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Human regulatory CD4+ T  cells (Tregs) are potent immunosuppressive lymphocytes 
responsible for immune tolerance and homeostasis. Since the seminal reports identifying 
Tregs, vast research has been channeled into understanding their genesis, signature 
molecular markers, mechanisms of suppression, and role in disease. This research has 
opened the doors for Tregs as a potential therapeutic for diseases and disorders such 
as multiple sclerosis, type I diabetes, transplantation, and immune responses to protein 
therapeutics, like factor VIII. Seminal clinical trials have used polyclonal Tregs, but the 
frequency of antigen-specific Tregs among polyclonal populations is low, and polyclonal 
Tregs may risk non-specific immunosuppression. Antigen-specific Treg therapy, which 
uses genetically modified Tregs expressing receptors specific for target antigens, greatly 
mitigates this risk. Building on the principles of T-cell receptor cloning, chimeric antigen 
receptors (CARs), and a novel CAR derivative, called B-cell antibody receptors, our 
lab has developed different types of antigen-specific Tregs. This review discusses the 
current research and optimization of gene-modified antigen-specific human Tregs in our 
lab in several disease models. The preparations and considerations for clinical use of 
such Tregs also are discussed.

Keywords: human regulatory CD4+ T cells, Tregs, hemophilia A, antigen-specific Tregs, experimental autoimmune 
encephalomyelitis, chimeric antigen receptor, B cell antibody receptors

iNTRODUCTiON

Human regulatory CD4+ T  cells (Tregs) are a subset of adaptive lymphocytes well characterized 
for their immunosuppressive functions and maintenance of immunological tolerance. Tregs are 
broadly grouped into two categories, either natural (i.e., thymus derived) or induced (i.e., peripher-
ally derived). Natural Tregs (nTregs) represent between 2 and 8% of CD4+ T cells in healthy donor 
peripheral blood, whereas induced Tregs can be generated by expansion of CD4+ T  cells in the 
presence of TGFβ. The importance of Tregs in immune regulation and brokering tolerance has 
been robustly demonstrated (1–9), and expanded polyclonal Tregs are being developed for clinical 
applications. In this review, however, we summarize studies in our lab designed to generate antigen-
specific nTregs by transduction of specific receptors.

Engineering antigen-specific T cells by gene modification has proven to be an invaluable immu-
nological technology (10). In addition to exogenous T-cell receptors (TCRs), chimeric antigen 
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FiGURe 1 | Types of gene-modified antigen-specific human regulatory CD4+ T cells (Tregs). Antigen-specific (A) T-cell receptor (TCR), (B) chimeric antigen receptor 
(CAR), and (C) B-cell antibody receptor (BAR) Tregs have been designed by the Scott lab as potential therapeutics to ameliorate autoimmune diseases and/or 
immune responses to biotherapeutics in monogenic diseases, for example. TCR, CAR, and BAR Tregs each have unique properties that can be exploited as 
treatments geared to the different pathophysiologies of such diseases and/or adverse immune responses. The structure and targeting moieties/cells of TCR, CAR, 
and BAR Tregs are briefly described and depicted.
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receptors (CARs) containing single chain variable fragments 
(scFv) are also used to redirect polyclonal T cells to a defined 
specificity. We have also engineered Tregs to express antigens 
or antigen fragments that can be recognized by B-cell recep-
tors, which we refer to as B-cell antibody receptors (BARs). 
For BARs, the scFv of the CAR is replaced with an antigen or 
its domain. The exogenous TCRs are generally cloned from 
T  cells present in diseased tissue, such as tumor-infiltrating 
lymphocytes, pancreatic islets, or multiple sclerosis (MS) lesions 
and are human leukocyte antigen (HLA) (11–15). The CARs, 
which are synthetic molecules, are typically comprised of scFv 
fused to T  cell co-stimulatory proteins and CD3ζ chain. The 
scFv portion of the CAR can be derived from phage display 
technology or traditional monoclonal antibody production 
(15–19). The antibody-derived properties of the CAR free it from 
HLA restriction. TCRs or CARs have traditionally been used to 
engineer effector T  cells, predominantly CD8+ cytotoxic cells. 
The multiple design iterations, clinical successes (e.g., against 
melanoma and acute lymphoblastic leukemia) of TCR- and 
CAR gene-modified cells have been extensively reviewed by 
our group (20) and others (21–25). As noted above, our group 
and Ellebrecht et al. independently designed a novel method of 
engineering antigen-specific T cells with antigen domains, called 

