organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Diethylamino-3-{(*E*)-4-[(*E*)-2-(pyridin-4-yl)ethenyl]styryl}-2*H*-chromen-2-one

Li-Ping Zhou and Ling-Liang Long*

Functional Molecular Materials Research Centre, Scientific Research Academy & School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China Correspondence e-mail: linglianglong@gmail.com

Received 7 January 2014; accepted 16 January 2014

Key indicators: single-crystal X-ray study; T = 233 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.033; *wR* factor = 0.078; data-to-parameter ratio = 15.4.

In the title coumarin derivative, $C_{28}H_{26}N_2O_2$, the coumarin unit is approximately planar, with a maximum deviation of 0.048 (3) Å. The central benzene ring is oriented at dihedral angles of 30.15 (14) and 10.51 (11)°, respectively, to the pyridine ring and coumarin ring system. In the crystal, weak $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds and weak C- $H\cdots \pi$ interactions link the molecules into a three-dimensional supramolecular architecture.

Related literature

For applications of coumarin derivatives, see: Gong *et al.* (2012); Jones *et al.* (1985); Nemkovich *et al.* (1997); Jin *et al.* (2011); Helal *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{l} C_{28} \mathrm{H}_{26} \mathrm{N}_{2} \mathrm{O}_{2} \\ M_{r} = 422.51 \\ \mathrm{Monoclinic}, \ P2_{1} / n \\ a = 15.511 \ (3) \ \mathrm{\AA} \\ b = 8.4745 \ (17) \ \mathrm{\AA} \\ c = 16.882 \ (7) \ \mathrm{\AA} \\ \beta = 97.73 \ (3)^{\circ} \end{array}$

 $V = 2198.9 (11) \text{ Å}^3$ Z = 4Mo K α radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.27 \times 0.25 \times 0.23 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector	3931 independent reflections
diffractometer	2993 reflections with $I > 2\sigma(I)$
9607 measured reflections	$R_{\rm int} = 0.045$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.077 & 291 \text{ parameters} \\ wR(F^2) &= 0.170 & H\text{-atom parameters constrained} \\ S &= 1.13 & \Delta\rho_{max} &= 0.28 \text{ e } \text{\AA}^{-3} \\ 3931 \text{ reflections} & \Delta\rho_{min} &= -0.21 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the pyridine ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C21-H21\cdotsO1^{i}$	0.93	2.48	3.351 (4)	156
$C25-H25A\cdots N1^{ii}$	0.97	2.60	3.485 (4)	152
$C25-H25B\cdotsO1^{i}$	0.97	2.56	3.433 (4)	150
$C9-H9\cdots Cg2^{iii}$	0.93	2.94	3.728 (4)	143
Symmetry codes: $-x + \frac{5}{2}, y - \frac{1}{2}, -z + \frac{3}{2}.$	(i) $-x + 1$,	-y, -z + 1;	(ii) $x - \frac{3}{2}, -y +$	$-\frac{1}{2}, z - \frac{1}{2};$ (iii)

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The work was supported by National Natural Science Foundation of China (21202063), the Natural Science Foundation of Jiangsu Province (BK2012281), the China Postdoctoral Science Foundation (2012M511200) and the Research Foundation of Jiangsu University (11JDG078).

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5763).

References

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gong, Y., Zhang, X., Zhang, C., Luo, A., Fu, T., Tan, W., Shen, G. & Yu, R. (2012). Anal. Chem. 84, 10777–10784.
- Helal, A., Rashid, M. H. O., Choi, C. & Kim, H. (2011). *Tetrahedron*, **67**, 2794–2802.
- Jin, X., Uttamapinant, C. & Ting, A. Y. (2011). ChemBioChem, 12, 65-70.
- Jones, G., Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). *J. Phys. Chem.* **89**, 294–300.
- Nemkovich, N. A., Reis, H. & Baumann, W. (1997). J. Lumin. **71**, 255–263. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.

supplementary materials

Acta Cryst. (2014). E70, o176 [doi:10.1107/S1600536814001123]

7-Diethylamino-3-{(E)-4-[(E)-2-(pyridin-4-yl)ethenyl]styryl}-2H-chromen-2-one

Li-Ping Zhou and Ling-Liang Long

1. Comment

The coumarin derivatives are widely used fluorescence dye with favorable optical properties including high fluorescence quantum yield, superior photostability, and extended spectral range. These outstanding optical properties allow them to be potentially utilized in a wide range of areas such as ion sensing (Gong *et al.*, 2012), laser dyes (Jones *et al.*, 1985), nonlinear optical chromophores (Nemkovich *et al.*, 1997), fluorescent labeling of biomaterials (Jin *et al.*, 2011), and so on. In addition, previous studies have demonstrated that the optical properties of the coumarin dye could be improved by introducing conjugated group at the 3 position of the coumarin ring (Helal *et al.*, 2011). These promoted us to develop large conjugated coumarin derevatives. Herein, the synthesis and crystal structure of title molecule are presented.

