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Abstract

The rapid progress of the past three decades has led the geroscience field near a point where 

human interventions in aging are plausible. Advances across scientific areas, such as high 

throughput “-omics” approaches, have led to an exponentially increasing quantity of data available 

for biogerontologists. To best translate the lifespan and healthspan extending interventions 

discovered by basic scientists into preventative medicine, it is imperative that the current data are 

comprehensively utilized to generate testable hypotheses about translational interventions. 

Building a translational pipeline for geroscience will require both systematic efforts to identify 

interventions that extend healthspan across taxa and diagnostics that can identify patients who may 

benefit from interventions prior to the onset of an age-related morbidity. Databases and 

computational tools that organize and analyze both the wealth of information available on basic 

biogerontology research and clinical data on aging populations will be critical in developing such 

a pipeline. Here, we review the current landscape of databases and computational resources 

available for translational aging research. We discuss key platforms and tools available for aging 

research, with a focus on how each tool can be used in concert with hypothesis driven experiments 

to move closer to human interventions in aging.
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1. Introduction

Aging is the primary risk factor for mortality and many common pathologies, including 

cardiovascular disease, stroke, dementia, and many cancers [1,2]. The rapidly growing 
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population of older individuals drives increases in the burden of age-related diseases 

worldwide [2]. Thus, developing interventions that maintain the overall health of aging 

populations is a critical challenge for healthcare in the 21st century.

Research into the biological mechanisms of aging has advanced rapidly over the last thirty 

years. These advances gained traction with the seminal discovery that mutations affecting 

the insulin and insulin-like growth factor signaling pathway allow the nematode C. elegans 

to live twice as long as wild-type animals [3-6]. The geroscience field has since discovered 

numerous genetic interventions that extend the lifespan of invertebrate models and a handful 

that extend lifespan in mice [7,8]. Furthermore, a variety of pharmacological interventions 

that extend lifespan in invertebrates have been identified, along with several that increase the 

longevity of healthy mice [9-12]. Ongoing clinical studies are testing a mechanistic target of 

rapamycin (mTOR) inhibitor to treat the age-related decline in immune function in humans 

[13]. Together, these data suggest that the tools developed by basic biogerontology research 

are on the verge of translation to the clinic.

Building a translational pipeline for interventions that target the aging process will require a 

systematic effort from stakeholders in many disciplines, including 1) basic scientists, who 

discover genes and interventions that promote longevity and ameliorate age-related 

pathologies in animal models, 2) bioinformaticians, who identify aging-related molecular 

changes and biomarkers that can predict age-related pathology, and 3) clinicians, who 

identify patients that will benefit from preventative interventions and perform clinical trials 

(Fig. 1).

This multidisciplinary effort will require computational tools to organize and analyze vast 

amounts data, make them accessible to researchers in different fields, and generate new 

insights from large datasets. Existing resources that incorporate aging research from basic 

science to clinical applications can form the foundation for translating biogerontology into 

clinically useful preventative medicine. Here, we review the available and emerging tools 

within the geroscience field, many of which may be useful for translational approaches. In 

Section 2, we review databases that compile information on aging-related interventions, 

molecular changes, pathologies, and the biological and clinical characteristics of aging 

populations. In Section 3, we address the application of computational methods in 

geroscience by reviewing tools for analyzing survival data and discussing machine learning 

and its applications in discovering new aging genes, interventions, and biomarkers.

2. Databases for aging research

A major challenge in translating geroscience is to collect and organize the many published 

observations of interventions that affect aging in animal models. Research groups have 

identified numerous genetic alterations and pharmacological agents that can modify lifespan, 

predominantly using short-lived invertebrate aging models, such as C. elegans, D. 
melanogaster, and S. cerevisiae. Transcription profiling technology has identified thousands 

of genes whose expression levels are altered by aging or by interventions, such as dietary 

restriction, that extend lifespan. Longitudinal studies in mammalian models, predominantly 

mice, have characterized genetic contributions to longevity and aging-related pathologies 
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and have identified diets and drugs that increase both lifespan and healthspan. Biobanks and 

cohort studies are integrating biological data, such as high-density genotyping, with 

electronic health records to uncover the origins of age-related disease in the clinic. Building 

a translational pipeline for biogerontology will likely require extensive use of many or all of 

these data types. Collecting these data from numerous primary publications and performing 

secondary analysis is prohibitively time consuming for most research groups. Several online 

databases have begun aggregating data on aging-related molecular and phenotypic changes, 

interventions, and clinical outcomes, enabling research groups to better integrate their work 

with relevant data from basic, pre-clinical, and clinical aging research. We focus our 

discussion on the most established of these databases, including the Human Aging Genomic 

Resources and Digital Aging Atlas databases (containing data on aging-related genes, 

molecular and phenotypic changes, and interventions); the Mouse Phenome Database 

(containing data on pre-clinical aging studies in mice); and centralized databases, such as the 

UK Biobank and the NIH GERA/RPGEH cohort that connect genetic and biological data on 

large real-world human populations to clinical information from health records (Fig. 2).

2.1. Human Aging Genomic Resources (HAGR) databases

The HAGR are a collection of databases and search tools that were developed by the 

research group of Dr. Joao Pedro De Magalhaes and are hosted at https://

genomics.senescence.info/. Initially launched in 2005, HAGR comprises six databases and 

complementary tools containing curated information on aging-related genes, phenotypes, 

and interventions in both humans and numerous animal models, all of which are available to 

the public without registration [14-17].

2.1.1. GenAge—One of the most broadly applicable resources in HAGR is GenAge. 

GenAge includes two curated, searchable datasets: “GenAge—human genes” and “GenAge

—model organisms” [8]. Since human mutations that directly affect longevity are not 

known, the 307 genes included in “GenAge—human genes” are primarily chosen based on 

homology to genes that affect longevity in other animal models. For example, growth 

hormone receptor (GHR) is included on the basis that GHR mutants affect longevity in 

mouse models [18]. Three additional genes are included because loss-of-function mutations 

at these loci cause progeroid conditions. “GenAge—human genes” has been used to conduct 

a meta-analysis of the systems biology characteristics of aging genes that concluded aging 

genes are often hubs of gene-gene interaction networks [19].

