
Potential Therapeutic Action of
Autophagy in Gastric Cancer
Managements: Novel Treatment
Strategies and Pharmacological
Interventions
Md. Ataur Rahman1,2,3*†, Kazi Rejvee Ahmed4†, MD. Hasanur Rahman3,5, Moon Nyeo Park1,2

and Bonglee Kim1,2*

1Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea, 2Korean Medicine-Based
Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea,
3Department of Biotechnology and Genetic Engineering, Global Biotechnology and Biomedical Research Network (GBBRN),
Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh, 4Department of Biotechnology and Genetic Engineering,
Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh, 5ABEx Bio-Research Center, East Azampur, Bangladesh

Gastric cancer (GC), secondmost leading cause of cancer-associatedmortality globally, is
the cancer of gastrointestinal tract in which malignant cells form in lining of the stomach,
resulting in indigestion, pain, and stomach discomfort. Autophagy is an intracellular system
in which misfolded, aggregated, and damaged proteins, as well as organelles, are
degraded by the lysosomal pathway, and avoiding abnormal accumulation of huge
quantities of harmful cellular constituents. However, the exact molecular mechanism of
autophagy-mediated GC management has not been clearly elucidated. Here, we
emphasized the role of autophagy in the modulation and development of GC
transformation in addition to underlying the molecular mechanisms of autophagy-
mediated regulation of GC. Accumulating evidences have revealed that targeting
autophagy by small molecule activators or inhibitors has become one of the greatest
auspicious approaches for GC managements. Particularly, it has been verified that
phytochemicals play an important role in treatment as well as prevention of GC.
However, use of combination therapies of autophagy modulators in order to overcome
the drug resistance through GC treatment will provide novel opportunities to develop
promising GC therapeutic approaches. In addition, investigations of the
pathophysiological mechanism of GC with potential challenges are urgently needed, as
well as limitations of the modulation of autophagy-mediated therapeutic strategies.
Therefore, in this review, we would like to deliver an existing standard molecular
treatment strategy focusing on the relationship between chemotherapeutic drugs and
autophagy, which will help to improve the current treatments of GC patients.
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1 INTRODUCTION

Gastric cancer (GC) is one of the most common frequently
gastrointestinal and deadly cancers with more than one million
new cases diagnosed yearly, which is the largest reason among the
cancer fatalities worldwide (Hoang and Vu 2021). In the initial
phages of GC, surgery is the most suitable option (Lin et al., 2021b).
Because of its peculiar as well as cunning characteristics of initial
diagnostic signs and symptoms, GC may result; even a minority
proportion of cases are being accurately recognized, although more
than 60% of patients had local or distant metastasis just at the
moment of testing (Sun et al., 2021). Therefore, chemotherapy-
mediated treatment seems to be preferred for the largest percentage
of patients who belong to middle and late stage of GC (Xiao et al.,
2021), although numerous patients are cured, but their rates of
survival are very low. Principle of pathogenesis and progress of GC
cancer is also mostly unclear (Tang et al., 2021). Because of drug
resistance, patients with GC often have no sensitivity to
chemotherapy, which is the primary reason of chemotherapeutic
failure and poor success probability (Riquelme et al., 2016).

Autophagy, engulfing dysregulated organelles and cellular
macromolecules, is an evolutionarily preserved catabolic active
process concerning the formation of autophagosomes, leading to
breakdown of cellular constituents after fusion with lysosomes
(Rahman and Rhim 2017). In addition, cellular degradation
procedures mostly fall into two classes, macroautophagy, which is
commonly known as autophagy, and ubiquitin–proteasome system
(Rahman et al., 2020c; Uddin et al., 2020). Furthermore, autophagy
regulates in the activation of several cancer-related genes,which inhibits
tumor promotion and suppression (Botti et al., 2006; Maiuri et al.,
2009). Recent studies have widely explained the involvement of
autophagy in GC growth, metastasis, and forecasting (Xu et al.,
2020a; Spirina et al., 2020; Xiu et al., 2021). Moreover, microRNAs
(miRNAs), short (~22 nucleotides in length) noncoding RNA
molecules, can control gene expression at a posttranscriptional level,
which has an important association in autophagy-mediated GC
regulation. There are abundant convincing studies that showed
inseparable association between miRNAs and GC (Shao et al.,
2020). miRNAs affected GC, which includes oncogenesis, diagnosis,
development, treatment, and prognosis, although many miRNAs have
been linked to GC, and few could be useful to clinical practice (Ouyang
et al., 2021), even though numerous miRNAs have been related to GC
and few can be applied to clinical practice as well. Furthermore, diet-
related natural ingredients may control autophagy in the GC cell that
promote cancer cell chemosensitivity (Xu et al., 2020a). In the present
study, we would like to represent an overview of the literature in
association with autophagy modulation in GC treatment as well as the
role of autophagy boosting and suppressing, which control GC growth
and invasion as a potential treatment strategy and managements.

2 MOLECULAR MECHANISM OF
AUTOPHAGY REGULATION AND CANCER
PROGRESSION
Autophagy is a self-digestion process that assists in maintaining
cellular homeostasis through recycling unwanted or damaged

toxic cellular organelles into the cells (Rahman and Rhim 2017;
Rahman et al., 2021b). Autophagy modulation has been
implicated to regulate several cancers and neurodegeneration
(Rahman et al., 2020b; Rahman et al., 2020d). Generally,
autophagy process might be introduced via the accumulation
of preautophagosome structures formation, which is known as
phagophore assembly sites (PASs) (Hurley and Young 2017;
Rahman and Rhim 2017). Phosphatidylinositol 3-phosphate
PI3K associated with endoplasmic reticulum (ER) has an
essential role to imitate PAS formation (Kotani et al., 2018).
AMPK, AMP-activated protein kinase, mTOR, mammalian
target of rapamycin, and ULK1, unc-51 like autophagy
activating kinase-1, have been facilitated to initiate phagophore
formation in the process of autophagy induction (Alers et al.,
2012). However, beclin-1, Vps34, and Vps15/p150 help to recruit
formation of phagophore (Velazquez and Jackson 2018). After
that, phagophore nucleation has been followed to elongate
membrane to form autophagosome formation (Rubinsztein
et al., 2012). Mature autophagosome binds to lysosome, which
results to autolysosome formation (Kardideh et al., 2019). Finally,
autolysosomes that contain inner cargos have been degraded by
acid hydrolases, as well as produce nutrients and other recycling
metabolites, resulting tomaintenance of intracellular homeostasis
inside the cells (Figure 1).