The analysis of title molecule shows that it crystallizes in the monoclinic space group P 21/n with four molecules in the unit cell. In the molecule, the C17—O1 bonds, C6—C7 bonds and C14—C15 bonds show typical double-bond character (Figure 1, Table 1). The length of the C6—C7 bonds [1.333 (4) Å] compares favorably to that of the analogous C14—C15 bond [1.317 (4) Å]. On the other hand, the C17—O1 bond length [1.212 (3) Å] is shorter than that C17—O2 [1.392 (3) Å]. The coumarin ring, phenyl ring, and pyridine ring were connected by the two C—C double bonds (C6—C7 bond and C14—C15 bond), which make the three rings in good conjugation. In addition, the dihedral angles between the mean planes of the pyridine ring and the phenyl ring, the phenyl ring and the coumarin ring are 30.203 (8)°, 9.538 (7)°, respectively (Figure 2). The crystal structure of the title molecule is characterized by intermolecular C—H…O and C—H…N hydrogen bonding (Figures 3 and 4, Table 1). The intermolecular hydrogen-bonding scheme features a bifurcated interaction to atom O1 and an R^{2}_{2} (7) and R^{2}_{2} (12) graph sets, as shown in Figure 3. The intermolecular hydrogen-bonding scheme features an interaction to atom N1, as shown in Figure 4. The crystal packing diagram are the fundamental linking units in the formation of a supramolecular structure with intermolecular C—H…O and C—H…N hydrogen-bonds, as shown in Figure 5.

2. Synthesis and crystallization

1N sodium hydroxide solution (1ml) was added dropwise to a solution of 7-diethylaminocoumarin-3-carbaldehyde (0.391g, 1.596mmol) and (1,4-phenylenebis(methylene))bis(triphenylphosphonium) chloride (1g, 1.596mmol) in dichloromethane (20ml). The reaction mixture was stirred overnight at room temperature. After removal of the solvent under reduced pressure, the resulting mixture was purified by column chromatography on silica gel (dichloromethane: petroleum ether = 3: 7, v/v) to afford a yellow solid. Then, 1N sodium hydroxide solution (1ml) was added dropwise to the resulting yellow solid (0.5g, 0.84mmol) and isonicotinaldehyde (0.09g, 0.84mmol) in dichloromethane (20ml). The solution was stirred for 8 hours at room temperature. After removal of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (dichloromethane: petroleum ether = 2: 3, v/v) to afford the title compound as red solid (184mg, yield 52%). Mp 265-266°C. The crystal appropriate for X-ray data collection was obtained from methanol- dichloromethane solution at room temperature after about a week.

3. Refinement

H atoms were positioned geometrically and refined with riding model, with $U_{iso} = 1.2U_{eq}$ or $1.5U_{eq}$ for all H atoms. The C —H bond are 0.93 (pyridyl, aromatic), 0.96 (methyl), or 0.97Å (methylene).

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The structure of title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The dihedral angles (°) between adjacent planes. The pink, yellow, and blue planes represent pyridine ring, the benzene ring, and the coumarin ring.

Figure 3

A view of the C—H…O hydrogen-bonded ring and bifurcated nature of atom O2. Hydrogen-bond interactions are shown with dashed lines.

Figure 4

A view of the C—H…N hydrogen-bonds of atom N2. Hydrogen-bond interactions are shown with dashed lines.

Figure 5

The crystal packing of title molecule, viewed along the *b* axis. C—H…O and C—H…N hydrogen bonds are shown as dashed lines (see Table 1 for details).

7-Diethylamino-3-{(E)-4-[(E)-2-(pyridin-4-yl)ethenyl]styryl}-2H-chromen-2-one

<i>c</i> = 16.882 (7) Å
$\beta = 97.73 \ (3)^{\circ}$
$V = 2198.9 (11) \text{ Å}^3$
Z = 4
F(000) = 896
$D_{\rm x} = 1.276 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9607 reflections $\theta = 3.5-25.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector	2993 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.045$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 3.6^{\circ}$
Graphite monochromator	$h = -16 \rightarrow 18$
phi and ω scans	$k = -10 \rightarrow 8$
9607 measured reflections	$l = -18 \rightarrow 20$
3931 independent reflections	
-	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.077$	Hydrogen site location: inferred from
$wR(F^2) = 0.170$	neighbouring sites
<i>S</i> = 1.13	H-atom parameters constrained
3931 reflections	$w = 1/[\sigma^2(F_o^2) + (0.054P)^2 + 1.2201P]$
291 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.004$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. ¹H NMR (400MHz, CDCl₃) δ (ppm): 8.60 (d, J = 6.0 Hz, 2H), 7.72 (s, 1H), 7.53 (m, 7H), 7.41(d, J = 16.0 Hz, 1H), 7.33 (d, J = 9.0 Hz, 1H), 7.19 (d, J = 16.4 Hz, 1H), 7.09 (d, J = 16.4 Hz, 1H), 6.64 (dd, $J_I = 2.4$ Hz, $J_2 = 8.8$ Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 3.48 (q, J = 7.2 Hz, 4H), 1.27 (t, J = 7.2 Hz, 6H). ESI-MS (m/z): 423.3 [M+1]⁺. Anal. calcd for C₂₈H₂₆N₂O₂: C 79.59, H 6.20, N 6.63; found C 79.34, H 6.23, N 6.61.

