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The purpose of this paper is to report on commissioning and clinical 
implementation of a customized system for pediatric stereotactic conformal 
radiotherapy (SCRT). The system is based on the Pinnacle treatment-planning 
system and its interfaces with other equipment: (1) Beam models were 
optimized for our compact blocking system and a new LINAC. (2) Three CT-
to-density conversion tables were evaluated, one using tabulated data for a 
commercial phantom, the second including additional points from the 
manufacturer’s data for the inserts in an in-house phantom, and the third using 
measured densities for the in-house phantom materials combined with 
tabulated data for the commercial phantom. (3) Blocks were transferred to a 
computerized block cutter using in-house software that extracted the block 
shape from the export file and custom-fitted the additional necessary shapes. 
(4) In the absence of a DICOM RT Image link, a method based on screen data 
capture was used to export digitally reconstructed radiographs (DRRs) to two 
portal imaging systems for treatment verification. Lens shielding by multileaf 
collimation in the anterior-posterior isocenter verification field was 
investigated. (1) Computed dose distributions using the beam models agreed 
with measurements well within published acceptability criteria. A difference 
of up to 1.0 mm was measured between the beam’s eye views of aperture 
blocks and computed 50% isodose contours for a 2 × 2 × 2 mm dose 
calculation grid. (2) The third table, which included measured densities, 
improved the accuracy of the calculated isocenter dose by up to 0.5% in 
typical patient SCRT treatments and up to 1.0% in a phantom with 5-cm 
diameter inhomogeneity inserts. (3) The block export and customization 
process was shown to introduce no additional uncertainty. A 1-mm block 
production uncertainty was measured using film dosimetry on six blocks. (4) 
The DRR transfer method did not introduce uncertainty into the process. 
Verification field shielding reduced lens dose by 12 to 15 times. In 
conclusion, this customized system for planning and verification of pediatric 
SCRT provides a high level of precision as well as reasonable practical 
efficiency. 

PACS numbers: 87.53.Kn, 87.53.Ly, 87.53.Oq, 87.53.Tf, 87.53.Uv 

1 © 2004 Am. Coll. Med. Phys.  1 

supervisor
Note
Cancelled set by supervisor

supervisor
Note
None set by supervisor

supervisor
Note
None set by supervisor

supervisor
Note
Completed set by supervisor

supervisor
Note
Completed set by supervisor



2     Mosleh-Shirazi et al.: Stereotactic radiotherapy...	 2 

Key words: pediatric stereotactic conformal radiation therapy, treatment-
planning system commissioning, conformal block production, CT 
inhomogeneity correction, treatment isocenter verification 

I.	 INTRODUCTION 

Small-to-medium sized benign or low-grade childhood brain tumors are routinely treated at 
The Royal Marsden Hospital with fractionated stereotactic conformal radiotherapy (SCRT) 
using static noncoplanar conformal fields. The patient is immobilized in either an in-house 
relocatable stereotactic frame designed for children or a high-precision thermoplastic cast 
system.(1) Gross tumor volume delineation is performed based on coregistered CT-MR 
images. 

Customized blocks offer the highest conformity to targets. We use an in-house, 
compact blocking system for SCRT. Its compactness offers a greater beam access 
compared to tray-mounted blocks or tertiary multileaf collimators (MLCs), thereby 
reducing the overlap of noncoplanar beam paths. The positional reproducibility of the 
SCRT blocks is better than 0.5 mm,(1) and the beam passes through the block aperture 
unattenuated since no accessory tray is used. 