BAR in our lab and called chimeric autoantibody receptor by 
the Payne group (26). This antigen domain targets pathogenic 
antibody secreting cells or their precursors with specific surface 
B-cell immunoglobulin (Ig) receptors (BCR). We have adapted 
these redirecting technologies to human Tregs with the goal of 
improving future Treg therapy in clinical trials.

Here, we chronologically review the development of antigen-
specific human Tregs by gene modification in our lab. Specifically 
we describe the use of TCR (Figure 1A), CAR (Figure 1B), and 
BAR (Figure 1C) Treg therapy in the context of disease models 
for hemophilia A and MS. The important conclusions from our 
experiments as well as future directions and considerations for 
gene-modified Tregs as a therapeutic are discussed.

nTregs THeRAPY: POLYCLONAL OR 
SPeCiFiC

Phenotypically, peripheral blood nTregs are identified by high 
surface expression of CD25 (IL-2 receptor α chain), low expres-
sion of CD127 (IL-7α receptor), low to negative expression of 
CD45RA, and expression of the transcription factors, Foxp3 and 
Helios. Further markers such as the Treg-specific demethylated 
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region, glycoprotein A repetitions predominant protein (GARP), 
glucocorticoid-induced TNFR family-related gene (GITR), 
latency-associated peptide (LAP), CTLA-4, CD27, CD73, and 
CD39 among others also aid in nTreg identification (27–36).

FoxP3 was identified from early studies with scurfy mice, 
which have an idiopathic mutation in the Foxp3 gene and develop 
systemic multi-organ autoimmunity (37, 38). In humans, the 
importance of Tregs is evident in the debilitating and often fatal 
polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome 
which is linked to mutations in the Foxp3 gene (39, 40). The 
causal link between dysfunctional Tregs and autoimmunity set 
the stage for using functional Tregs to treat and possibly prevent 
it. Indeed adoptive Treg therapy to treat animal models of auto-
immunity such as experimental autoimmune encephalomyelitis 
(EAE), arthritis, inflammatory bowel disease, and uveitis among 
others has proven successful and served as proof of concept for 
Treg therapy translational use (41–46).

Phase 1 clinical trials using human Tregs have involved par-
ticipants suffering from acute graft versus host disease (GVHD) 
following stem cell transplants (47) or type I diabetes (T1D) (48). 
For the GVHD trial, all participants were infused with umbilical 
cord blood-derived polyclonal Tregs. No infusion related toxicities 
or adverse events were reported during the trial period. However, 
the authors concluded that a randomized control group receiving 
no Tregs was necessary to properly access treatment efficacy. The 
T1D trial used autologous peripheral blood-derived polyclonal 
Tregs. This was a dose escalation phase 1 trial. Treatment efficacy 
was not accessed, but the escalation protocols and safety profile 
of this trial has led to a phase 2 trial as of 2017 (49). Further trials 
using polyclonal Tregs to treat lupus and GVHD from kidney 
transplants and liver disease have also been initiated.1

The majority of these clinical trials have used polyclonal Tregs. 
While the success of polyclonal Tregs has been promising, the 
amount of cells needed for infusions is large (believed to be in the 
109–1010 range) and the threat of global immune suppression is 
possible; indeed, one report cites viral reactivation after infusion 
of polyclonal Tregs (47) and tumor occurrence/recurrence is of 
concern given the correlation between Tregs and tumor survival 
(50, 51). Moreover, polyclonal human Tregs are not a homog-
enous population which may introduce unwanted variability 
and a lack of efficacy to their therapeutic potential (36, 52–54). 
To overcome these drawbacks, we and others believe that using 
antigen-specific Tregs of a defined homogenous population will 
require fewer cells to exert their regulatory effects and confer 
more localized and targeted suppression.

