative in Crym tg mice, the 

concomitant GO terms at the transcriptomic and proteomic level, and the smaller soleus 

muscle fibers and the unchanged fiber sizes in fast twitch TA in the TH rich muscle of Crym 
tg mice all point towards μ-crystallin shifting the metabolic and morphologic state of the 

muscle through the regulation of TH. Although this is difficult to reconcile with the fact that 

most muscle fibers in mice are fast twitch, a large proportion of them are also oxidative (i.e., 

Type IIA) and thus may be subject to the same shifts in gene regulation and morphology 

induced by Crym and T3 as soleus.

Although Crym tg mice show significant alterations in metabolism, transcripts and proteins 

expressed, and fiber size of slow twitch muscle, Crym tg mice do not show significant 

differences compared to controls in a number of physiologic tests including: specific 

isometric force of contraction, maximal rate of twitch force contraction/relaxation, grip 

strength, maximum treadmill running speed, and voluntary distance run. Fiber type as 

assayed by immunohistochemistry of myosin heavy chains, weight of most muscles and 

fat pads, diameter of TA muscle, percent of centrally nucleated fibers, voltage-induced 

Ca2+ transients, maximal amplitudes of transients and transient decay rates, total number of 

muscle fibers, and intramuscular fat were also unchanged compared to control mice (Kinney 

et al. 2021). Crym therefore appears to play an important but subtle role in skeletal muscle, 

through a mechanism that remains unknown.

Conclusions

μ-Cystallin binds thyroid hormones and can act as a ketimine reductase in the brain when 

unbound by TH. As demonstrated by a number of studies, μ-crystallin plays a crucial 

role in regulating the availability and level of thyroid hormone. Consequently, it’s of no 

surprise that μ-crystallin expression is tightly regulated both temporally and spatially. When 

mutated at particular moieties, μ-crystallin becomes less active or mislocalized, leading to 

nonsyndromic deafness, DFNA40. Inappropriate expression of CRYM may be involved in 

several neurologic disorders as well. Despite this tight regulation in many tissues, men and 

women can express a wide range of CRYM in their skeletal muscle. The regulatory elements 

that lead to this difference are still unknown, and the physiological consequences to humans 

with high vs. low levels of muscle CRYM are still unclear. Our studies of transgenic mice 

that express high levels of muscle μ-crystallin suggest that the physiological consequences 

are significant but subtle, with perhaps the most intriguing result indicating a change in the 

use of fat vs. carbohydrate as an energy source. For now, however, CRYM’s physiological 

role in man remains to be determined. Future studies will help define its function at the 

cellular, tissue and system levels.
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