The Pinnacle 3D treatment-planning system (ADAC Laboratories, Philips Medical 
Systems, Milpitas CA) was previously commissioned for general treatment planning at our 
center.(2) As with most other standard commissioning processes for 3D conformal 
radiotherapy (RT), the commissioned aspects had included beam modeling for the required 
field size range (3 cm to 40 cm), density heterogeneity correction, oblique and asymmetric 
field dosimetry, and irregular field shaping using MLCs and standard blocks, as well as 
quality assurance testing of dose volume histograms and digitally reconstructed radiographs 
(DRRs). We specify our SCRT fields in Pinnacle as static beams since the option for 
stereotactic arcs with circular collimators does not reflect our treatment setup. The SCRT 
technique uses specialized hardware as well as further planning system functionality than 
routine planning. The special requirements of SCRT necessitated a customized system of 
planning and verification for this technique. This paper reports the previously unpublished 
aspects of the commissioning process for this SCRT system and describes its clinical 
implementation at our center. In addition, following the previous publication,(2) further 
investigations have been carried out on Pinnacle; we have incorporated them into SCRT 
planning and report on them in this paper. 

Pinnacle forms the central component of the SCRT system. The other components are 
CT and MRI scanners, the stereotactic frame or high-precision cast, our SCRT blocks, a 
computerized block cutter, and electronic portal imaging (EPI) systems. CT-MR image 
registration is not covered in this paper. Our patient immobilization techniques were 
previously reported,(1) and a separate small-field beam model had been developed for 
SCRT, as previously described.(2) The requirements for the rest of the system are introduced 
below and addressed in this paper, starting from dose calculation, then block production, 
and finally treatment verification: 

1.	 Another SCRT beam model for a different LINAC, optimized for our SCRT blocks 
and a limited field size range, as with the first model. 

2.	 Determination of the relationship between Pinnacle’s 50% isodose contour, beam’s eye 
view (BEV) representation of an aperture block, and its projection to the plane of the 
isocenter. 
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3.	 A practical method to produce a more representative CT-to-density conversion table, 
compared with that achieved by adoption of manufacturers’ data for density 
inhomogeneities in calibration phantoms. 

4.	 Export, editing, and introduction of additional shapes (central locating hole and outer 
fixing extensions) needed for pouring lead alloy and fixation with our SCRT blocks, 
and the subsequent import of the resulting block shapes into a computerized hot-wire 
block cutter. 

5. 	 Measurement of the accuracy of our block production technique. 
6.	 An interim solution to the problem of importing DRRs into the EPI systems as 

reference images for treatment verification, in the absence of a DICOM RT Image link 
for DRR export from Pinnacle. 

7.	 Reduction of lens dose from isocenter verification fields for children. 

The small-field aspect and the greater beam modeling accuracy needed for SCRT add 
to most of the above requirements to make this commissioning process nonstandard. Since 
the SCRT blocks are in-house and only used for this application, steps 1, 2, 4, and 5 are 
specific to this customized system. In addition, step 7 may be deemed necessary for 
children only and is therefore specific to such patients. Step 3 may only be carried out to 
the extent reported here if the required level of accuracy merits it, while step 6 is only 
required where DRR-based verification is performed using exported (not printed-out) 
images and if a DICOM RT Image link for DRRs is not available. 

II. 	MATERIALS AND METHODS 

A. Beam modeling 
Machine data incorporating small-field beam models, manually optimized for our SCRT 
blocks, had been created on Pinnacle for the 6-MV beam of an Elekta SL15 LINAC (Elekta 
AB, Stockholm, Sweden).(2) Instead of using the published or interpolated spectra available 
on the system, a Monte Carlo–generated photon energy spectrum had been used in that 
model.(2) The commissioning process was repeated for the 6-MV beam of an Elekta Precise 
LINAC. To create beam models for general planning with this LINAC, the spectrum and 
the other beam parameters had been auto-modeled on Pinnacle and subsequently adjusted 
manually for improved matching to measurements, a single model representing open fields 
for the 3 cm to 40 cm range of field sizes and another one for wedged fields. For SCRT, the 
general-planning models were used as the starting point for optimization in the field size 
range 3 cm to 10 cm but recomputed with a 1.5-mm fluence grid resolution instead of 2.5 
mm. Given the reduced field size range, the models could be further optimized for 
unblocked beams to improve agreement with measurements. Based on comparisons of 
computed and measured planar dose distributions and dose profiles for blocked fields, no 
further changes were necessary for the open fields, while the wedge model required manual 
adjustments. The main changes to the wedge model were regarding the incident fluence 
parameters: To increase the magnitude of off-axis profiles, incident fluence increase per 
unit distance and incident fluence cone radius were changed from 0.004/cm and 27.6 cm to 
0.007/cm and 2.5 cm, respectively. In addition, source size perpendicular to the gantry axis 
was decreased from 0.13 cm to 0.03 cm in order to sharpen the penumbra along that 
direction. The acceptability criteria applied to SCRT blocked fields included a 1% and 0.5-
mm tolerance for dose profiles and a 1.0-mm tolerance for isodoses in planar dose 
distributions, which were tighter than the published criteria(3–5) that had been used for the 
general-planning beam models. 