The occurrence of a particular antigen-specific T  cell is 
very low, on the order of 1 in every 105–107 T  cells (55). This 
greatly hinders the ability to isolate and expand such rare cells. 
However, in certain disease states or conditions where a target 
antigen or group of antigens is/are known, the clonal expansion 
of an antigen-specific T cell facilitates its detection and isolation 
by molecular methods. Such methods include tetramer-guided 
epitope mapping and peptide MHC microarrays (56–59). Since 

1 Available from: https://clinicaltrials.gov/ct2/results?term=adoptive+treg+therapy& 
Search=Search

the TCR traditionally endows a T cell with its specificity, extract-
ing the TCR cDNA sequence from the expanded cells and cloning 
it into a viral expression vector allows researchers to engineer 
antigen-specific T cells.

HUMAN Tregs GeNe MODiFieD TO 
eXPReSS AN Fviii-SPeCiFiC TCR

One disease model used in our lab to study the therapeutic poten-
tial of antigen-specific Tregs is hemophilia A. Hemophilia A is an 
X-linked bleeding disorder caused by mutations in the factor 8 
(F8) gene, which encodes the blood coagulation protein, FVIII. 
Because of its monogenic etiology, the disorder can be treated 
with recombinant or plasma derived FVIII replacement therapy. 
Unfortunately, a large subset of those receiving replacement 
FVIII develop an antidrug antibody response. These antibodies 
(referred to as “inhibitors”) can neutralize the FVIII, rendering 
this lifesaving treatment ineffective. Inhibitor formation requires 
CD4+ T cell help (60, 61), and is largely directed to the A2 and C2 
domains of the FVIII protein.

The standard treatment for inhibitors is called immune toler-
ance induction (ITI). ITI consists of high dose infusions of FVIII 
for a period of one or more years. Although it has met with some 
clinical success, ITI does not work for all inhibitor cases. Thus, 
alternative approaches for inducing tolerance in these unsuccess-
ful cases or preventing inhibitor responses, in the first place, are 
of clinical importance.

In collaboration with the lab of Dr. Kathleen Pratt, we success-
fully isolated, cloned and sequenced HLA-DRB1*01:01 (DR1)-
restricted TCRs specific for an epitope in the C2 domain of FVIII. 
The TCRs were isolated from CD4+ T cell clones of a hemophilia 
A subject at different time points after clonal expansion (62).

As reported in 2015 (63), we sorted human nTregs from 
healthy donor peripheral blood mononuclear cells (PBMCs) and 
transduced them with retroviral particles encoding one of these 
C2 domain specific TCRs, referred to as 17195. Transduced Tregs 
were then sorted and expanded in the presence of antihuman 
CD3, autologous γ-irradiated PBMCs, and oligodeoxynucleo-
tides (ODN). Kim et al. have shown that these ODN maintain 
the Treg phenotype better than inclusion of rapamycin during the 
critical rapid expansion period (64).

An important point with ex vivo expansion of human 
gene-modified Tregs is to determine the activation status of 
the Tregs during and/or at the end of the expansion. Initial 
in vitro activation of sorted Tregs for 3–5 days is necessary for 
retro- or lentiviral gene transfer, followed by large-scale expan-
sion for 10–12 days with IL-2, but without TCR or anti-CD3 
stimulation. This expansion step generally can be repeated for 
up to two more cycles. In most cases, successfully expanded 
gene-modified Tregs do not retain their activation status due 
to the long-term expansion conditions without cognate/specific 
antigen (e.g., TCR) or anti-CD3 stimulation. Nonetheless, 
in  vitro confirmation of gene-modified Treg activation with 
specific antigen is mandatory before testing these Tregs in vivo. 
Such confirmation provides a functional estimation of the Treg 
responsiveness. For this, surface expression of GARP, LAP, and 
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CD25 as well as the induction of Foxp3 and Helios are analyzed 
by flow cytometry at 24–48 h post in vitro activation with cognate 
antigen and PBMCs (63, 65).