“GenAge—model organisms” is a dataset that includes hundreds of genes that affect aging 

in animals. Most of the data come from invertebrate models, but mouse, golden hamster, and 

zebrafish genes are also represented. These genes are included based on reports of a genetic 

manipulation (mutation, knockdown, or overexpression) causing a change in lifespan. Each 

database entry includes published data indicating why the gene was included, the magnitude 

and direction of the associated lifespan change, and homologous genes in other organisms. 

This provides a tool for researchers to identify previously published data on a gene of 

interest. The “GenAge—model systems” database could be used for systematic efforts to 

repeat lifespan data and to identify genes that cause similar lifespan changes when 
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manipulated in different animal models, thereby identifying genes that regulate aging 

through conserved mechanisms from invertebrates to mammals.

GenAge also includes a "Genes Commonly Altered During Aging" dataset. This dataset 

includes 73 genes with orthologues that are differentially regulated during aging in human, 

mouse, and rat models. They were identified based on a meta-analysis of available 

microarray data, with each gene cluster being filed under the name of the human orthologue 

[20]. While it is somewhat more out of date than other GenAge resources, being based on a 

2009 paper, this dataset can be a useful tool for identifying genes and biological processes 

that are robustly associated with aging or that can predict aging-related outcomes. However, 

the set of robustly changed genes included will be too small for many types of 

computational analysis.

2.1.2. GenDR—The GenDR database is a collection of genes that are involved in dietary 

restriction (DR). GenDR includes two searchable datasets: a dataset labeled “Gene 

Manipulations” cataloging “DR—essential genes” that interact genetically with DR, and a 

dataset labeled “Gene Expression” cataloging genes that are transcriptionally regulated by 

DR in mammals [16,21,22]. The "Gene Manipulations" dataset includes 214 genes from 

Schizosaccharomyces pombe, Saccharomyces cerevisiae, Caenorhabditis elegans, 
Drosophila melanogaster, and Mus musculus that are essential for lifespan extension by DR 

[21]. "GeneDR: Gene expression" is a separate dataset of 173 genes that are consistently 

differentially expressed during DR in multiple mammalian species, based on an analysis of 

available micro-array data [22].

2.1.3. DrugAge—HAGR also includes DrugAge, a curated database of published 

pharmacological interventions that have been tested for effects on lifespan [23]. This 

database includes 70 compounds that have been tested in mice, hundreds of compounds that 

have been tested in conventional invertebrate aging models, and many compounds that have 

been tested in non-conventional aging models, such as rotifers and crickets. Each compound 

entry includes the dosage and genetic background, as well as a graphical representation of 

each reported test of the compound and the percent change in lifespan, regardless of whether 

lifespan was increased, decreased, or not affected. Like GenAge, this database may 

ultimately help identify compounds that reproducibly extend lifespan in multiple 

invertebrate species. It may also identify conserved target proteins as prime candidates for 

translation into mammalian models of aging and disease. Additionally, meta-analysis of 

these data can potentially identify shared features or target protein networks associated with 

longevity enhancing drugs, leading to predictions of new lifespan extending therapies [24].

2.1.4. The Longevity Map—The Longevity Map is a curated database of genes, gene 

variants, and chromosomal locations that have been examined for an association with 

longevity in genome-wide association studies (GWAS), including negative results [25]. In 

addition to curating the large volume of data on genes associated with human longevity, the 

Longevity Map can be used in combination with other databases to identify genes that 

influence longevity, are differentially regulated with aging, or that may be involved in the 

pathogenesis of age-related diseases [17].
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2.1.5. AnAge—AnAge is an integrative database of longevity and life history data on 

over 4000 species [26]. It includes data on maximum species longevity as well as other 

mortality parameters and life history traits, such as body size, metabolic rate, and 

development schedules. It also includes a list of species with negligible senescence. An 

analysis of the life history data available in AnAge was able to conclude that metabolic rate 

does not correlate with longevity in eutherians or birds, after correction for body size and 

phylogeny, but that there is a positive correlation between longer developmental time and 

longer adult lifespan after correction for body size [27]. AnAge is now the most used 

resource in HAGR, based on the HAGR team’s publicly available tracking of site usage and 

citations, and it enables comparative biology studies that use genome sequence data or 

primary cell lines to explore the vast differences in longevity observed across taxa [17,28].

2.1.6. CellAge—Senescence, the irreversible halting of cell division, may be a 

contributor to human aging and disease [29,30]. CellAge is a curated database of genes that 

influence senescence in human cells, based on gene manipulation experiments reported in 

the literature [17]. In addition to improving understanding of cellular senescence, CellAge 

might be a useful tool for the development of senolytic drugs that aim to promote clearance 

of senescent cells to prolong lifespan or prevent age-associated pathologies.

2.1.7. HAGR analysis tools and applications—The HAGR databases are a valuable 

tool to research a gene or phenotype of interest. In addition, these databases can enable 

meta-analysis that generate new testable hypotheses. HAGR includes several tools that 

enable analysis of the data from multiple databases. Published analyses have begun using the 

data available in HAGR to identify new longevity regulating genes and drugs.

Of particular interest to translational geroscience, HAGR includes the Aging-Related 

Disease Genes (ARDs) tool [17]. The tool includes a database of genes that are associated 

with 20 different aging-related diseases based on an analysis of available GWAS data. While 

these genes can be downloaded in isolation, the tool also enables ARDs to be searched and 

cross-referenced with other databases in HAGR, including GenAge and the Longevity Map. 

This enables straightforward identification of genes that, for example, are likely to both 

influence development of aging-related diseases and that are differentially expressed during 

aging, allowing the formation of new hypotheses about how age-related changes lead to 

dysfunction.

For users with some coding experience, HAGR offers a Perl toolkit called Ageing Research 

Computational Tools (ARCT) [14,15,17]). ARCT consists of eight modules that allow for 

data-mining of the HAGR databases, interaction with public databases, such as GenBank, 

RefSeq, PubMed, etc., and prediction of protein-protein interactions or phylogenetic 

relationships similar to those found in HAGR databases.