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOL. 5, NO. 3,  SUMMER 2004 



3 

4     Mosleh-Shirazi et al.: Stereotactic radiotherapy... 4 

Pinnacle versions 5.2g to 6.2b were used. The most accurate dose calculation algorithm 
in Pinnacle (and other planning systems that employ an analytical approach) is collapsed-
cone convolution-superposition, which was the algorithm selected during commissioning 
and clinical use. During model optimization, a 1.5 × 1.5 × 1.5 mm dose calculation grid was 
used, which was the finest resolution possible with the available system memory at the 
time. In routine clinical SCRT planning, a clinically acceptable 2.0 × 2.0 × 2.0 mm grid is 
selected to reduce dose calculation time. 

The measurement devices used for comparison with calculations were 0.13 cm3 and 0.6 
cm ionization chambers, photon diode, and film. The beam penumbra measurements 
presented in this paper were carried out with Kodak X-Omat V films at 5-cm and 10-cm 
depths in water-equivalent plastic for a 90-cm source-to-surface distance (SSD). Calibration 
irradiations were made with films orthogonal to the beam axis (to match the measurement 
conditions) and processed together with the measurement films, producing a 13-point 
optical-density-to-dose conversion curve. The films were scanned with 0.2-mm resolution 
in a Vidar VXR-12 scanner (Vidar Systems Corporation, Herndon VA) and analyzed using 
the Wellhöfer WP700 software (Scanditronix Wellöfer GmbH, Schwarzenbruck, 
Germany). 

B. CT-to-density table 
Following the commissioning of a new CT scanner for RT planning, an accurate CT-to-
density conversion table specific to the scanner was required to obtain correct dose 
calculations based on voxel-by-voxel inhomogeneity correction. The conversion table in 
Pinnacle is in the form of CT number (numerically equal to Hounsfield units plus 1000) 
versus physical (mass) density. Density values are used in Pinnacle through linear 
interpolation from the nearest data points in the conversion table in order to (1) look up 
mass attenuation coefficients and (2) scale the dose deposition kernel to include the effects 
of inhomogeneities on scattered radiation. A common method of acquiring the conversion 
data from CT intensity values to density information is by scanning a calibration phantom. 
In addition to the RMI Electron Density Phantom model 465(6) (Gammex RMI, Middleton 
WI) containing several inserts of different inhomogeneities, we used an in-house CT quality 
assurance (QA) phantom to provide an independent check of the RMI phantom data as well 
as additional data points. 

The CT QA phantom is cylindrical, water-filled, and 25 cm in diameter. It contains six 
cylindrical inhomogeneity inserts, each 5 cm in diameter, isotropically arranged at 60° 
intervals with their centers 8 cm away from the phantom center. A 9-cm diameter Lucite 
cylinder forms the central portion of the phantom. The phantom and the inserts are 16 cm 
and 15 cm long, respectively. The inserts contain water and air as well as the following 
tissue-equivalent materials (manufactured at St. Bartholomew’s Hospital, London, U.K.): 
lung (LN10), average bone (RB2), and cortical bone (SB3). The physical densities of the 
tissue substitutes in the phantom were determined from accurate measurements of insert 
dimensions and weight, repeated with different equipment and checked against published or 
manufacturer’s data. The uncertainty associated with these measurements resulted in a 
<0.5% error in the density values. 