A direct connection has been found between autophagy and
cancer (Liang et al., 1999). Recently, a huge number of researches
have indicated that ATGs as well as associated pathways may
crosstalk between oncogenes and tumor suppressors (Ariosa
et al., 2021; Khaleel 2021). Certainly, collected data have
supported that the role of autophagy in cancer is complicated,
which may have opposite values in a context- as well as cell
type–dependent manner (Li et al., 2021b). Autophagy determines
whether the cancer is inhibited or activated under certain
conditions. It has been mentioned that mTOR plays a central
role in activating or protecting oncogenic cells via induction of
autophagy (Xu et al., 2020b). In addition, inhibition of autophagy
pathway may regulate cancer progression, as well as the influence
of autophagy develops into either a death function or cellular
survival function (Jung et al., 2020). The metabolism of cancer
cells is strongly changed to retain their survival and proliferation
under adverse microenvironmental situations. It was found that
autophagy acts as an essential function in maintaining metabolic
variations in cancer cells (Goldsmith et al., 2014), although
autophagy is familiar to sustain neoplastic cell metabolism
during stress, and the mutual relation between cancer cell
metabolism and autophagy remains unknown. AMPK and
mTOR have been recognized as the enteral signaling
mechanisms which regulate autophagy through the regulation
of amino acid as well as glucose levels (Alers et al., 2012).
However, the specific metabolites, oxygen concentration,
growth factors, ROS, ATP-to-ADP ratio, specific amino acid
levels, palmitate, and oncogenes regulate autophagy initiation
in addition to autophagosome formation. In addition, they
regulate the balance via assimilating the autophagy-related
signals in cancer (Singh and Cuervo 2011; Panda et al., 2015).
Conspicuously, autophagy has been commonly recognized to
play a “double role” as it can either delay or activate cancer
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initiation as well as progression (Rahman et al., 2020b; Patra et al.,
2020).

The dual role of autophagy in cancer has been emphasized in
autophagy regulation as well as cancer cell activation, which
metabolism controls tumor growth and progression. Basically,
the actual role of autophagy in GC prognosis, metastasis, and
progression has not been widely deliberated yet. However, tumor
metastasis sign has predicted advanced progression as well as
poor prognosis of GC (Jin et al., 2014: ; Cai et al., 2020). Tumor
metastasis process is complex, involving a series of pathological
actions, for example, breakdown of epithelial-to-mesenchymal

transition (EMT), extracellular matrix (ECM), tumor
microenvironment formation, and tumor angiogenesis
(Winkler et al., 2020). In addition, in tumor metastasis, the
role of autophagy is supposed to be both prometastatic and
antimetastatic effects (Poole and Macleod, 2021). Concerning
GC, while autophagic cell death may prevent metastasis, most of
the current results support the notion that autophagy facilitates
tumor metastasis via affecting several aspects (Figure 2). In the
present study, we would like to focus on the relationship with
chemotherapeutic treatment of GC through modulation of
autophagy pathway.

FIGURE 1 |Mechanism of the autophagic pathway. Autophagy initiates via the formation of amacromolecular assembly structure. PI3K-AKT andmTOR contribute
to the formation of the phagophore assembly site (PAS). ULK1/2, ATG-13, Vps34, and beclin-1 complex activate phagophore formation, which creates nucleation
elongation as a result of autophagosome formation. Mature autophagosome and lysosome bind to form autolysosome formation. Eventually, autolysosomes are
degraded via acid hydrolases, thereby releasing nutrients as well as recycling metabolites.
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3 ROLE AND REGULATION OF
AUTOPHAGY IN GC MANAGEMENT

During gastric carcinogenesis, the complicated autophagy-
mediated regulated pathways become more complicated, and it
is necessary to properly investigate. Primarily, AMPK regulatory
system interacts with PI3K-AKT signaling, although a multitude
of transcription components regulate cell biological activities
such as multiplication, development, apoptosis, and autophagy
in anticancer activities. Clinical and pathological studies have
shown that tumor tissues have lower levels of AMPK expression
than normal tissues, and this is thought to be a contributing factor
to emergence and progression of melanomas (Faubert et al., 2015;

Scazzone et al., 2021). Perillaldehyde activates AMPK by
phosphorylating LKB1 at the S307 and S428 regions, and
AMPK induces GC cell autophagy by phosphorylating and
activating ULK1, which restricts GC cell proliferation (Zhang
et al., 2019). MTDH also performs a vital role in drug resistance,
specifically in the resistance to 5-fluorouracil (5-FU),
doxorubicin, CDDP, and etoposide, but also paclitaxel. MTDH
governs ATG-5 expression through triggering AMPK
phosphorylation, recommending that MTDH may invoke
autophagy via the AMPK/ATG-5 signal transduction pathway
and encourage drug tolerance in GC cells (Pei et al., 2018). Cancer
cells with an abnormally active PI3K/AKT/mTOR pathway have
a higher propensity to proliferate aggressively, extending their

FIGURE 2 | Autophagy-mediated metastasis formation in gastric cancer. The autophagy-related proteins are involved in regulation in cancer. Starvation, hypoxia,
and inflammation might be stimulated during autophagic process which create tumor microenvironment. VPS34, ATG6, beclin-1, and PI3K increase tumor
angiogenesis. Transcription factor SIRT1 activates autophagy improvement via inducing ATG8-LC-3-PE conjugation, which later encourages epithelial-to-mesenchymal
transition (EMT), as well as tumor invasion. mTOR negatively regulates autophagy via inhibiting ATG13-ATG1-ULK1/2 protein complex. AMPK/PI3K regulates
autophagy, which detached tumor cells to overcome anoikis.
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survival period and becoming resistant to chemotherapy (Zheng
et al., 2021). A study has demonstrated that activating AKTmakes
GC cells more resistant to chemotherapy treatments such 5-FU,
doxorubicin, mitomycin C, and cisplatin (5-FU) (Munshi et al.,
2001). Autophagy is inhibited by the mTOR route, which
negatively regulates; therefore, blocking the mTOR system is
essential to triggering autophagy (Yap et al., 2008). Flavonoids
can act as an anticancer element by inhibiting the PI3K/AKT/
mTOR system, resulting in arresting G2/M cell cycle and
autophagy, which induce death of GC cells (Raha et al., 2015).
Furthermore, it has been shown that suppressing YWHAZ in
BGC-823 cells inhibits the PI3K/AKT/mTOR regulatory
mechanism, resulting in cell death and autophagy (Guo et al.,
2018a). lncRNAs-HAGLROS associates mTORC1 that stimulate
themTORC1 regulatory system, boosting GC cell proliferation and
sustaining its malignant state (Chen et al., 2018a). Furthermore,
elevated production of HAGLROS correlates with the formation
and lousy prediction of GC, according to new research findings
(Chen et al., 2018a). A number of investigations suggested that long
noncoding RNAs (lncRNAs) influence chemoresistance in a
variety of cancers (Fan et al., 2014; Qu et al., 2016; Özeş et al.,
2016). Moreover, ARHGAP5-AS1 is a novel drug-resistant
lncRNA that increases in GC-resistant cells and can revert
chemoresistance and afterward turned down (Zhu et al., 2019).