Analyses of the data in HAGR have been used to identify new genes and drugs that regulate 

longevity. One study used the “DR—essential genes dataset” and publicly available gene-

gene interaction databases to identify genes that were predicted to be involved in DR on the 

basis of interactions with known DR—essential genes [21]. Testing a subset of these 
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candidates identified several new genes that are required for lifespan extension by DR in S. 
cerevisiae [21].

Another analysis used DrugAge data from C. elegans and machine learning to create a 

model that predicts novel longevity extending compounds based on the chemical and protein 

interaction characteristics of known longevity extending compounds [24]. They applied this 

model to over 6000 compounds from the Drug Gene Interaction Database and identified 20 

compounds with a high probability of expending lifespan [24]. While many of the identified 

compounds, such as temsirolimus, a pro-drug of rapamycin, and valspodar, an experimental 

chemosensitizer drug, represent exciting potential lifespan extending drugs, their results 

have not yet been confirmed through wet lab experiments.

Together, the resources available in HAGR represent a powerful centralized tool for a 

spectrum of geroscience applications, ranging from quickly identifying previous work on a 

gene or compound of interest to performing detailed meta-analyses. Existing studies provide 

a roadmap for how these resources can be applied to identify new genes and drugs that can 

regulate the aging process. In the future, larger scale studies could use the data available in 

HAGR to systematically test genetic and pharmacological manipulations that have been 

reported to extend lifespan for reproducibility across species, thereby identifying 

interventions for translation into vertebrate models and the clinic.

2.2. The Digital Aging Atlas (DAA)

Another de Magalhães group resource that complements HAGR is the Digital Aging Atlas 

(http://ageing-map.org/). The Digital Aging Atlas (DAA) is a collection of changes that 

occur during aging, ranging from gene expression changes to physiological and pathological 

changes [31]. The available phenotypic data focuses on human aging and is supplemented 

by gene expression changes collected from mice. The data available in the DAA can be 

searched by keyword or by choosing a phenotype or affected tissue from a list. Information 

is arranged hierarchically so that the entry for an age-associated change often links to the 

entries for related changes. For example, the entry for “wrinkles” links to “decreased 

amounts of collagen IV and VII, and abnormal elastin in dermis”, while the entry for IGF1 

links to “morning IGF-1 decline”. This organization makes the DAA an excellent tool for 

researchers to understand the importance of an age-related change of interest at different 

organizational levels, from the molecular to the physiological. The DAA also has built-in 

analysis tools that allow any numerical datum present in the DAA (mostly gene expression 

changes) to be compared against any other, facilitating meta-analysis of the data to identify 

new age-related correlations.

2.3. GeneWeaver databases

Numerous researchers have used -omics approaches, such as RNA-seq, micro-array studies 

and GWAS, to inquire about the genes and gene expression changes responsible for changes 

in longevity and age-related disease phenotypes. Meta-analysis of these data can be useful in 

identifying genes/gene networks that regulate aging or age-related phenotypes and 

biomarkers for age-related diseases. However, analysis of these data from the primary 
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literature is time consuming and requires a degree of bioinformatic expertise that is beyond 

the skill-set of many wet-lab biologists and clinicians.

GeneWeaver (https://geneweaver.org/) is an online repository of -omics data and a suite of 

analysis tools that was created to bring together -omics datasets and facilitate meta-analysis 

[32-35]. It contains almost 200,000 public gene sets incorporated from databases, including 

the Kyoto Encyclopedia of Genes and Genomes (KEGG), Molecular Signatures Database 

(MSigDB), the drug-related gene database of the Neuroscience Information Framework 

(NIF), and Online Mendelian Inheritance of Man (OMIM), among many others. Types of 

GeneWeaver Data that are returned when searching for “senescence OR aging OR 

longevity” include aging-related (1655 datasets), Gene Ontology (GO) term-based (71), 

Mammalian and Human Phenotype (63 and 109, respectively), Quantitative Trait Loci (409), 

Medical Subject Headings (231), gene expression (169), and drug-related gene sets (253) 

[34]. GeneWeaver is freely accessible and allows for the uploading of one’s own datasets 

(with the option to make public or private) to facilitate meta-analysis.

2.3.1. GeneWeaver analysis tools—Among the GeneWeaver tools available for use 

are the Combine, Jaccard Similarity, GeneSet Graph, STRING, and Ingenuity Pathway 

Analysis (IGA) tools. A more in-depth application of these tools and of the use of 

GeneWeaver in aging-related studies can be found in a recent publication [34]. Briefly, the 

Combine tool returns a single gene set from multiple input gene sets that counts the number 

of sets in which each gene is found. This can be useful for rapidly identifying genes that 

may be up- or down-regulated in related datasets, such as cellular senescence and functional 

decline. The Jaccard Similarity tool uses pairwise comparison of two gene sets to generate a 

Venn diagram that shows the overlaps of genes between the two sets. The degree of overlap 

between the two sets is summarized in the Jaccard Similarity coefficient, where 1.0 is 

perfect overlap and 0.0 is no overlap.

The GeneSet Graph tool, similar to the Combine tool, identifies common genes among 

multiple input gene sets, but instead of returning a single gene set, GeneSet Graph returns a 

partitioned set of genes and gene sets. For example, the GeneSet Graph tool has been used to 

identify the three most highly connected genes from 73 aging-related gene sets across six 

different species [34]. This tool could be used to rapidly identify genes that are common in 

many different gene sets and establish orthogonal relationships across species that were 

previously unknown.

The STRING and IGA tools focus more on fitting input data into existing protein interaction 

models and molecular pathways, respectively. STRING determines if a group of proteins is 

likely to have a higher degree of interaction than would be expected from a similar size set 

of proteins sampled randomly from the genome. For example, Bubier, et al. identified 10 

genes common to functional decline and senescence and determined that six of those genes 

interact in the MAP kinase pathway. Lastly, the IGA tool utilizes built-in algorithms to map 

input genes to existing molecular pathways. This could be useful, for example, in 

determining if a newly discovered longevity gene fits into pre-existing longevity pathways, 

such as the DR or insulin/insulin-like growth factor signaling pathways, or if it is sufficient 

to establish a novel longevity pathway.