A cavity for fitting a 0.6-cm3 ionization chamber at the center of the phantom allowed 
dose measurements with beams passing through each insert. With the isocenter at the center 
of the phantom, the central axis of a beam through the center of an insert traversed 
approximately 2 cm of water, 5 cm of the inhomogeneity, and 5 cm of Lucite before 
reaching the chamber. 
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al.

The corresponding setup was replicated in Pinnacle based on a helical CT scan of the 
phantom taken using a GE HiSpeed QX/i CT scanner (General Electric Company, Fairfield 
CT) operated at 120 kVp. Figure 1 shows the three CT-to-density conversion tables studied 
here. Table A was created using only the physical density data for inhomogeneity inserts in 
the RMI phantom as given in the manufacturer’s manual and reported by Constantinou et 

(6) plus a data point for the origin (0, 0). The CT number for each insert can be dependent 
on the scanner and scanning parameters; therefore, the CT numbers were obtained from the 
reconstructed data set by averaging pixel values in regions of interest created on the inserts 
in Pinnacle (as opposed to using the corresponding tabulated CT numbers). To study the 
impact of using data points from additional phantoms, this conversion table was slightly 
modified to create Table B; density values for the lung and two bone inserts in the CT QA 
phantom (based on the manufacturer’s data(7,8)) were added, and the closest data points 
were removed from the original table. A density of 0.30 g/cm3 was used for the LN10 lung-
equivalent material since the only available data were given as a range (0.25 to 0.35 g/cm3). 
A data point for water (1000, 1) was also added. To investigate the impact of using 
measured density values, the manufacturer’s data for the CT QA phantom inserts were then 
replaced by our measured densities, and a lung-equivalent data point from the RMI 
phantom was reincluded to produce Table C. Dose calculations at the center of the in-house 
phantom were compared with measurements for the three conversion tables. The computed 
doses at the isocenter based on the three tables were also compared for standard SCRT 
beams on a typical patient’s CT data set. 

FIG 1. The three CT-to-density conversion tables studied. The data points are joined by straight lines 
and linearly extrapolated beyond the highest value in all three cases. 
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C. Block export, customization, and production 
A HEK computerized hot-wire block cutter (HEK Medizintechnik GmbH, Lübeck, 
Germany) was used for block production. A Microsoft Windows version of the HEK 
software (Autimo 2D v2.1) with a Pinnacle interface was commissioned. Software was 
written to carry out automatic shape modification based on the aperture and rectangular 
outer block edges exported from Pinnacle and to create files for import into the HEK 
system. 

The overall block production accuracy was measured for six SCRT blocks using 
calibrated films at 10 cm depth in water-equivalent plastic with a 90-cm SSD. 

D. Treatment verification 
The DRR transfer method from Pinnacle to the EPI systems is based on screen data capture 
and a subsequent use of file transfer protocol (FTP) communication. The DRRs transferred 
include the treatment beams as well as isocenter verification fields. The latter are an 
orthogonal pair of anterior-posterior (AP) and lateral beams with the same isocenter as the 
treatment beams, the sizes of which are adjusted to visualize extensive bony anatomy (to be 
used for setup verification) while minimizing the dose to critical structures. The EPI 
systems used were Theraview (Cablon Medical BV, Leusden, The Netherlands), which is a 
camera-based imager with a metal-phosphor detector, and iViewGT (Elekta AB, 
Stockholm, Sweden), incorporating an amorphous silicon detector. Simple geometric test 
patterns showing the central axis and several off-axis points were designed on Pinnacle and 
transferred to the EPI systems to check the fidelity of the export process. A method of 
isocenter verification for children, in which MLC leaves were used in the AP field to shield 
the lenses, was designed and evaluated in order to reduce the additional exposure from 
verification beams. 