Tregs expressing the 17195 TCR proliferated in an antigen- 
specific manner and, importantly, maintained their Treg pheno-
type. Moreover, as mentioned above, these cells upregulated the 
Tregs markers Foxp3, Helios, GARP, LAP, and CD25 when stimu-
lated with specific peptide. This phenotypic response was mirrored 
by the fact that they were able to prevent FVIII-specific effector 
cells from proliferating, as demonstrated in an in vitro suppres-
sion assay. Of clinical note, these Tregs also robustly diminished 
FVIII antibody production in splenocytes of FVIII-immunized 
HLA DR1 transgenic hemophilic mice in vitro and could prevent 
anti-FVIII formation in vivo in a xenogeneic transfer system.

HUMAN Tregs GeNe MODiFieD TO 
eXPReSS AN Fviii-SPeCiFiC CAR

Following the promising results and lessons gleaned from the 
FVIII-specific TCR gene-modified Tregs, we sought to design 
a FVIII-specific CAR Treg. CAR Tregs would allow us to test, 
without HLA restriction, the inhibition of both FVIII-specific 
antibody production and effector T cell proliferation. In collabo-
ration with the lab of Drs. Anja Schmidt and Christoph Königs, 
Yoon et al. published results of human FVIII-specific CAR Tregs, 
referred to as ANS8 CAR Tregs (65). The human scFv region of 
the CAR was isolated by phage display and confirmed specific 
for the A2 domain of FVIII by competitive ELISA using known 
monoclonals against this domain (66). ANS8 CAR Tregs prolif-
erated in response to FVIII and also concomitantly upregulated 
Foxp3 expression. These CAR Tregs suppressed the proliferation 
of FVIII-specific effector T cells. Moreover, these CAR Tregs also 
exhibited bystander suppression as they were able to prevent the 
proliferation of HLA DR2-restricted T effector cells specific for a 
myelin basic protein (MBP) peptide in the presence of appropri-
ate antigen-presenting cells. Strikingly, when tested in vivo, ANS8 
CAR Tregs were able to prevent FVIII antibody titers prophylacti-
cally, similar to TCR-transduced (17195) Tregs. The prevention 
of the anti-FVIII response was sustained up to 8 weeks despite 
the rejections of the transferred human Tregs in immunocom-
petent mice. This emphasized the potency of the ANS8 CAR and 
TCR-transduced Tregs and has prompted us to design in  vivo 
therapeutic protocols for FVIII antibody prevention.

HUMAN Tregs GeNe MODiFieD TO 
eXPReSS A BAR SPeCiFiC FOR Fviii 
iNHiBiTORS

To test whether engineered Tregs could directly suppress B cells, 
we designed a third engineered T cell model that would express 
antigen and would directly interact with specific B  cells via 
their BCR. Thus, our latest gene-modified human Tregs are 
engineered to express either the immunodominant A2 or C2 
domains of FVIII, fused to T cell co-stimulatory and signaling 
domains, so called “BAR” for B-cell antibody receptor. It has been 
shown in animal models of autoimmunity and suggested in IPEX 

patients that Tregs may be able to directly suppress pathogenic 
B  cells (67–70). In light of these studies, we hypothesized that 
BAR engineered Tregs directly suppress FVIII-specific B  cells 
via interaction with their BCR and may possibly suppress other 
FVIII-specific effector T cells co-localized in the local milieu.

Zhang et al. (71) in our lab showed that A2 and C2 BAR Tregs 
maintained Treg-specific markers, including Foxp3 and Helios, 
after long-term expansion in vitro. Importantly, we showed that 
these BAR Tregs also potently suppressed FVIII antibody forma-
tion in vitro and in vivo from FVIII-immunized hemophilic mice, 
thus providing a third model of specific Tregs. The mechanism of 
this suppression is discussed below.