Kruempel et al. Page 7

Transl Med Aging. Author manuscript; available in PMC 2020 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://geneweaver.org/


One possible application of GeneWeaver will be to identify mechanisms of lifespan 

extension that are common across species. GeneWeaver has been used to identify cross-

species gene homologues that are transcriptionally regulated by DR and by lifespan 

extending drugs in mouse and Drosophila [34]. GeneWeaver has also been used to identify a 

novel C. elegans lifespan regulator, Cd63, on the basis that it is present in a large number of 

aging-associated gene sets across multiple species [34]. In the future, GeneWeaver might be 

useful to identify genes whose transcriptional upregulation serves as a biomarker, to identify 

drugs that extend lifespan across species, and to identify the conserved mechanisms by 

which interventions extend lifespan across taxa.

Together, the database and tools afforded by GeneWeaver currently represent a user-friendly 

and pragmatic union to help facilitate meta-analysis. Several other publications exist that 

utilize GeneWeaver in ways less focused on aging, but also serve to illustrate the usefulness 

of the platform [32,33,35].

2.4. Model organism databases

2.4.1. Invertebrate model databases—Both HAGR and GeneWeaver provide sources 

of information and meta-analysis tools that enable new hypotheses to be formed from 

existing data. These analyses can be especially useful for researchers using invertebrate 

model systems, who can, for example, perform mechanistic studies on orthologues of genes 

that are implicated in mammalian aging or identify pharmacological interventions from 

DrugAge that have conserved effects on longevity in multiple species. In addition to HAGR 

and GeneWeaver, organism specific databases, such as the Saccharomyces Genome 

Database (https://www.yeastgenome.org/), WormBase (https://wormbase.org/#012-34-5), 

FlyMine (https://www.flymine.org/), and FlyBase (https://flybase.org/) can facilitate design 

of these studies [36-39]. These databases focus on species or taxa of interest (e.g. WormBase 

includes information for multiple nematodes species, while FlyMine includes data for 

multiple insect species) and include numerous types of data, such as gene and protein 

sequences, genome annotations from the ModEncode project, expression patterns, 

transcriptome data, proteome data, summaries of publications, and lists of investigators. The 

data can be accessed in multiple ways including simple searches for a gene or phenotype of 

interest, as well as more complex queries [40,41].

One critical aspect of study design in invertebrate model systems is pairing invertebrate 

genes with mammalian genes that are likely functional orthologues. Numerous existing tools 

are able to identify possible orthologues of a gene of interest based on conservation in 

nucleotide or protein sequence; however, it can be challenging to determine which genes 

from a lengthy list of homologous sequences may have a conserved function in humans and 

a distantly related invertebrate species. WORMHOLE is a recently developed webtool, 

hosted at http://wormhole.jax.org/, that aims to overcome this challenge by improving 

identification of gene orthologues with the least sequence divergence from a gene of interest, 

called least-diverged-orthologues or LDO’s. WORMHOLE uses 17 independently 

developed orthologue identification algorithms to identify possible LDOs, and then applies a 

second algorithm, developed using known LDO’s and machine learning, to identify LDO’s 

based on patterns in the initial set of predictions [42]. Despite its name, WORMHOLE 
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currently accepts Saccharomyces cerevisiae, Drosophila Melanogaster, Danio Rerio, and 

Mus Musculus genes, in addition to C. elegans and human genes, as either inputs or outputs. 

Together, these tools facilitate the design of studies to identify genes and drugs that regulate 

longevity and healthspan across taxa. Interventions that extend lifespan in multiple 

invertebrate species may represent promising targets for translation into mammalian pre-

clinical models.

2.4.2. The Mouse Phenome Database—Efforts to develop interventions that extend 

longevity and healthspan into mouse models present challenges that are distinct from 

simpler model systems. These challenges include identifying relevant genetic models to 

study longevity or particular age-related diseases, as well as deciding on the most important 

health parameters to measure and developing a detailed protocol, well in advance of starting 

a lengthy and expensive long-term study with a limited number of animals.

The Mouse Phenome Database (MPD) was developed by the Jackson laboratory to help 

overcome these challenges and facilitate meta-analysis by collecting, integrating, and 

providing tools to analyze mouse studies. The MPD includes extensive information on 

experimental protocols, genetic sequences, and phenotype data, including studies of 

longevity and other aging relevant endpoints [43-45]. MPD accepts data from any verifiable 

mouse strain or population, such as inbred, mutant, and transgenic strains and UMHET-3 

mice used in the National Institute on Aging Intervention Testing Program (ITP). The MPD 

currently houses data on over 1700 mouse strains [45].

Data available in the MPD include individual animal phenotypes of specific mouse strains as 

well as animals subjected to various interventions. The data are searchable by keyword. For 

example, searching the keyword “aging” as of this writing returns 53 “phenotype strain 

survey measures”, 11 “QTL phenotype measures”, 36 “phenotyping protocols”, and 2 

“collaborating centers”. Phenotyping projects are displayed in an easily navigable table with 

information, including the investigator, a detailed study protocol, associated references, a 

graphical display of data, statistics, and individual animal values.

MPD users can create an account (called MyMPD) to which they save project data to 

perform reproducible secondary analysis [45]. MPD has several tools available for 

secondary analysis. These include a correlation finder that enables users to easily compare 

values from different studies with the same strain and to identify correlations between 

phenotypes, such as strain lifespan. This allows users to form new hypotheses about strain 

traits that might underlie differences in survival. For example, MyMPD can be used to 

identify a (slight negative) correlation between BMI and lifespan in inbred strains for which 

both parameters have been measured in independent studies.

MyMPD also features a strain selection tool that enables users to rank the mouse strains 

used in a set of studies by their adherence to user-defined criteria, such as lifespan, body 

weight, food intake, etc. A large portion of the aging data available for secondary analysis in 

MyMPD originate from a series of phenotyping studies on inbred mouse strains conducted 

by the Nathan Shock Center at the Jackson Laboratories [46-48]. A published analysis used 

the MPD strain selection tool to identify a series of strains considered good candidates for 

Kruempel et al. Page 9

Transl Med Aging. Author manuscript; available in PMC 2020 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies of compounds that might extend lifespan or improve age-related health parameters 

[45]. Their criteria included “high alanine aminotransferase (ALT), low thyroxine (T4), low 

B cell percentage, high neutrophil percentage, high albumin: creatinine ratio, low gait score, 

low BMI, and short life span” [45].