Autophagy is thought to be a beneficial process for inhibiting
tumor development at numerous phases, conserving genetic
consistency, removing intracellular supplies of reactive oxygen
species (ROS), as well as sustaining bioenergetic activities (Wang
et al., 2018; Weng et al., 2018). Autophagy, as both a cell’s stress
feedback system to inside and outside stimuli as well as promote
cellular damage also the life expectancy of cancer cells subjected
to chemotherapeutics. (Scherz-Shouval et al., 2010). Autophagy
separates cellular components for example mitochondria inside
of cells, that also helps stop the propagation of pro-apoptotic
elements inside of cells and thus aids the tumor type of cells
avoiding apoptosis. Autophagy suppression in cancerous cells
could also increase the toxic effects of anti-tumor prescription
medications and backward drug resistance (Kumar et al., 2015;
Belounis et al., 2016). Autophagy and apoptosis can be induced by
apatinib and astragalus polysaccharides, however this
polysaccharide inhibit metastasis of GC and invasion of GC.
Whilst autophagy blockers could even significantly boost AGS
apoptotic cell death, it appears that such increased autophagy
caused by apatinib safe guards the cells from apoptosis. Because
increased autophagy could have negative impacts on chemo,
inhibiting autophagy can stimulate protective GC cells and
improve the anti-tumor influence of chemotherapeutics (Wu
et al., 2018b). Autophagy suppression appears to have a pro-
apoptotic impact on peoples GC cells. Cinobufagin can cause the
generation of ROS which causes apoptotic cell death as well as
autophagic cell death through stimulating the ROS/JNK/p38
alignment. Steadily increasing proapoptotic protein expression,
abnormal mitochondrial membrane potential, and elevated ROS
manufacturing are observed while autophagy is interrupted,
implying that autophagy suppression improves cinobufagin-
induced cell death, which might take place in part via the
mitochondrial-coded cell death passageway (Xiong et al., 2019).

Autophagy could indeed preserve cell equilibrium in the
preliminary phases of tumorigenesis, inhibiting the incidence
as well as advancement of GC. Autophagic cell death is distinct
from apoptotic cell death. Autophagy and apoptosis coexist in GC
cells, and their interplay governs cell death autonomously.
Apoptosis occurs downstream of autophagy, as well as
apoptotic cell death that occurs by autophagy (Liu et al.,
2021a). For instance, the PI3K/AKT/mTOR sensing process,
which can synchronously govern the destiny of GC cells, can
control autophagy and apoptosis, respectively (Hu et al., 2021).
Caffeine and theophylline, which are derivatives from
methylxanthine, have been shown to suppress the PI3K/AKT/
mTOR paths through activating PTEN. As a result, GC cells
undergo apoptosis and autophagy, and their expansion is
inhibited (Liu et al., 2019). ER stress and its unfolded protein
response can also be linked to GC cell ability to survive,
advancement, and medication resistance via biological
processes such as autophagy. Melatonin induces cell autophagy
via ER stress, helping to promote GC apoptotic cell death and
preventing their growth, expansion, and invasion (Liu et al., 2019;
Peng et al., 2019). Mitochondrial apoptosis can be induced by
tetrandrine and also inhibit the AKT/mTOR pathway in HGC-27
cells causing autophagy and apoptosis, resulting in antitumor
action and death of cells in gastric tumors. During the
tetrandrine-induced antitumor procedure, autophagy and
apoptosis work together to improve tumor cell death (Bai
et al., 2018). Beclin-1 also serves as an important role
enhancing autophagy-induced apoptosis resistance, and the
expressions of beclin-1, Bcl-xl, and Bcl-2 are positively
correlated with autophagy (Menon and Dhamija 2018). Beclin-
1 can also stimulate the expression of Bcl-2 and Bcl-xl; an
alternative is to suppress Bak and Bax protein levels while
increasing levels of cleaved caspase in GC cells (Kang et al.,
2011). This will prevent GC cells from undergoing apoptosis
while boosting autophagy in GC cells (Maiuri et al., 2007; Du
and Ji 2014).

4 AUTOPHAGY MARKERS EXPRESSED IN
GC PROGRESSION

Because of the differences in biological and clinical
characteristics, carcinoembryonic antigen and carbohydrate
antigen 19-9 have been found to be the most common GC
markers measured before and after surgery (Lin et al., 2020),
although which preoperative or postoperative combined tumor
markers have a more prognostic value has not been clear yet, as
well as whether change of the preoperative and postoperative
systemic inflammatory response (SIR) levels affects the prognosis
of GC. Perioperative SIR variations were described as changes in
the neutrophil–lymphocyte ratio, lymphocyte–monocyte ratio,
systemic immune–inflammation index, and platelet–lymphocyte
ratio (Lin et al., 2021c). Autophagy-mediated tumor metastasis in
GC is described in Figure 2, which is modified from Qian and
Yang in 2016 (Qian and Yang 2016). Inhibition of mTOR by
cellular energy sensor AMPK activates autophagy, which acts a
prosurvival role in cancer cells during ECM detachment
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(Mukhopadhyay et al., 2021). Improved autophagic process
might prevent ECM detached cells from anoikis, in addition to
contributing to luminal filling probably through providing
sustained ATP sources (Santagostino et al., 2021). Therefore,
autophagy has been considered as an adaptive strategy for
separate cancer cells to overcome anoikis in the early stage of
cancer progression (Rahman et al., 2020d; Ariosa et al., 2021).
Besides, a class III histone deacetylase, silent mating type
information regulation 1 (SIRT1), is augmented in tumor
tissues, in addition to correlating with metastasis of GC in
advanced lymph node (Mody et al., 2021). However, the
regulatory effects of SIRT1 in EMT, as well as invasion ability
of GC, were further confirmed by an in vitro study (Xu et al.,
2021a). Significantly, it has been found that SIRT1 is a well-
categorized autophagy mediator that is derived to initiate
autophagy through deacetylation of LC-3 ATGs (Chen et al.,
2021a). Collecting this observation, autophagic process is
modulated via SIRT1 or other mediators that might play an
essential role in tumor progression viamodulating EMT as well as
tumor cell invasion (Zia et al., 2021). Recently, it has been
reported that autophagy encouraged the survival as well as
invasive capability of SGC-7901 cells via facilitating the
development of vasculogenic mimicry (Ahmadpour et al.,
2021). Particularly, autophagy inhibition by beclin-1 silencing
expression decreased cancer cell invasion and survival (Ding
et al., 2014). Therefore, beclin-1–mediated autophagy might be
considered as a tumor angiogenesis factor for GC.
Pharmacologically, autophagy inhibition along with
antiangiogenic therapy may combine as a promising way to
overcome tumor angiogenesis. Moreover, concerning the
tumor microenvironment, autophagy might be strongly
encouraged via nutrient depletion, hypoxia, and inflammation
(Poillet-Perez et al., 2021). However, it is also mentioned that
activated autophagy shapes the tumor microenvironment
through activating tumor angiogenesis, regulating
inflammatory responses, and providing nutrient supply
(Mukhopadhyay et al., 2021).