III. RESULTS

A. Beam modeling
The original single, open-field, general-planning model used for field sizes 3 cm to 40 cm 
was found to also satisfy the SCRT acceptability criteria for 3-cm to 10-cm blocked fields. 
The wedge model, however, required further manual optimization. The degree of agreement 
between calculations and measurements for the Elekta Precise LINAC was very similar 

)(within 0.5% and 0.5 mm) to the previously reported Elekta SL15 model(2  for central-axis 
percentage depth doses and dose distributions at 5-cm and 10-cm depths. Therefore, 
detailed comparison results will not be repeated here. As a typical example, Fig. 2(a) shows 
a comparison of film measurement with a planar dose distribution (at 10-cm depth) from a 
block aperture created within Pinnacle to fit a patient’s planning target volume (PTV) and 
computed with a 2 × 2 × 2 mm dose grid. Both distributions were normalized on the central 
axis at 10-cm depth. The measured isodose lines, which include block production errors, 
mostly agree to within 1.0 mm of the modeled distribution, maximum discrepancy being 
1.2 mm. The uncertainties due to block production were then removed by digitizing the 
block shape into Pinnacle from the 50% isodose contour on the irradiated film (Fig. 2(b)). 
A comparison of the digitized and original contours showed that the discrepancy introduced 
by digitization was negligible (<0.3 mm). Having matched the 50% contours, the 95%, 
80%, 20%, and 10% isodoses agree in most places to within 0.5 mm, maximum difference 
being 1.0 mm. The 3% isodose, 1 cm outside the block aperture, shows a reasonable 
discrepancy of less than 2 mm in most places and a maximum difference of 4 mm (such 
differences in this relatively shallow dose-gradient region represent very small dose errors). 
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Measured 80% to 20% and 95% to 50% penumbra for our SCRT blocks were 3 mm to 4 
mm and 3 mm to 5 mm, respectively. An automatically produced 4-mm block margin 
around the PTV in clinical plans results in sufficient coverage by the 95% isodose. 

FIG 2. (a) Computed (dashed blue lines) and measured planar dose distributions at 10 cm depth from a block 
aperture created within Pinnacle and made from lead alloy. (b) The corresponding computed distribution for a 
block digitized from the 50% isodose from the above film and its comparison with the measurement. (c) and (d) 
The computed 50% isodose line at 10 cm depth (purple) versus the block shape projected to the 10 cm deep plane 
by Pinnacle (blue) for the blocks in (a) and (b), respectively. 

Comparisons of the beam shape and the computed 50% isodose line (both produced by 
Pinnacle at a 10-cm deep plane) are shown in Figs. 2(c) and 2(d) for the above two cases. A 
difference of up to 1.0 mm exists between the block edges and the 50% isodose. A slightly 
better match is shown by the digitized block compared with the original automatically 
generated one despite identical dose calculation methods and matrices and the same 
isocenter and field jaw positions. With a 1 × 1 × 1 mm dose calculation grid, however, the 
maximum mismatch of the block border with the 50% isodose was reduced to 0.7 mm for 
both the original and the digitized block. The projection of beam shapes to the 10-cm deep 
plane agreed with the corresponding shapes in the BEV window to within 0.5 mm, 
demonstrating that it is valid to use the projection to represent a beam from Pinnacle for 
comparisons with measurements. 
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B. CT-to-density table 
The density of the LN10 lung-equivalent material in the CT QA phantom was measured to 
be 0.256±0.001 g/cm3. This is outside the range 0.288 to 0.521 g/cm3 measured by the 
manufacturer on a series of material subtypes(9) but is within the 0.25 to 0.35 g/cm3 range 
given for commercial samples, the variation being due to differences in the manufacturing 
process.(8) The measured density of the RB2 average-bone substitute was 1.312±0.007 
g/cm3, which was 6% lower than the manufacturer’s data (1.39 g/cm3).(8) The density of the 
SB3 cortical-bone-equivalent material was measured to be 1.819±0.009 g/cm3, lower than 
the reported 1.84 g/cm3 by 1%.(6–8,10) 

In Fig. 3, relative dose calculations using the three CT-to-density tables are compared 
with measurements at the center of the CT QA phantom (isocenter) for 5 × 5 cm open and 
wedged 6-MV beams of an Elekta Precise LINAC. Each plotted point is the calculated-
minus-measured percentage difference between the ratios of the isocenter dose for a beam 
through the inhomogeneity insert relative to the isocenter dose for the water insert. Plotting 
doses relative to water highlights the differences due to inhomogeneities. The agreement 
between measurements and computed doses with the three tables is within 0.02% and 0.4% 
for the air and lung-equivalent inhomogeneities, respectively. For both bone-equivalent 
materials, the computed doses are lower than measured for the three tables, Table C 
reducing the underestimate (averaged over both bone inhomogeneities and the open and 
wedged beams) from about 2.0% of the isocenter dose to 1.3%, compared with Tables A 
and B. The greatest improvement is for average bone (1.0% of isocenter dose for both open 
and wedged beams). Similar results were obtained with the SCRT beam model of the SL15 
LINAC. 