HUMAN Tregs GeNe MODiFieD TO 
eXPReSS AN MBP-SPeCiFiC TCR

Another important disease studied in our lab is MS. We employ 
an EAE mouse model for MS. MS is a debilitating autoimmune 
disorder where effector T cells mediate the attack and destroy the 
myelin sheath of the central nervous system (CNS). This destruc-
tion results in relapsing/remitting symptoms or progressive 
paralysis, which could result in death in its most severe cases. The 
etiology of MS is unknown, but certain genetic and environmen-
tal factors may play a role (72–75). Current treatment options 
include immunosuppressive drugs, β-interferon, or Copaxone, a 
random amino acid copolymer (76–78). Recently, treatment with 
B-cell depleting antibodies such as ocrelizumab and rituximab 
(79–83), has been used to relieve symptoms, but their side effects 
can be severe and also can lead to global immunosuppression 
(84, 85). Better treatment options thus are clearly warranted. 
We believe that antigen-specific Tregs targeting CNS antigens 
implicated in MS can be such an option.

We engineered a construct to express a TCR sequence provided 
by Dr. Kai Wucherpfennig, who isolated the TCR from an auto-
reactive CD4+ T cell clone of an MS patient. This TCR, referred 
to as Ob2F3 (86–88), was specific for MBP epitope 85-99 and was 
HLA DR15 (“DR2”) restricted. PBMC obtained from normal 
healthy donors were FACS-purified for nTregs, as we had done 
in the FVIII project, and transduced with the Ob2F3 TCR. These 
expanded, now MBP-specific, Tregs not only suppressed MBP-
specific T-cell proliferation and cytokine production but also they 
could suppress FVIII-specific responses in vitro when both MBP 
and FVIII peptides were present. Remarkably, Ob2F3 TCR Tregs 
were also able to reduce myelin oligodendrocyte glycoprotein 
(MOG 35-55)-induced EAE symptoms in HLA DR2-transgenic 
mice. This was important because it confirmed that Tregs of one 
specificity (MBP) could exert bystander suppression of T effectors 
of another specificity (MOG), presumably in the local milieu.  
We found that these Ob2F3 TCR Tregs migrated in greater num-
bers to the CNS than non-specific Tregs and reduced the perivas-
cular infiltrates in the spinal cord. This xenogeneic suppression 
validates the potency of antigen-specific engineered Tregs.

MeCHANiSMS OF SUPPReSSiON

Understanding the suppression mechanism behind our gene-
modified human Tregs is also actively being pursued. Although 
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TABLe 1 | Types of antigen-specific human Tregs used in the Scott lab.

Gene-modified hTreg Specificity/target antigen Disease model Results

17195 T-cell receptor  
(TCR) Tregs

Human leukocyte antigen (HLA) 
DR1-restricted FVIII epitope 
(C2191–2210)

Hemophilia A •	 Expanded in an antigen-specific manner and maintained Treg 
phenotype following long-term in vitro expansion

•	Suppression of specific T effectors in vitro
•	Suppressed FVIII-specific antibody production in vitro and in vivo 

across a xenogeneic barrier
•	Bystander suppression in the local milieu

ANS8 chimeric antigen 
receptor (CAR) Tregs

A2 domain of FVIII Hemophilia A •	 Expanded in an antigen-specific manner and maintained Treg 
phenotype following long-term in vitro expansion

•	Suppression of specific T effectors in vitro
•	Suppressed FVIII-specific antibody production in vitro and in vivo 

across a xenogeneic barrier
•	Bystander suppression in the local milieu

A2 and C2 B-cell antibody 
receptor (BAR) Tregs

B-cell receptors specific for A2  
or C2 domains of FVIII

Hemophilia A •	 Expanded in an antigen-specific manner and maintained Treg 
phenotype following long-term in vitro expansion

•	Suppressed FVIII-specific antibody production in vitro and in vivo 
across a xenogeneic barrier

•	Bystander suppression in the local milieu
•	Direct suppression of FVIII-specific B cells

OB2F3 TCR Tregs HLA DR15-restricted myelin basic 
protein epitope (MBP 85-99)

Multiple sclerosis 
[experimental autoimmune 
encephalomyelitis (EAE)]