Based on The Cancer Genome Atlas database, gene expression
data for GC patients undergoing numerous other molecular
markers have been recognized to possess prognostic value and
their expression patterns of autophagy-related genes (ATGs) in
GC cells, which served as a hallmark of autophagy regulation (Liu
et al., 2021b). Autophagy and GC are controlled by crucial kinases
such as mTOR, PI3K/AKT, AMPK, and MAPK, as well as
epidermal growth factor receptor, cell cycle mediators, vascular
endothelial growth factor, cytokines, apoptosis-associated
regulators, and miRNAs (Xiu et al., 2021). ATG5 has been
found to participate in autophagosome elongation as a vital
regulator and is crucial for autophagy, which is associated
with chemotherapy resistance of maximum cancer cells (Wang
et al., 2019). Moreover, single-strand conformation
polymorphism analysis has been revealed that the frameshift
mutations in ATG genes with mononucleotide repeats, including
ATG-2B (mammalian ATG-2 homolog), ATG-9B (mammalian
ATG-9 homolog), and ATG-12 have in common GC with high
microsatellite instability subtypes (Kang et al., 2009). ABCC1
encodes the multidrug-resistant protein 1 (MRP1), which

promotes the MDR phenotype in GC. However, MRP1 and
ATG5 expression were found to be positively associated and
ATG5 expression can sometimes lead to more forceful and
malignant trait of GC, which could provide important data for
effectively evaluating chemotherapy impact in GC patients (Xu
et al., 2020a). ATG5 and MRP1 expressions are being worked as
self-governing prognostic markers for predicting overall survival
and disease-free survival in GC patients (Ge et al., 2014). A rate-
limiting enzyme arginine synthesis pathway, arginine succinate
synthase 1 (ASS1), is highly expressed in GC tissues (Silberman
et al., 2019). Studies have found that ASS1 may be a useful
prognostic marker for predicting survival and metastasis in
patients with GC (Tsai et al., 2018; Jangra et al., 2020). The
gene SP1, part of the SP1 multigene family, which is critical in the
emergence and progression of malignancies, was found to be
highly overexpressed in GC tissues, and this overexpression was
closely associated with patient survival (Xu et al., 2018). SP1 has
an adverse effect on autophagy regulation because it binds
directly to the p62 promoter and raises p62’s expression level.
As the SP1-p62 axis may contribute to the development of GC, it
could serve as a prognostic indicator for the detection of GC (Xu
et al., 2018). Moreover, newly synthesized LC-3’s C-terminus has
been hydrolyzed via a cysteine protease known as ATG-4B
exposing Gly-120 called LC-3-I (Agrotis and Ketteler 2020).
LC-3-I has been processed via a series of ubiquitin-like
reactions by the help of enzymes ATG3, ATG7, and
ATG12–ATG5–ATG16, which become adjacent to the head
group of the lipid phosphatidylethanolamine (PE), a class of
phospholipids found in biological membranes (Rahman et al.,
2021a). However, the lipid modified form of LC-3, which is
known as LC-3-II, has been believed to be intricated in
autophagosome membrane elongation as well as fusion events
during autophagy process (Schaefer and Dikic 2021). However,
the exact function and role of LC-3 in autophagy pathway are still
investigated. In addition to the PB1 domain and the TB domain,
p62, also known as sequestosome 1 (SQSTM1) autophagosome
cargo protein, which targets other proteins that bind to it for
selective autophagy, has several other domains such as the KIR, a
ubiquitin-related area, and so on. A number of investigations
have revealed that p62 levels are inversely associated with levels of
GC autophagy (Weng et al., 2018). When autophagy occurs, the
expression of beclin-1 increases because it is a yeast ATG6
homolog and is an essential activator of autophagy (Hu et al.,
2015), and a reduction in beclin-1 expression in GC indicates a
drop in autophagy (Zheng et al., 2019).

5 ROLE OF MIRNAS THROUGH
REGULATION OF AUTOPHAGY IN GC

Alongside miRNAs, lncRNAs are essential to regulate autophagy,
which can aid in the development of more effective treatment
strategies and the identification of novel medicinal aims for the
research of processes of resistance in GC (Roy 2021). In GC
tissues, lncRNA MALAT1 activates autophagy via
downregulating the tumor suppressor miR-204. miR-204
overexpression in GC cell lines CTC105 and CTC141 reduces
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transient receptor potential melastatin 3 (TRPM3), an activator of
oncogenic autophagy-miR-204, which can be used as a target in
GC therapy. Antiautophagy tumor suppressor, miR-30a,
upsurges sensitivity to imatinib (IM) in gastrointestinal
stromal tumor (GIST) cells alone with mouse xenograft
models with specific target of miR-30a in association with
beclin-1–driven autophagy in IM-resistant cells such as GIST-
882 than the sensitive GIST-1 cell line (Shao et al., 2020), but
counterintuitive that miR-183 could contribute to GC
suppression (Li et al., 2019). Furthermore, miR-20a, an
oncogene, is significantly expressed in GC, and it is
anticipated that it will serve as an indicator for clinical
identification (Xin et al., 2019). It has been found that miR-21
is overexpressed, and its anomalous expression has an important
role in GC growth via modulating tumor suppressors PTEN and