FIG 3. Comparison of the isocenter dose computed based on the three CT-to-density conversion tables for 5 × 5 cm 
beams through different inhomogeneity inserts in the in-house phantom. The differences between calculated and 
measured doses for each inhomogeneity are plotted as percentages of the isocenter dose for the water insert. 

As expected, the observed differences between the conversion tables were reduced 
when SCRT beams were computed on a typical CT data set of a nine-year-old patient. For 
most beams passing through the cranium, the differences in the dose to the isocenter were 
negligible (0.1% to 0.2%), with the dose to some off-axis points being up to 0.5% different. 
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Posterior-inferior-oblique beams through the region of temporal and sphenoid bones aimed 
at small targets at the base of skull showed the greatest difference in isocenter dose, Table 
C predicting up to 0.5% higher dose than Table A (due to a change in the derived effective 
radiological depth of up to 2 mm). 

Example dose distributions computed using a clinical beam model for our standard 
SCRT plan are shown in Fig. 4. There are four noncoplanar oblique beams from the 
anterior-superior, posterior-superior, right-posterior-inferior and left-posterior-inferior 
directions. Isodoses ≥50% closely conform to the shape of the PTV (purple shaded region). 
It has been shown that target coverage and normal brain sparing are usually not improved 
by using more than 4 to 6 beams to treat the sellar and parasellar tumors considered for 
SCRT.(11) 

FIG 4. Transverse, coronal, and sagittal dose distributions resulting from the standard four-field SCRT beam 
geometry, computed using the small-field beam model. 

C. Block export, customization, and production 
Figure 5(a) shows the coordinates of a Pinnacle-generated block plotted together with the 
program output shapes giving the hot-wire trajectories for the block cutter. The original 
BEV is shown in the inset. The aperture and the outer block margin are reproduced while 
adding the central axis locating hole and outer fixing extensions. The inner and outer 
Styrofoam shapes are located on a field-coded base-plate before pouring lead alloy (Fig. 
5(b)). The inner Styrofoam piece is discarded after the lead has set. A finished block is 
depicted in Fig. 5(c). 
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FIG 5. (a) The coordinates of a Pinnacle-generated block (inset) are plotted together with the customization 
program output shapes giving the hot-wire trajectories, which are exported to the block cutter. (b) A field-coded 
base plate for locating the inner and outer Styrofoam shapes before pouring lead alloy. (c) A finished block 
attached to an Elekta SL15 LINAC. 

The measured 50% isodose contours for the six irradiated blocks agreed with their 
corresponding BEVs to within 1 mm at the plane of the isocenter, with deviations of up to 
1.5 mm over a maximum of 1 cm of the block perimeter. The light fields agreed with the 
50% isodose contours to within 0.5 mm at the isocenter. 

D. Treatment verification 
In the test patterns created in Pinnacle and imported into the EPI systems, the isocenter 
position was preserved to within one image pixel size (about 0.5 mm).  