The MPD data and the strain selection tool could be highly useful for pre-clinical evaluation 

of candidate lifespan and healthspan extending molecules, including compounds discovered 

in high-throughput studies on invertebrate models. The molecular targets of a compound of 

interest can be used, along with other tools, such as HAGR and GeneWeaver, to identify 

healthspan and disease phenotypes that a drug may alter. The MPD database can then be 

used to identify appropriate mouse models to test the hypothesis that a drug will affect 

survival or another pathologically relevant endpoint in mammals. Since MPD contains 

information about the point in mouse lifespan when age-related changes are observed, it may 

also be used to identify relevant timepoints for intervention studies. This approach could 

allow the study of healthspan phenotypes in pre-existing aged mouse populations without 

the time and expense of performing full survival studies in mice.

One barrier to the MPD reaching its full potential as a tool for pre-clinical translational 

aging studies is the relative paucity of data available in the database on aging mice. 

Currently, most of the longitudinal data available in the database comes from a handful of 

studies, including those performed at the Jackson Labs and by the Intervention Testing 

Program. There is a need for investigators with existing longitudinal data in mice to submit 

to the MPD (or a similar platform) to facilitate meta-analysis.

2.5. Clinical databases on aging populations

Translating interventions that affect the aging process into the clinic will likely require a 

detailed understanding of how aging contributes to disease progression in human patients 

and the ability to identify patients who will benefit from preventative medicine. Many cohort 

studies have been performed to examine clinical characteristics of aging populations and 

have been reviewed elsewhere [49-55]. A recent trend is the establishment of large-scale 

studies that pair detailed information on patient health with extensive biological resources, 

such as high-density genotyping and biobanked samples. Among many other applications, 

these studies will enable collection of biological data on human aging that can inform 

clinical practice. Several studies that exemplify trends are included in Table 1 [56-63]. A few 

resources that provide exceptionally centralized and detailed information connecting biology 

and health outcomes in aging cohorts are described in more detail below.

2.5.1. GERA/RPGEH—The Genetic Epidemiology Research on Adult Health and Aging 

(GERA) cohort was assembled as a partnership between the US National Institute on Aging 

and the Kaiser Permanente health insurance network. A detailed description of the study 

cohort and the procedure for requesting access to the data are hosted at https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000674.v3.p3. The study 

enabled genome-wide single nucleotide polymorphism (SNP) genotyping of over 100,000 

individuals who are members of the Kaiser Permanente Medical Care Plan, Northern 

California Region (KPNC) and participants in its Research Program on Genes Environment 
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and Health (RPGEH) [64]. Participants ranged in age from 18 to over 100, with an average 

age of 63 at the time of the RPGEH survey (2007) [64]. These participants provided saliva 

samples, filled out a detailed questionnaire, and provided broad consent for the use of their 

data in biomedical research. Data on the diagnosed health conditions of individual 

participants are available from electronic medical records. Investigators who wish to access 

the data can apply to RPGEH Access Review Committee through a dedicated web portal. 

SNP profiling data, along with survey and health record data for 78,479 patients who gave 

additional consent, are deposited in the NIH database of genotypes and phenotypes (dpGaP). 

Institutional investigators can apply for access to these data by submitting a Data Access 

Request to NIH.

The data collected through the GERA project is being used to better understand the 

biological basis of human aging and to provide insights into disease. For example, salivary 

telomere length was measured for over 100,000 patients in the RPGEH cohort [65]. A 

published abstract from the RPGEH research group reports a prospective association 

between very short telomere length and increased likelihood of mortality, although the 

quantitative data from this study are not available for analysis [66]. GWAS using the GERA 

cohort have identified loci associated with conditions, including blood pressure, drug 

response, schizophrenia, intraocular pressure, type 2 diabetes, asthma, and hernia [67-73].

2.5.2. The UK biobank—Biobanks have been established in many countries, including 

Iceland, UK, Sweden, Denmark, Latvia, Estonia, Canada, South Korea, Japan, Singapore, 

China, Taiwan, and in the US at the Mayo Clinic [51]. These repositories are aimed at 

collecting biological and clinical data on representative populations, with the goal of 

identifying biological and epidemiological factors that contribute to health outcomes in 

aging populations [51]. The UK biobank is unique among these because of its 1) high 

number of patients recruited, 2) variety of biological, genetic, and phenotypic data available 

on participants, 3) comprehensiveness of available clinical data on health outcomes 

(obtained through patient medical records filed with its national health service), and 4) open 

access policy that allows data to be shared widely with researchers inside and outside of the 

UK [74].

The UK biobank is a prospective cohort study including nearly 500,000 participants from 

the United Kingdom. The participants, aged 40 to 69 when they were recruited between 

2006 and 2010, answered questions regarding their demography, lifestyle, and health-related 

factors. They also completed a range of physical measures, provided blood, saliva, and urine 

samples, and provided informed consent for follow-up through linkage to their electronic 

health records [74]. A large subset of recruitment visits also included eye and hearing 

assessments, as well as electrocardiograph and arterial stiffness tests. The majority of 

participants underwent high-density SNP genotyping and health-related biomarker data, 

including lipids for vascular disease, sex hormone levels for cancer, Hb1AC for diabetes, 

rheumatoid factor for arthritis, and markers for liver and kidney function. Available tissue 

samples permit multiple additional assessments, such as metabolomics and proteomics, to be 

performed for each participant. Additional data, including repeat assessments, objective 

measurements of physical activity (using a tri-axial accelerometer) and a multi-modal 

imaging study (including MRI, x-ray and ultrasound) are being collected for subsets of 
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participants. The UK Biobank data are “available to all bona fide researchers for all types of 

health-related research that is in the public interest” and can be accessed by application to its 

resource access management system.

Data in the UK biobank have been used to identify health parameters that best predict all-

cause mortality, for GWAS studies examining human longevity and for studies on diverse 

health topics, including obesity and diabetes risk, frailty and the risk of multi-morbidity and 

mortality, cognitive function, depression, bipolar disorder, and chronotype [75,77-82]. This 

wide range of studies demonstrates the utility of this dataset for identifying genetic 

predictors of age-associated disease among other potential uses. To maximize the global 

impact of these studies, it will be crucial to determine whether important discoveries made 

using the UK biobank data can be re-capitulated in other populations by continuing to 

develop biobank resources around the world.