PDCD4 expression, which regulates migration, cell growth,
invasion, and apoptosis (Li et al., 2014). According to the
findings, the level of miR-1265 in GC samples was shown to
be lower than in samples from nearby healthy cells. The calcium-
binding protein (CAB39) gene is miR-1265’s target. CAB39 is an
important element of the LKB1-STRAD-CAB39 combination
(Brajenovic et al., 2004; Treiber et al., 2019), autophagy
produced by the CAB39-LKB1-AMPK pathway is cancerous in
GC cells and enhanced the phosphorylated of AMPK more than
100-fold (Hawley et al., 2003) at the Thr172 junction of LKB1
with STRAD and CAB39. As a result, miR-1265 slows GC
development and autophagy by reducing the expression of
CAB39 and controlling the AMPK-mTOR regulatory pathway
(Xu et al., 2019). On the other hand, targeting miR-25-3p
activated growth inhibition, invasion, and migration of GC

FIGURE 3 |MicroRNAs regulates autophagy-mediated cell proliferation and migration in gastric cancer. Overexpression of miR-375 inhibited the proliferation and
migration of gastric cancer in vitro and xenograft nude mouse model. miRNA blocks autophagy via AKT/mTOR signaling pathway and regulating invasion as well as
migration in epithelial-to-mesenchymal transition. In addition, most usually effective miRNAs control the transcriptional expression of upstream activators and inhibitors of
autophagy in gastric cancer.
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cells in vitro, and in vivo delivery of miR-25-3p inhibitors
significantly encouraged SCID mice–bearing human GC
xenografts antitumor activity (Ning et al., 2020). An miRNA,
miR-495-3p, has been linked to the development of malignant
phenotypes in patients with GC. It is thought to be responsible for
reversing MDR by inhibiting autophagy through modulation of
the mTOR signaling pathway. MiRNAs-181a endorses EMT in
esophageal squamous cell carcinoma through the transforming
growth factor-β/Smad pathway (Xu et al., 2021b). It is also
believed that miR-495-3p is responsible for reversing MDR by
limiting autophagy and also that miR-495-3p is related to the
malignant phenotype of GC patients (Chen et al., 2018b). In
addition, certain miRNAs, such as miR-375 (Yuan et al., 2018),
miR-21 (Gu et al., 2020), and miR-361-5p (Tian et al., 2018),
which operate as autophagy blockers, control autophagy and limit
GC activity via modulating the mTOR pathway (Figure 3 and
Figure 4). Furthermore, the expression of miRNAs, such as miR-
181a (Zhao et al., 2016), miR-30a (Du et al., 2018), miR-let-7a
(Fan et al., 2018), miR-133a-3p (Zhang et al., 2018a), miR-532-3p
(Guo et al., 2018b), and others, is connected with such a reduction
in the capacity of GC cells to proliferate. It has been found that
SLC7A11 is identified as a target of miR-375, which diminished
the stemness of GC cells via activating SLC7A11-dependent
ferroptosis (Ni et al., 2021). MALAT1, a competing
endogenous RNA of miR-23b-3p, was shown to reduce the
suppressive activities of miR-23b-3p on ATG-12, while
simultaneously increasing the development of ATG-12,

resulting in chemoinduced GC cell autophagy and drug
resistance (YiRen et al., 2017). In addition, AKT and mTOR
have been reported to be targeted via miR-495 overexpression of
miR-495, which could prevent the growth in addition to induce
the apoptosis of GC cells through blocking of PI3K/AKT/mTOR,
which altered Bax, caspase-3/-9, and cyclin D1 expression
(Ouyang et al., 2021). miR-153-3p facilitates ATG-7–mediated
autophagy induction in fluorouracil resistance via the adenosine
monophosphate (AMP)-activated protein kinase (AMPK)/ATG3
pathway in GC (Hou et al., 2020). Gastric carcinogenesis is
complicated by the participation of miRNAs (Song and
Meltzer 2012), and these autophagy-mediated processes must
be further investigated.

6 THERAPEUTIC TARGET AND
TREATMENT STRATEGY OF AUTOPHAGY
MODULATION IN GC
Therapeutic targeting of autophagy in GCs might be proposed to
be an auspicious novel therapeutic approach. Meanwhile, both
autophagy inhibitors and autophagy inducers may lead to inhibit
cancer cell death, but at present, they are only in the clinical
development stage for the treatment of GCs. Despite the fact that
the association between autophagy and cancer still is debated, the
participation of shared regulatory mechanisms (Table 1) makes
autophagy an attractive therapeutic focus for the treatment of

FIGURE 4 | Several signaling pathways modulating autophagy in gastric cancer treatment. AMPK/ULK1 inhibits mTOR pathway, which positively activates
autophagy induction. Neurotransmitter and miRNA regulate autophagy induction. However, autophagy-related gene (ATG), 3-metheylalanine (3-MA), chloroquine (CQ),
bafilomycin A1 (BAF-1), and nonsteroidal anti-inflammatory drugs (NSAIDs) inhibited and modulated entire autophagy process. β2-Adrenergic receptor activates beclin-
1 and inhibits autophagy.
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cancer (Khaleel 2021). Autophagy can be used to sensitize tumor
cells to chemotherapy or radiation, therapy blocking its
cytoprotective action, which leads to the destruction of
antiapoptotic cells via autophagy (Gupta et al., 2021). Through
the use of their mechanisms, autophagy demonstrated resistance
to chemotherapy and radiotherapy, and it also hinders the
effectiveness of anticancer medicine (Zhang et al., 2021).
Inhibiting autophagy in cancerous cells can have adverse
repercussions on the body, including such mitochondrial
dysfunction, redox imbalance, nucleotide consumption, and
reduction of energy supply (Poillet-Perez et al., 2021). As a
result, inhibiting autophagy could be recruited to increase
chemosensitivity as a therapeutic strategy. AMP-activated
protein kinase α (AMPKα) has been shown to promote
autophagy by triggering ULK1 and blocking mTOR/p70S6K
process (Xu et al., 2020b). Stress-inducing neurotransmitter
norepinephrine increases autophagic flux by AMPK-ULK1
pathway, as a result activating the tumor-promoting
autophagy pathways and speeding up GC development (Zhi
et al., 2019). Anticancer therapy efficacy may be improved
using AMPK inhibitors; 3-methyladenine (3-MA), a class III
PI3K inhibitor, suppresses autophagy by inhibiting autophagy
from initial stage and preventing autophagosomes formation.
Antimalarial medication chloroquine (CQ) is used to treat
malaria, which also impedes autophagy (Lin et al., 2021a).
There is no direct impact on organelle acidity (Park et al.,
2021), but it suppresses autophagy by preventing the
autophagosome and lysosome from joining (Honma et al.,
2021). The effectiveness of antitumor therapy could be
improved by using this supplement; CQ and 5-FU together
have the potential to further reduce the number of GC stem
cells (Xiao et al., 2017). As a result of blocking
lysosome–autophagy fusion, BAF-1 shows lower LC-3-II levels
while simultaneously elevating p62, which is one way that BAF-1
inhibits autophagy (Bai et al., 2018). However, there is no
information on the connection between BAF-1 and the
therapy of GC. In addition, chemokine CXCL12 encouraged
mTOR activation and played an important role in GC cell
peritoneal metastasis control (Mele et al., 2020).