Figure 6(a) shows an AP verification field with MLC shielding to reduce lens dose 
while allowing extensive bony anatomy for image matching. The corresponding lateral 
verification field is shown in Fig. 6(b). A coronal dose distribution through the left lens for 
a 5-MU, 6-MV irradiation is presented in Fig. 6(c). The dose distribution was calculated by 
the beam model used in our general planning(2) due to the limited field size with the SCRT 
model. Treatments of 20 children have been verified so far using fields with MLC 
shielding, reducing the lens dose by 12 to 15 times compared with the 5 cGy to 6 cGy 
delivered with non-MLC fields. Typical mean and maximum computed lens doses were 0.4 
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cGy and 0.5 cGy, respectively. Pairs of thermoluminescent dosimeters (TLDs) placed on 
eyelids typically measured a dose of 0.5 cGy. Previous work on an anthropomorphic 
phantom showed a 10% overestimation of lens dose from AP beams by TLDs placed on 
eyelids.(12) On that basis, the agreement between measured and computed doses is within 
10% to 15%, which is acceptable for such small doses and so near the surface. On-patient 
TLD measurements showed that the dose from treatment beams was less than 70 cGy over 
all 30 fractions, making the mean lens dose from the whole treatment less than 
approximately 75 cGy and 130 cGy with and without MLC shielding in AP verification 
beams, respectively, assuming portal images acquired on a maximum 10 fractions. 

FIG 6. (a) Example AP isocenter verification DRR with MLC shielding, which is transferred to the EPI system. (b) 
The corresponding lateral verification field. (c) Coronal dose distribution through the left lens (red contour) for a 
5-MU irradiation by the AP beam (6 MV). 

IV. DISCUSSION AND CONCLUSIONS 

As with the model for the Elekta SL15 LINAC, computed dose distributions with SCRT 
blocks for the Elekta Precise LINAC agreed with measurements well within published 
acceptability criteria.(3–5) Concentrating on a limited set of treatment parameters (limited 
field size and depth ranges, single energy, one method of field shaping) has helped produce 
a model that is clinically acceptable for precise SCRT treatments. While sharing the same 
photon energy spectrum, the optimized SCRT models contained a different combination of 
parameters compared with those obtained using auto-modeling with subsequent manual 
adjustments for general planning with field sizes 3 cm to 40 cm for wedged fields, but an 
identical parameter set for open fields. This is in contrast with our previous Elekta SL15 
model,(2) where the general-planning and SCRT models included the same Monte Carlo– 
generated energy spectrum but both were optimized manually from the start, which had led 
to the models being different for both cases of open and wedged fields. In addition, with the 
Monte Carlo–plus-manual optimization approach, four separate models had been necessary 
for the 3 cm to 40 cm field size range, whereas the auto-modeling method required a single 
model. This could be a further benefit of auto-modeling, since having multiple models may 
produce discontinuities and unexpected results in some cases. Since auto-modeling is only 
applicable to unshielded fields within Pinnacle, it was not used for SCRT beam 
optimization, where the emphasis is predominantly on blocked fields. A model that 
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satisfied the tight acceptability criteria of SCRT was achievable without the use of a Monte 
Carlo–generated photon energy spectrum, as was used in the SCRT model for the first 
LINAC.(2) This shows that the spectrum used does not necessarily have to be realistic. 

Pinnacle does not force the computed 50% isodose contour to match the block shape at 
the isocenter plane. It models the energy fluence distribution exiting the head of the 
treatment unit as a 2D array with the area outside the aperture (formed by the block) 
removed from it. This array is used in the convolution and superposition steps. With our 
model, the resulting 50% isodose contour falls within 1.0 mm of the block edge at the 
isocenter plane with a 2 × 2 × 2 mm dose calculation grid. The better match shown by the 
digitized block (Fig. 2(d)) could be due to that block having a slightly different shape since 
it was designed to match the measured 50% isodose. This may lead to dose grid effects 
since drawn contours are stored internally in Pinnacle at the resolution of the data set even 
if they are entered at a higher resolution. However, when a 1 × 1 × 1 mm dose grid was 
used, there was no discernible difference in the level of block-border versus 50% isodose 
matching. 

We routinely check the light field of each manufactured block against its BEV. Based 
on our measurements, we have set a tolerance of 1.0 mm for discrepancy in block edge 
position at the isocenter, with up to 1 cm of the perimeter allowed to differ by up to 1.5 
mm. This keeps the block production accuracy within the 2.0 mm dose computation 
resolution normally used in clinical plans. Possible sources of error in block production 
include non-parallelism between the hot wire and the beam central axis, nonvertical 
placements of the Styrofoam block into the block cutter, incorrect or variable wire 
temperature, and nonvertical central axis locator on the base plate (Fig. 5(b)). The block 
export and customization software did not introduce any additional uncertainty in the 
planning process. 