•	Suppressed MOG specific T cells in vitro
•	Suppressed MOG peptide induced EAE across a xenogeneic barrier
•	 Trafficked to brain and spinal cord

The disease models in which they are tested and related results are listed and summarized, respectively.
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it has been shown that Tregs have a diverse repertoire of sup-
pression strategies both contact independent (contactless) and 
contact dependent (89–95), how these specifically modified Tregs 
suppress target cells is currently unresolved. While we know that 
bystander suppression could occur in vitro and in vivo, it was not 
clear whether cell-to-cell contact was needed. To investigate con-
tactless and contact-driven mechanisms, our lab used a modified 
transwell developed by Dr. Kim that consisted of “heat-drilling” 
holes between microtiter wells so that liquid (and presumably 
effector suppressive molecules) could mix in the interwell space, 
dubbed the de-cellularized zone. We found that suppression of 
effector T-cell proliferation only occurred when specific Tregs 
and specific effector T cells were present together in the adjacent 
well (96).

We know that both effector and regulatory T cells need IL-2 
to grow (97, 98). When we examined Stat5 phosphorylation 
kinetically, we found that antigen-stimulated effector CD4+ 
T  cells produced and responded to IL-2 with Stat5 phospho-
rylation starting at 8  h, but that Tregs alone showed minimal 
Stat5 phosphorylation even at 72 h. However, when cocultured 
together, Treg Stat5 phosphorylation started as early as 8  h, at 
which time the CD4+ T cell effector response to IL-2 decreased 
dramatically. These results suggest that Tregs “co-opt” IL-2 from 
effector T cells and that a contact-dependent process was initiated 
with the production of more (long-acting) suppressive moieties.

To understand potential BAR Treg suppression mechanisms 
in our hemophilia A model, we designed a series of B and T cell 
coculture assays. Briefly, splenic B and T cells were isolated from 
A2 and C2 BAR Treg treated or non-specific control BAR Treg-
treated FVIII-immunized hemophilic mice. T cells, isolated from 
A2 and C2 BAR Treg treated mice, were able to cooperate and 
stimulate antibody formation with B  cells from control mice. 

However, B cells isolated from A2- and C2-tolerized mice failed 
to be stimulated for anti-FVIII antibody production by control 
T cells. These observations strongly suggest that A2 and C2 BAR 
Tregs tolerized the B  cell compartment while sparing that of 
T cells. Further experiments assessing whether A2 and C2 BAR 
domains are taken up by specific B cells (as exosomes or by tro-
gocytosis?) or whether this tolerization of different compartment 
has a kinetic component (i.e., T cells become tolerized at a later 
time point) are underway.

To facilitate further mechanistic studies, we are reversing 
our trajectory back into murine systems. Our human Tregs are 
eventually rejected by the mouse immune system so trafficking 
studies, adoptive transfers and re-challenge experiments are not 
feasible. In addition, the use of knockout murine cells will aid 
in completing the mechanistic picture of gene-modified Tregs. 
These studies are in progress.

Please see Table 1 for summary of results.

FUTURe DiReCTiONS AND 
CONSiDeRATiONS FOR  
GeNe-MODiFieD HUMAN Tregs

T-cell receptor, CAR, and BAR Treg therapy all provide distinct 
advantages and (minor) disadvantages as therapeutics. All of 
these Tregs, while highly specific, can exhibit bystander sup-
pression in the local milieu as demonstrated by their ability to 
suppress inhibitor formation to the entire FVIII protein in vitro 
and in vivo, despite being specific for a single domain or peptide 
epitopes. TCR gene-modified Tregs allow for targeting specific 
peptides presented by APC to pathogenic effector cells. The TCR 
also allows for the physiological activation and regulation of the 
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Tregs. However, the HLA restriction of TCR limits its utility to 
recipients sharing those HLA class II antigens. This is not as seri-
ous with MS, for example, as there is linkage to HLA DR2 (99). 
However, strong linkage to HLA has not been observed in hemo-
philia A (100). Nonetheless, there are five to seven most common 
DR phenotypes in North American Caucasians; conceivably, one 
could clone the V genes from the T cells of patients with these 
HLA DRs to create a repertoire of TCRs. Thus, screening for HLA 
or engineering TCRs de novo for each recipient is feasible today.