Recently, it has been found that inhibition of autophagy via
silencing of beclin-1 protein expression decreased GC cell
survival as well as invasion (Shafabakhsh et al., 2021). The
deletion of ATGs then suppresses autophagic activity via
siRNA- or miRNA-mediated silencing methods, which have
been gaining attention (Schaefer and Dikic 2021). The use of
sequence-specific DNA or RNA analogs can be used to build
customized compounds with anticancer properties at a low cost
that prevent the production of specific gene sequences with high
specificity. In addition, several essential controllers of autophagy
pathways, such as ATG-3, ATG-4B, ATG-4C, ATG-5, ATG-6,
beclin-1, ATG-10, and ATG-12, can be targeted in this way in
order to combat GC (Mandhair et al., 2021). It has already been
discovered that enhanced ATG-5 activity was observed to be
associated with a better patient survival and disorder survival in
GC patients and that ATG-5 was abundantly expressed in drug-
resistant GC cell lines. It has also been discovered that
suppressing ATG-5 (siRNA-ATG-5-695) can restore sensitivity

to chemotherapeutics in resistant cells (Xu et al., 2020a). GC cells
treated with cinobufagin undergo apoptosis because of the
inhibition of ATG-5 synthesis caused by siRNA, which can
also increase ROS formation and activate a cell death pathway
in mitochondria. The stimulation of autophagy in GC cells by
norepinephrine is a critical component for the growth of GC
(Krizanova et al., 2016; Le et al., 2016; Zhi et al., 2019). The β2-
adrenergic receptor (ADRB2) is a variant of the adrenergic
receptor that is responsible for catecholamine production in
the body. Beclin-1 production can also reduce by deletion of
the ADRB2 gene that may also inactivate the AMPK-ULK1
system; as a result, autophagy is reduced (Xiu et al., 2021).
When it comes to the autophagy function, Rab5a, a part of
the Rab group, is also engaged in intracellular material
transport and protein classification, but it also plays a role in
the process (He et al., 2021). In GC cells, activation of mTOR by
Rab5a, an upstream regulator of mTOR, can suppress autophagy
and increase pharmacological resistant through activation of
mTOR (Li et al., 2021b). Because of this, a Rab5a mutation
can reduce mTOR activity in SGC7901 cells while simultaneously
increasing autophagy and reversing pharmaceutical tolerance (Li
et al., 2021a). Nonsteroidal anti-inflammatory drugs (NSAIDs)
target the epithelium of the gastrointestinal system (Fletcher et al.,
2021). If these medications are used to treat inflammation and
pain, they have a detrimental effect on the digestive epithelia,
which is their primary negative impact (Fratter et al., 2021).
However, because NSAIDs decrease carcinogenesis in
gastrointestinal tissues, they are considered an adjuvant to
chemotherapy (Wang et al., 2021). It has been demonstrated
that indomethacin-treated AGS cells exhibit decreased lysosomal
acid content and increased membrane permeability, impairing
lysosomal role and cathepsin action; thus, inadequate
deterioration of autophagic materials impairs autophagic flux,
raising the susceptibility of GC cells to cytotoxic agents (Ahmed
et al., 2021). Rapamycin increases intracellular ROS generation, as
well as displays selective synergistic antitumor activity with EF24
in human GC cell lines SGC-7901 and BGC-823 (Chen et al.,
2021b). Therefore, perturbation of autophagic modulation may
be a possible approach for controlling and treating GC.

7 PHYTOCHEMICALS FOR THE
PREVENTION AND TREATMENT OF GC VIA
AUTOPHAGY
Phytochemicals have been demonstrated to be promising for
regulating and controlling GC (Mitra and Dash 2018), which
makes it possible for cellular components to degrade and be
recycled in a controlled manner (Yao et al., 2021). Numerous
phytochemicals and their autophagic activities are summarized in
Table 2. Rottlerin, extracted from Mallotus philippensis Muell
(Euphorbiaceae), induced autophagy and caspase-independent
apoptosis against SGC-7901 and MGC-803 cells (Song et al.,
2018). Evodiamine activates autophagy through beclin-2
expression in SGC-7901 GC cells (Rasul et al., 2012). Morus
alba root extract, containing oxyresveratrol, has been found to
accumulate ROS production and initiate autophagic and
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apoptotic cell death via FOXO-caspase-3 pathway (Kwon et al.,
2015; Rahman et al., 2017). Cytotoxic activity on AGS, MKN-45,
and KATO-III human GC cells via induction of caspase
activation and autophagy via AKT/NF-κB pathway in AGS
cells (Kang et al., 2021) have been demonstrated. 3,3′-
Diindolylmethane modulates autophagy activation by miR-
30e-ATG-5 in BGC-823 and SGC-7901 cells (Ye et al., 2016).
Pectolinarigenin, a natural flavonoid present in Cirsium
chanroenicum, downregulated PI3K/AKT/mTOR pathway via
G2/M phase cell cycle arrest, apoptotic, and autophagic cell
death in human GC cells (Lee et al., 2018). Flux analysis of
autophagy and increase in the level of LC-3-II revealed induction
of autophagy by the tuber of Amorphophallus konjac. G0/G1
phase cell cycle arrest has been detected by flow cytometry. Chen
et al. determined apoptosis- and autophagy-inducing effects of
kangfuxin, an organic extract of Periplaneta americana Linnaeus.
(Blattidae), against SGC-7901 cell line (Chen et al., 2017).
Proteins that mediate ER stress–mediated apoptosis including
glucose-regulated protein 78 (GRP78), C/EBP-homologous
protein (CHOP), and caspase-12 have been greatly
upregulated in the group treated with kangfuxin. In addition,
the LC-3-I/LC-3-II ratio and expression levels of beclin-1 were
also higher in the kangfuxin group. Also, 3,3′-diindolylmethane,
derived from cruciferous vegetables, increased the ATG-5
expression and LC-3 in GC cells in addition to decrease
miRNAs-30e level (Ye et al., 2016). Besides, perillaldehyde,
isolated from Perilla frutescens, increased AMPK
phosphorylation, leading to autophagy via beclin-1, LC-3-II,
cathepsin, p53, and caspase-3 in tumor xenograft model of GC
inMFCmouse as well as GC9811-P human GC cells (Zhang et al.,
2018b). Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST),
a traditional Chinese medicine, stimulates autophagy by
triggering AMPK/ULK1 signaling, consequently activating
EMT and exosomes to increase chemoresistance, and
therefore, one of the mechanisms of GC resistance to
DSGOST is survival, promoting autophagy. Using compound
C, a well-known suppressor of AMPK, to impede DSGOST-
mediated autophagy and diminish drug resistance, promotes
killing of GC cells and decreases their drug tolerance (Kim
et al., 2018a). In addition, natural plant components of
Saussurea lappa Clarke, Dioscorea nipponica Makino, and