2.5.3. Comprehensive Assessment of the long-term Effects of Reducing 
Intake of Energy (CALERIE)—CALERIE (Comprehensive Assessment of the Long-term 

Effects of Reducing Intake of Energy) was a two-year study conducted at Duke University, 

in which 218 participants, ranging in age from 21 to 51, were randomized onto control or 

25% calorie restricted diets [83]. CALERIE represents the first controlled human trial of an 

intervention that extends lifespan and delays or prevents multiple age-associated pathologies 

in animal models. Participants in CALERIE answered demographic and health-related 

questions, completed adverse event diaries while on the protocol, and received nutritional 

and psychological support in transitioning to a calorie restricted diet. Participants underwent 

a physical and were phenotyped for a variety of biomarkers, including lipids, markers of 

immune function, inflammation, antibody response to vaccines, growth factors, and serum 

insulin. Subsets of participants also donated blood, urine, or muscle biopsy samples, with a 

small group providing all three. The data are available on an open access basis with an 

application to the CALERIE External Science Committee. Access to biological samples can 

also be obtained through an application to the Science Committee. Detailed study protocols 

and online application for access to data or samples are hosted at https://calerie.duke.edu/.

Samples and data from the CALERIE study have been used for secondary analysis, 

including studies of parameters that are difficult to assess in animal models, such as the 

effect of calorie restriction on subjective psychological well-being [84]. In the future, these 

data could be used to identify biological changes, such as differences in the proteome or 

metabolome, that are associated with calorie restriction and that might serve as biomarkers 

for evaluating pharmacological interventions that mimic some aspects of calorie restriction.

2.6. Summary of aging research databases

Databases that collect information on age-related biological changes and interventions that 

affect them will be valuable tools for discovering new interventions that increase longevity 

and healthspan. Collections of transcriptomic and other -omics data on long-lived species 

and strains can be used to identify conserved molecular changes that are associated with 

long life and can, in turn, serve as biomarkers to identify new drugs that alter the aging 

process. Collections of data on genetic changes and drugs that promote increased longevity 
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can be used to enable systematic efforts to identify the genetic pathways and interventions 

that improve health during aging across taxa. Databases of preclinical studies in aged 

mammalian models will help to identify clinically relevant phenotypes that are altered by an 

aging-modifying intervention.

Databases that collect extensive biological and clinical data on aging populations will be 

essential resources for translating interventions that alter some aspects of biological aging to 

the clinic. For a pharmacological intervention that extends longevity to be useful for 

humans, it will be necessary to perform clinical trials demonstrating that it prevents or slows 

progression of an age-associated disease in humans. Trials to assess impacts of a candidate 

drug on multiple morbidities in large populations will be difficult and expensive. Thus, it 

would be ideal to identify small populations of patients who are at high risk of progressing 

to an age-related disease state, and then perform trials of a compound that slows aging to 

determine whether it prevents disease progression. Centralized collections of biological data 

on aging populations may be used to develop biomarkers that will identify patients who may 

benefit from trials of aging modifying drugs.

Developing biomarkers that accurately predict development of age-associated diseases will 

likely require use of multiple types of complex data, such as high-density genotyping, 

sequencing, DNA methylomics, proteomics, and metabolomics. Likewise, systematic efforts 

to identify conserved mechanisms of lifespan extension and interventions that modify them 

will require analysis of complex data, including transcriptomics and gene interaction 

networks. Thus, Section 3 will discuss emerging developments in computational tools for 

analyzing aging-related datasets.

3. Computational tools for aging research

Many aging studies initially focus on identifying genes or interventions that alter survival. A 

variety of different tools and statistical approaches can be used to assess differences in 

survival, taking into account complicated interpretations due to the varied demographics of 

aging populations. Furthermore, new computational methods, such as machine learning, are 

emerging as critical tools for identifying new aging-related genes and interventions, as well 

as creating biomarkers of “biological age” that may prove useful for predicting onset of age-

associated diseases and developing preventative interventions. In Section 3, we discuss 

available tools for analyzing survival data and introduce machine learning and its 

applications in aging research.

3.1. Tools for analyzing survival data

Identifying interventions that affect longevity is a major component of geroscience research. 

Robust statistical analysis of survival data is crucial for accurate interpretation and reporting 

of data. There are various methods for conducting, analyzing, and reporting survival 

analysis, creating challenges for interpreting reported data. Here we will discuss three 

widely used tools that offer standardized analysis of lifespan data.

3.1.1. Prism—Prism is a proprietary statistical analysis and graphing program developed 

by the company GraphPad that enables generation of publication quality visually appealing 
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plots from a variety of types of data. It is available for purchase at https://

www.graphpad.com/scientific-software/prism/. Of interest to aging research, Prism can plot 

survival data as a Kaplan-Meier curve in a variety of visual formats. Prism can also test the 

hypothesis that two survival curves differ using the standard log-rank test (which calculates a 

test statistic based on the cumulative difference between two survival curves vs. the null 

hypothesis, that there is no difference in the probability of death at any point, while making 

no assumptions about the survival distribution) or the Wilcoxon-Gehan test (functioning 

similarly to the log-rank test but giving higher weight to deaths at earlier timepoints) [85]. 

Prism is widely used in C. elegans, Drosophila, and mouse aging and aging-related diseases 

research [86-88].

3.1.2. Online application for survival analysis (OASIS)—OASIS is an online tool 

for statistical analysis of lifespan data, developed by the research group of Sanguk Kim and 

hosted at https://sbi.postech.ac.kr/oasis2/. It is free to use and runs in a web browser. 

Survival data can be entered by copy-pasting from a simply formatted excel file into a text 

box and selecting "analysis options" in a graphical user interface, making it straightforward 

to adopt regardless of programming or statistical expertise [89,90]. In OASIS, survival data 

can be plotted as survival curves or cumulative log-hazard plots and can be subjected to a 

variety of statistical tests. In addition to the standard log-rank test, these include tests (e.g. 