Chimeric antigen receptor gene-modified Tregs have the 
advantage of being HLA unrestricted. This greatly increases the 
universality of their usage as a therapeutic in all patients. These 
Tregs, like the TCR-transduced Tregs, can exhibit bystander 
suppression but need to recognize conformational domains in 
the target antigen. This is likely to occur in the context of cell 
surfaces, either dendritic or endothelial cells or specific B cells, 
before uptake. The scFv we have used was obtained by phage 
display (65). Thus, further scFvs against other domains of FVIII 
can readily be produced.

B-cell antibody receptor Tregs represent a novel approach 
for engineering gene-modified antigen-specific cells; these too 
are not HLA-restricted and only require that specific B cells can 
bind via their surface Ig receptors to the domains expressed on 
the Tregs. Originally, our lab envisioned this approach for target-
ing inhibitors in hemophilia A or responses to biotherapeutics 
in monogenic diseases, but they also can be designed to target 
pathogenic antibodies in autoimmunity or antidrug antibodies 
(101, 102). An issue with BARs Tregs (or BAR CD8 killer T cells) 
is that circulating antibodies may bind to the BAR Treg epitope 

domains and either neutralize their activity or cause tonic signal-
ing to drive an exhausted phenotype. While a concern, we think 
this is unlikely since we have found that antibody crosslinking 
of the BAR can, in some instances, trigger Treg proliferation. In 
addition, plasmapheresis could be used to remove the circulating 
antibodies if needed, but these may not possess as high an affinity 
for the BAR as the isotype-switched memory B cells.

Much remains to be discovered regarding specific Treg 
suppression mechanisms. We already know that, aside from 
bystander suppression which occurs locally, the contiguous pres-
ence of effector T cells and Tregs can lead to enhanced suppressive 
activity and contactless suppression of other T cells. This is in part 
due to the fact that effector cells require much higher amounts of 
IL-2 to maintain proliferation compared to Tregs, which acquire 
IL-2 locally and rapidly phosphorylate Stat5 downstream of 
CD25. How this process activate the Tregs to produce suppressive 
moieties is unknown but under investigation.

How Tregs modulate antibody formation is not clear. Obviously, 
suppression of effector (helper) T cell activation is involved. In 
a preliminary experiment, culture of T and B  cells from BAR 
Treg-tolerized hosts suggests that B cells may be directly targeted  
(at least by BAR Tregs). We have no evidence at present for direct 
toxicity of BAR Tregs on B cells, but this remains an open ques-
tion since human CD4+ T cells can be cytotoxic (103, 104).

A major concern of any gene-modified cellular therapy is 
safety. Fortunately, technologies such as inducible suicide genes 
can be applied to gene-modified Tregs (105). For example, 
this technology would be a protection in the unlikely event in 
which bystander suppression led to any unintended sequelae. 

FiGURe 2 | Overview of gene-modified antigen-specific human Treg therapy. Patient (or normal donor) blood is collected, and Tregs are sorted from buffy coat, and 
virally transduced to express specific receptors [T-cell receptor (TCR), chimeric antigen receptor, or B-cell antibody receptor]. The antigen-specific Tregs are then 
sorted and expanded in the presence of autologous peripheral blood mononuclear cells (PBMCs), anti-CD3, and oligodeoxynucleotides (ODN), which stabilize Treg 
functional characteristics during expansion. The antigen-specific Tregs that meet robust GMP standards and Treg phenotype are then infused back into the patient 
tracking of the Tregs in vivo can be performed by deuterium labeling or GFP expression. Safety constructs that trigger the ablation or death of the infused 
antigen-specific Tregs can also be integrated, and gene editing by CRISPR/Cas9, e.g., used to remove endogenous TCRs or MHC to avoid graft versus host 
disease or rejection, respectively, of generic donor T cells.
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