Melandrium firmum have been found to induce
antiproliferative and apoptotic functions (Rahman et al., 2013;
Rahman et al., 2014; Rahman et al., 2015). Latcripin 1 (LP1) was
found to arrest S-phase cell cycle as well as decrease matrix
metalloproteinase 2 (MMP-2) and MMP-9 expression with
induction formation of autophagosomes by AKT/mTOR
pathway against GC cell lines SGC-7901 and BGC-823 (Batool
et al., 2018). Allicin has been found to increase autophagy in
human GC cell MGC-803, BGC-823, and SGC-7901 cells via
regulation of p38 signaling (Zhang et al., 2015). Kaempferol, a
flavonoid isolated from fruits and vegetables, induces autophagic
cell death through IRE1-JNK-CHOP activation in response to ER
stress in human GC cell lines (Kim et al., 2018b). Numerous
phytochemicals and their response in GC by autophagy signaling
are presented in Figure 5. Therefore, autophagy induction by
phytochemical might possibly be targeted as a potential
therapeutic approach to control GC.

8 ROLEOFAUTOPHAGYACTIVATORSAND
INHIBITORS ON GC

There are no clear evidences whether autophagy has a cancer-
promoter or a cancer-suppressor function in GC. It has been
found that autophagy plays an important role in the human
cancer patient who suffers chemoresistance, and development of
molecule that acts as activator or inhibitor for autophagy may be
an open novel resource to treat GC (Mele et al., 2020; Mendes
et al., 2021). CQ and hydroxychloroquine (HCQ) are approved by
the Food and Drug Administration for clinical application, which
can be blocking degradation and the fusion step of
autophagosome as a result of regulating autophagy to illustrate
the dual role of autophagy in cancer. At present, multiple types of
tumors are treated by CQ and HCQ separately or mixed with
chemotherapy (Lin et al., 2017). Moreover, it has been found that
abnormal expression of autophagy genes may cause some cancer-
related pathology. Kim et al. (2020) discovered that genipin,
derived from Gardenia jasminoides, can boost p53, a tumor-
suppressor protein p53 and DRAM, trigger apoptotic cell death
and autophagy, and improve the susceptibility of AGS and
MKN45 GC cell lines to OXA by increasing p53 and DRAM

TABLE 1 | Several molecular target and therapeutic role of different drugs in autophagy modulation in gastric cancer cells.

Compounds Experimental model Autophagy mechanism References

Chloroquine Bone marrow stromal cells Autophagy induction Lin et al. (2021a)

Nonsteroidal anti-inflammatory drugs SGC-7901 cells Autophagy induction Fletcher et al. (2021)

3-Methylalanine SGC-7901 cells Class III PI3K inhibitor and suppresses autophagy Li et al. (2013)

Bafilomycin A1 (BAF-1) MGC-803 cells Autophagy induction Bai et al. (2018)

β2-Adrenergic receptor Human SGC-7901 and BGC-823 cells AMPK-ULK1 mediated autophagy induction Zhi et al. (2019)

Indomethacin AGS cells Lysosomal-mediated autophagy induction Ahmed et al. (2021)

CXCL12 NUGC4 cell mTOR-mediated autophagy activation Mele et al. (2020)

Compound C AGS cells Inhibitory role of autophagy Li et al. (2013)

Rapamycin Human SGC-7901 and BGC-823 cells Induction of autophagy Chen et al. (2021b)
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FIGURE 5 | Phytochemicals modulate autophagy-mediated cell death in gastric cancer. Different naturally occurring molecules are regulated ER stress, p38, p53,
ATG gene, COX-2, and mTOR pathway, which modulate autophagy in gastric cancer. Each compound is well-described in the text.

TABLE 2 | Phytochemicals and their effects on gastric cancer via autophagy pathway.

Compounds Experimental model/cells Dose/duration Autophagy mechanism References

N-butylidenephthalide AGS 25, 50, 75 μg/
mL; 24 h

↑REDD1 Liao et al. (2018)
↓mTOR

Perillaldehyde Xenograft model of gastric cancer 100 mg/kg per day Beclin-1, LC-3-II, cathepsin, p53-mediated
autophagy

Zhang et al.
(2018b)

Terpenoid AGS, MKN-45, KATO III 10, 20,
30 μM; 24 h

↑p-JNK, p-p38, p-AMPK, Bax, cyt c, caspase-3,
c-PARP1, LC-3-II

Chun et al. (2014)

↓p-ERK, p-AKT, p-mTOR, NF-κB, COX-2, cyclin
D1, VEGF, Bcl-2, Bid

Kangfuxin SGC-7901 0.1, 1 μg/mL; 48 h ↑GRP78, CHOP, caspase-12, LC-3-II/LC-3-I, Bax Chen et al. (2017)
↓Bcl-2

Rottlerin SGC-7901, MGC-803 2 ,4, 8 μM; 24 h ↑LC-3-II Song et al. (2018)
↓mTOR, Skp2

Allicin Human gastric cancer cell MGC-803, BGC-823,
and SGC-7901

1 μg/mL Increase expression of p38 and autophagy Zhang et al.
(2015)

Evodiamine SGC-7901 10 µM Activates beclin-2 and autophagy Rasul et al. (2012)

Pectolinarigenin AGS and MKN-28 50 and 100 μM PI3K/AKT/mTOR signaling Lee et al. (2018)

3,3′-Diindolylmethane BGC-823 and SGC-7901 60 μM miR-30e-ATG-5 modulating autophagy Ye et al. (2016)