Kolmogorov-Smirnov, Neyman’s Smooth, and Chow tests) that examine differences in the 

shape of survival curves, tests (e.g. Boschloo’s test and a modified Mann-Whitney test) that 

examine differences in maximum lifespan, and tests (e.g. the survival time F-test and the 

partial slopes rank-sum test) that examine differences in the variance of survival time 

between populations [89,90]. In addition to testing differences between survival curves, 

OASIS provides Cox-proportional hazards regression that are suitable for analyzing the 

effects of risk factors (i.e. sex, obesity, calorie intake) on survival. OASIS also contains tools 

for plotting and comparing values in multiple groups factored by condition and time 

(ANOVA). This is useful for experiments observing the interaction between treatment, time, 

and physiological parameters other than survival, such as motility or other markers of 

healthspan. Overall, OASIS provides a tool offering a good cross-section between ease-of-

use and availability of advanced statistics, albeit with less ability to create high-quality 

graphs available in other applications. OASIS is now widely used, with over 200 Google 

Scholar citations at the time of this writing, including several high-impact papers [91-93].

3.1.3. R—Another useful set of tools for analyzing survival data are the survival, flexsurv, 

and survminer packages in R [94-96]. R is a coding language used by the open source data 

visualization software RStudio (https://www.r-project.org/). While it does require a measure 

of familiarity with coding and converting survival datasets to an R-specific data frame 

format, the packages in R allow for rapid generation of Kaplan-Meier survival curves as well 

as statistical analysis using the log-rank test. Similar to analysis using OASIS, the packages 

in R can also use Cox-proportional hazard regression to determine the effects of risk factors 

on survival [95]. Importantly, the Cox-regression feature in R can be used to determine the 

significance of statistical interactions among more than two treatments. For example, this 

can be used to infer an epistatic interaction between a long-lived mutant and a suppressor 

mutation that reduces the degree of lifespan extension relative to what is observed in WT. R 
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is primarily used for data analysis and visualization; therefore, many of these packages have 

functions that can determine and analyze more advanced parameters of survival data, 

including generating and fitting standard parametric survival models and merging and 

manipulating datasets (Jackson, 2016). Importantly, R has a wealth of resources and tutorials 

available online to assist with utilizing its platform for survival analysis [97,98]. The R 

survival package has been used extensively in C. elegans, Drosophila, and mouse aging and 

aging-related diseases research [99-101].

3.1.4. summary of survival tools—Tools for standardized analysis of survival data, 

such as those available in Prism, OASIS, and R, can facilitate accurate assessment of 

survival data in the literature. Additional tools might further facilitate robust standardized 

analysis and meta-analysis of survival data. A centralized database, including primary 

survival data from multiple labs, along with meta-data (such as when the experiments were 

conducted, visible phenotypes, and annotation of why animals were censored), and built-in 

statistical tools, might facilitate both standardization of lifespan protocols and meta-analysis 

of many lifespan experiments. Furthermore, easy-to-use online applications that enable 

testing for significant interactions between more than two survival curves could facilitate 

more robust interpretation of studies in the genetics of aging.

3.2. Machine learning in aging research

New computational tools are necessary to best make use of the high volume of data collected 

in both model organism and clinical aging studies. In particular, computational tools will be 

useful for finding patterns in basic research on aging-related genes and interventions that 

will enable prediction of new genes, gene networks, and interventions that regulate the aging 

process. Likewise, in the clinical realm, computational tools will be crucial to identify 

patterns in large datasets that can predict the development of age-related diseases and 

identify patients who may benefit from preventative interventions translated from basic and 

pre-clinical geroscience. Ongoing developments in machine learning will be useful for both 

of these applications.

3.2.1. What is machine learning?—Over the past decade, machine learning has 

emerged as a powerful tool to analyze large datasets. Although use of machine learning 

algorithms by non-experts is still some time away, it is useful to be aware of the translational 

applications in literature. A comprehensive review of the concepts and applications of 

supervised machine learning in aging research was recently published [102]. In brief, 

machine learning is the automated process of establishing relationships and correlations 

between variables of input data to generate a model that can be used to evaluate the variables 

of unknown data. There are two main types of machine learning algorithms: unsupervised 

and supervised. Unsupervised machine learning relies on the algorithm to establish de novo 
relationships between the variables of the dataset with no further input from the user. 

Supervised machine learning, however, relies on the user to provide annotations with the 

data through which the algorithm can base its model. While there are a tremendous number 

of applications for both unsupervised and supervised machine learning, the latter is most 

commonly used in aging research. In supervised machine learning, the algorithm used for 

training the model (e.g. k-nearest neighbor, random forest, support vector machine, etc.) is 
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supplied with a training dataset. From this dataset, the algorithm establishes correlations 

among the user-provided annotations. The main types of supervised machine learning are 

classification (predicting discrete variables) and regression (predicting continuous variables) 

problems. Examples of classification applications include classifying genes as pro- and anti-

longevity; while examples of regression problems include establishing biological age based 

on methylation sites. Additional applications of machine learning in aging research are 

covered in the following sections.

3.2.2. Applications for machine learning in predicting aging related genes 
and drugs—Machine learning has proven to be a useful tool when applied to aging 

research paradigms. Examples of approaches include 1) classifying DNA repair genes into 

aging- or non-aging-related, 2) classifying genes in C. elegans and other model organisms as 

pro- or anti-longevity 3) classifying aging-related mouse proteins, 4) predicting aging genes 

in humans and C. elegans, 5) identifying biomarkers of aging in humans, and 6) establishing 

aging- and mortality-related gene expression profiles in humans [103-113]. These 

applications use a wide-array of input data types to generate models, including protein-

protein interactions, gene expression levels and profiles, GO terms, KEGG pathway features, 

and DNA methylation profiles. While these publications have revealed interesting insights 

into aging research, there are several challenges to maximizing the utility of machine 

learning for translational geroscience: 1) machine learning algorithms are complex and not 

yet as user-friendly as other analysis tools; 2) machine learning models skew toward 

previous research, limiting the ability of machine learning to find novel aging genes/drugs 

[102]; and 3) much of the machine learning literature has not been confirmed with wet lab 

experiments. The utility of machine learning might be improved by encouraging 

collaborations between computational and experimental research groups to validate results 

generated by machine learning and further refine models with new data.