Dose prescription for SCRT at our center has been made for plans that have included 
density inhomogeneities derived from CT scans. Table C, including a combination of the 
RMI phantom manufacturer’s data and additional measured densities for the CT QA one, 
was selected for clinical use since it demonstrated the closest agreement with 
measurements. Since the three tables are mainly different from each other at the higher 
densities and there is a limited amount of bone involved in cranial RT, the effect of 
relatively small differences in conversion tables results in dose calculation variations that 
are probably clinically insignificant. This is in agreement with other published work.(6,13) In 
fact, it would be clinically acceptable to use any of the three tables for SCRT. The amounts 
of inhomogeneities present in the CT QA phantom make it a rather extreme test of the 
planning system’s heterogeneity correction for most SCRT beams. However, this test 
highlights that using additional data points in the table, with densities ascertained for the 
actual inserts used in the experiment, reduces unnecessary systematic errors in calculated 
dose. Although the removal of such systematic discrepancies may not have a clinically 
significant impact on tumor or normal tissue dose, it is beneficial in reducing uncertainty 
margins for QA purposes (such as periodic testing of the planning system or independent 
checking of patients’ treatment plans) and as a matter of principle. The differences between 
the tables are expected to produce more pronounced variations for some extracranial 
treatments because (1) greater thicknesses of bone can be present in the path of a beam 
(e.g., femoral head, acetabulum and pubis), and (2) the largest improvement with the 
modified table is for average (noncortical) bone (Fig. 3). As demonstrated here, measured 
densities of the actual materials used can be different from manufacturers’ data by several 
percent. With Pinnacle and some other planning systems requiring the input of physical 
densities in contrast to electron densities, it is advisable to measure them where possible, as 
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opposed to relying solely on published data. Manufacturers’ data should be treated as a 
guide, and measurement on the actual samples is recommended for accurate calculations. 

Transfer of DRRs by the method described here has made treatment verification by EPI 
possible. Import of test patterns showed that the image transfer step did not introduce any 
errors into the verification process. The process, however, involves different steps and is 
time-consuming. DICOM Derived Image Export Capability is included in version 6.2b of 
Pinnacle, which obviates the need for using FTP. However, it still requires image capture 
on Pinnacle and setting up of fields on the EPI system. The capability to export using the 
DICOM RT Image format, in which overlay information such as field dimensions, 
shielding, and isocenter position are exported together with the DRR image, would offer 
some time savings. 

The use of MLC in AP isocenter verification fields reduces the lens dose by 12 to 15 
times. However, even if the shielding is not used, the 5 cGy  to 6 cGy lens dose per check 
for a phosphor-screen EPI system does not pose a clinical problem. This is due to the 
treatment beams and the lateral check field all avoiding the lenses. Moreover, with our 
imaging protocol, isocenter verification is normally performed less than 10 times in the 
course of a 30-fraction treatment. The total lens dose is usually well within the 5-Gy 
cataract induction threshold for fractionated RT.(14) We have also found that a satisfactory 
portal image can be obtained with 1-MU irradiation using the iViewGT EPI system 
incorporating an amorphous silicon detector, offering a fivefold reduction in dose from 
check fields. Nevertheless, it is desirable to reduce dose to children’s critical structures as 
low as reasonably achievable, especially since design, transfer, and delivery of MLC fields 
have become relatively efficient. MLC shielding may be more relevant to the verification of 

(RT for infants 15) or treatments that expose the lenses to a greater dose (e.g., whole brain 
RT). 

The system described here has been in clinical use since 2001. It has provided a high 
level of precision as well as practical efficiency with the available resources. However, 
improvements are expected when planning system features such as DICOM RT Image 
export are implemented, as well as the provision of a micro-MLC for treatment delivery to 
obviate the need for block production. The methodology described in this paper can also be 
applicable to other similar systems. 
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