Latcripin 1 SGC-7901 and BGC-823 30, 60, and 90 μM ATG-7, ATG-5, ATG-12, ATG-14, and beclin-1
induction autophagy

Batool et al.
(2018)

Kaempferol Human GC cell lines (AGS, SNU-216, NCI-N87,
SNU-638, and MKN-74)

50 μM Activation of the IRE1-JNK-CHOP–mediated
autophagy

Kim et al. (2018b)
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(Kim et al., 2020). According to Xu et al. (2018), tanshinone IIA
can diminishes the expression of MRP1 and impede adriamycin
efflux (ADM) (Mirzaei et al., 2021). The mixture of ADM and
tanshinone IIA may also increase the sensitivity of GC cells to
ADM by inducing autophagy and boosting the death of the cells
(Xu et al., 2020a). TCM licorice contains a compound known as
liqueritin that promotes beclin-1 expression and reduces p62
expression, which activates autophagy (Zhao et al., 2021).
DSGOST, a traditional Korean herbal remedy induced by
several chemotherapy medications, is often utilized to activate
the AMPK/ULK1 pathway, increasing autophagy flux, inducing
autophagy and apoptosis, and increasing the sensitivity of the GC
cell lines AGS and SNU-638 (Kim et al., 2018a). Furthermore,
excessive or aberrant activity of autophagic may activate
cytotoxicity in addition to contributing to intracellular
components’ improper degradation, which is essential for
maintaining cancer cell survival in GC cells (Qian and Yang
2016). Researchers have discovered that the herbal remedies
cucurbitacin B and phloretin have anticancer properties and
reverse chemotherapy resistance in recent years (Choi 2019;
Fabiani 2020). Several investigations on their mechanisms of
action have revealed that cucurbitacin B inhibits CIP2A
(cancerous inhibitor of protein phosphatase 2A), which then
reactivates PP2A (protein phosphatase 2A), hence increasing
PP2A-dependent mTORC1 inactivation and decreasing PP2A-
independent mTORC1 activation (Liu et al., 2017). Phloretin
suppresses ERK1/2 and MAPK p38 phosphorylation and
enhances LC-3B II and beclin-1 expression, thereby initiating
autophagy and increasing the susceptibility of GC cells to ADM
in vitro (You et al., 2020). The presence of irregular glycosylation
has long been considered a warning sign of cancer, and this has
been linked to tumor growth, progression, metastasis, and
resistance to chemotherapy (Wang et al., 2020). In GC cells,
5-FU was found to induce cell proliferation arrest, as well as
autophagic cell death via beclin-1 upregulation, which
significantly enhanced autophagy and reduced cancer cell
growth. Therefore, inducing autophagy may efficiently control
GC (Yang and Pan 2016).

Numerous therapeutic can promote protective autophagy in
cancer cells, thereby preventing cancer cells from undergoing
drug-induced apoptosis. One study demonstrated that
oxaliplatin can partially antagonize apoptotic cell death in
GC MGC803 cells that protect autophagy-induced cell death
(Xu et al., 2011). Tunicamycin was first discovered as a natural
antibacterial and anticancer chemical because it is an effective
glycosylation inhibitor (Wu et al., 2018a). Inhibiting
N-glycosylation with tunicamycin boosts ER stress and
autophagy while increasing the susceptibility of GC cells to
ADM and VCR (Wu et al., 2018a). In contrast, OGT
inhibitor–mediated autophagy was significantly attenuated by
3-MA, a blocker of autophagosome formation, however, when
pretreated with CQ (Rahman et al., 2019; Rahman et al., 2020a).
Indomethacin, a well-known NSAID, has been used successfully
as a coadjutant in the development of anticancer medicines
(López-Contreras et al., 2020). In AGS cells, indomethacin
increases OXA-induced cell death, increases p62 and NBR1
accumulation, impairs lysosomal activity, and inhibits

autophagic destruction (Vallecillo-Hernández et al., 2018).
DDP reduces MALAT1 expression, whereas propofol
increases the inhibitory effects of miR-30e on ATG5 and
autophagy, making GC highly susceptible to DDP both
in vitro and in vivo (Ashrafizadeh et al., 2020; Tabnak et al.,
2021).

9 CONCLUSION AND PROSPECTS

In tumor progression, autophagy plays a complicated task and
diverse consequences, depending on what type of tumor and its
phases. The role of autophagy has theoretical as well as clinical
significance to maintain cellular homeostasis. In the initial stages
of malignant transformation or cancer formation, autophagy
appears to restrict tumor growth, but in the late stages,
autophagy seems to enhance tumor survival as well as
tolerance to chemotherapy. Several factors may control the
intracellular autophagy level, which determines the
effectiveness of antitumor therapies based on autophagy
modulation in GC. While the PI3K and mTOR regulatory
systems have been proven as major signaling routes governing
autophagy, alternative autophagy-related mechanisms (p53,
MAPK, or PTEN) must be investigated in further studies. The
importance of miRNA and Helicobacter pylori in the control of
autophagy in GC regulation is rapidly being recognized, while
autophagy stimulators and blockers have obtained considerable
clinical testing results in the treatment of GC, which has potential
therapeutic approaches as well. Nevertheless, the dual role of
autophagy therapy in GC should also be addressed. Many
investigations, from the other side, have shown that autophagy
and apoptosis can coexist or happen in consecutive order, and
they can combine to modulate cancer regulation and
management. Because of the extreme variation and unclear
source of antitumor drug resistance, which causes inefficient
medication and poor diagnosis in patients with progressive of
GC, current research has summarized the complicated
interaction involving autophagy and chemotherapy protest in
GC. Although rapid recognition and monitoring of GC are
critical stages in the therapeutic process, as a result, associated
proteins and ATGs are accused of being engaged in autophagy
methods and are predicted to get more new targets and diagnostic
markers for GC treatments. Even more research into autophagy
indicators may offer a new option for prognostic indicators and
medicinal objectives for GC. Furthermore, more data suggest
that too many organic ingredients can cause chemotherapy
tolerance by controlling signal transduction. As a result,
natural substances, either alone or in conjunction with
autophagy modulators and/or chemotherapeutic medicines,
might have a beneficial impact on drug-resistant malignancy
in GC. However, additional research is required to discover
molecular mechanisms and particular objectives, as well as to
validate the efficacy and safeness of these treatments in
medically significant in GC cancer models. It should be
confirmed how autophagy functioning is controlled variably
in GC, or which variables induce tissue-specific suppression
and/or stimulation of autophagy.
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