3.2.3. Applications of machine learning in estimating biological age and 
predicting health outcomes—One application of machine learning relevant to 

translational medicine of aging is the development of tools designed to determine a patient’s 

health status and to predict their probability of developing age-related diseases based on 

biological inputs. Toward this end, multiple research groups have developed “epigenetic 

clocks” that aim to predict a patient’s age based on age-related changes in genome-wide 

DNA methylation [105,114,115].

The published epigenetic clocks use genome-wide DNA methylation arrays to determine the 

methylation status of millions of CpG sites throughout the human genome [116]. They then 

apply a model, constructed using supervised machine learning, to predict the age of the 

DNA source based on the methylation status of individual CpG sites. While the methylation 

status of individual CpG sites included in the age estimator is often only weakly correlated 

with age, age estimators using hundreds of CpG sites can predict chronological age with 

relatively high accuracy. Different groups have developed epigenetic clocks using distinct 

tissues as DNA sources. Some epigenetic clocks use a single tissue, such as saliva or blood; 

whereas, other clocks incorporate data from multiple tissue types and are designed to 

provide accurate estimates regardless of the DNA source used [105,114-116]. A widely 
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studied multi-tissue epigenetic age estimator, developed by the Horvath group, is available 

on an open access basis to anyone with methylation data from a supported CpG array 

(https://dnamage.genetics.ucla.edu/home).

Existing epigenetic age estimators have shown promise as predictors of health status. 

Patients whose age estimate from an epigenetic clock is higher than their chronological age 

are also at higher risk for age-related adverse health outcomes, including neuropathology, 

Parkinson’s disease, reduced physical and cognitive fitness, and certain types of cancer, as 

well as all-cause mortality, while low epigenetic age relative to chronological age is 

associated with centenarian status [116-123]. Levine et al. recently reported development of 

a tool called “DNAm PhenoAge” that predicts a weighted average of clinical characteristics 

(chronological age, creatine, glucose, and c-reactive protein levels, etc.) rather than age 

alone [124]. This clock outperforms prior epigenetic clocks at predicting mortality, 

cardiovascular disease, and other measures of multi-morbidity [116,124].

3.2.4. Summary of machine learning in aging research—In the future, machine 

learning may be used with training data from biobanks of large populations to create clocks 

that use DNA methylation and other biological predictors, such as genome-wide SNP 

genotyping and urine metabolite levels, to generate models that accurately predict a patient’s 

risk of developing age-related morbidities. These tools could be used to initiate clinical trials 

using candidate age-delaying compounds from invertebrate and mouse preclinical studies to 

delay or prevent progression of age-related disease. Machine learning-based clocks might 

also be used to evaluate whether an intervention is actually modifying epigenetic readouts of 

aging or progression to a disease state. These tools might be useful to more rapidly identify 

lifespan extending compounds in mouse studies or to provide surrogate endpoints for 

clinical trials of compounds that aim to delay progression of age-related diseases.

4. Conclusion

We have outlined a series of existing and developing computational tools that will aid 

investigators in developing new hypotheses and interventions for translational geroscience. 

In brief, databases of genetic and pharmacological interventions that affect aging in 

invertebrate models will enable organized efforts to reproduce existing data and identify 

interventions that affect lifespan and healthspan across taxa, while machine learning 

software can be trained on these datasets to generate new hypotheses about candidate genes 

and compounds to test for aging phenotypes. Databases of aging-related phenotype data in 

mice will enable investigators to identify appropriate strains to test potential interventions 

for effects on progression of age-associated health phenotypes. Clinical databases, coupling 

individual level data with high-density genotyping, epigenetic, proteomic, and metabolomic 

studies, will inform computational models that can identify patients who may benefit from 

preventative interventions translated from rodent aging models.

Significant challenges remain in developing existing databases and computational tools into 

a platform for a translational biogerontology pipeline. First, meta-analysis of aging-related 

data will be more feasible if data can be easily made available to the community via 

centralized platforms. Expecting open access to data has become the norm in academic 
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biomedical research. For example, investigators funded by the U.S. National Institutes of 

Health are required to provide a data-sharing plan, which can include uploading data to 

public databases, when applying for major funding. Likewise, some major journals, such as 

Aging Cell, require authors to submit data from -omic studies to public databases. However, 

centralized general purpose platforms for archiving aging-related biological data, such as 

lifespan and healthspan observations in animal models, have not been developed: the closest 

programs are the National Archive of Computerized Data on Aging (NACDA) (which 

focuses on social science research), along with the AMP-AD Knowledge Portal, the 

National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site 

(NIAGADS), which focus on Alzheimer’s disease, and the model organism-specific 

databases described above [125-130]. In the age of big data, it would make sense for funding 

institutions to make a long-term investment in centralized data repositories where aging-

related primary data, including lifespan and healthspan data in multiple organisms, could be 

deposited in an easily adopted format and used for meta-analysis. Data in this repository 

could be linked to existing and developing databases and tools. Centralized data archives 

would encourage investigators to make data that would otherwise be archived in individual 

labs readily available to the community, aiding development of new computational resources 

and new discoveries from secondary analysis. It would also be useful to develop more 

centralized resources for organizing the increasing volume of clinical aging data from 

biobanks and large genotyping studies, though we note that such efforts must make ethical 

considerations and the informed consent of participants to data sharing their top priority.

Secondly, developing the most useful possible computational tools will require diverse 

expertise not typically found in single research groups. Collaborations between groups with 

computational expertise, wet lab scientists, and clinicians will be necessary to develop 

computational tools that can be applied to real-world problems and then refined using new 

data. The numerous studies that have associated DNA methylation-based calculations of 

biological age with clinical outcomes are good examples of how collaborative efforts 

between computational and clinical researchers can be fruitful.

Translating interventions that modify the aging process in animal models into preventative 

medicine applications will be a major challenge in biomedicine over the coming decades. A 

research program that uses database and computational resources to enable systematic 

efforts in translating anti-aging interventions from invertebrate models to the clinic will 

require significant investments in developing and applying resources. However, this program 

may enable us to realize the goal of developing preventative interventions that extend 

healthy life in humans.
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Fig. 1. 
Translational pipeline for aging interventions.
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Fig. 2. 
Online databases used in aging research.
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