T = 293 K

Block, pink

 $0.27 \times 0.25 \times 0.23$ mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

(Fractional atomic coordinates and	l isotropic o	r equivalent	isotropic	displacement	parameters	(A^2)	,
---	-----------------------------------	---------------	--------------	-----------	--------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}^{*}/U_{ m eq}$	
N1	1.47594 (15)	0.3672 (3)	0.89342 (16)	0.0470 (7)	
N2	0.22420 (13)	0.3446 (3)	0.48620 (14)	0.0365 (6)	
01	0.65839 (12)	0.1130 (3)	0.54400 (15)	0.0588 (7)	
O2	0.52260 (11)	0.1909 (2)	0.53258 (13)	0.0415 (5)	
C1	1.40807 (18)	0.4019 (4)	0.93132 (19)	0.0498 (8)	
H1	1.4196	0.4368	0.9839	0.060*	
C2	1.32252 (18)	0.3898 (4)	0.89825 (19)	0.0457 (8)	
H2	1.2783	0.4147	0.9283	0.055*	
C3	1.30236 (17)	0.3397 (3)	0.81916 (17)	0.0362 (7)	
C4	1.37250 (17)	0.3025 (3)	0.77916 (19)	0.0411 (7)	

H4	1.3631	0.2676	0.7265	0.049*
C5	1.45611 (18)	0.3177 (4)	0.8182 (2)	0.0461 (8)
Н5	1.5018	0.2916	0.7901	0.055*
C6	1.21301 (17)	0.3227 (3)	0.77934 (18)	0.0383 (7)
H6	1.2052	0.2639	0.7324	0.046*
C7	1.14170 (17)	0.3832 (3)	0.80373 (17)	0.0372 (7)
H7	1.1497	0.4475	0.8487	0.045*
C8	1.05196 (17)	0.3579 (3)	0.76635 (17)	0.0359 (7)
С9	1.02959 (17)	0.2394 (4)	0.70924 (17)	0.0386 (7)
H9	1.0731	0.1758	0.6934	0.046*
C10	0.94475 (17)	0.2154 (3)	0.67630 (17)	0.0385 (7)
H10	0.9321	0.1348	0.6392	0.046*
C11	0.87729 (17)	0.3078 (3)	0.69667 (17)	0.0369 (7)
C12	0.89826 (17)	0.4242 (4)	0.75531 (18)	0.0418 (8)
H12	0.8545	0.4864	0.7716	0.050*
C13	0.98422 (17)	0.4470 (4)	0.78924 (19)	0.0430(7)
H13	0.9967	0.5240	0.8283	0.052*
C14	0.78861 (18)	0.2774 (3)	0.65598 (18)	0.0404 (7)
H14	0.7806	0.1860	0.6254	0.048*
C15	0.71960 (18)	0.3667 (3)	0.65861 (18)	0.0404 (7)
H15	0.7285	0.4568	0.6901	0.048*
C16	0.63081 (17)	0.3435 (3)	0.61866 (17)	0.0353 (7)
C17	0.60931 (17)	0.2112 (3)	0.5649 (2)	0.0409 (7)
C18	0.45869 (16)	0.2969 (3)	0.54637 (17)	0.0336 (7)
C19	0.48051 (17)	0.4303 (3)	0.59359 (16)	0.0342 (7)
C20	0.56747 (17)	0.4488 (3)	0.62915 (17)	0.0372 (7)
H20	0.5820	0.5368	0.6611	0.045*
C21	0.37542 (16)	0.2645 (3)	0.51058 (17)	0.0342 (7)
H21	0.3639	0.1734	0.4803	0.041*
C22	0.30769 (17)	0.3713 (3)	0.52046 (16)	0.0339 (7)
C23	0.32947 (18)	0.5082 (4)	0.56701 (17)	0.0400 (7)
H23	0.2862	0.5807	0.5743	0.048*
C24	0.41301 (18)	0.5355 (4)	0.60136 (17)	0.0417 (7)
H24	0.4253	0.6273	0.6309	0.050*
C25	0.19833 (18)	0.1976 (3)	0.44438 (18)	0.0395 (7)
H25A	0.1384	0.1744	0.4508	0.047*
H25B	0.2342	0.1124	0.4688	0.047*
C26	0.15537 (17)	0.4615 (4)	0.48859 (17)	0.0393 (7)
H26A	0.1134	0.4510	0.4408	0.047*
H26B	0.1805	0.5663	0.4884	0.047*
C27	0.2064 (2)	0.2034 (4)	0.35653 (19)	0.0475 (8)
H27A	0.1715	0.2883	0.3320	0.071*
H27B	0.1867	0.1054	0.3320	0.071*
H27C	0.2661	0.2203	0.3497	0.071*
C28	0.1087 (2)	0.4444 (5)	0.56134 (19)	0.0551 (9)
H28A	0.0833	0.3411	0.5617	0.083*
H28B	0.0638	0.5227	0.5596	0.083*
H28C	0.1495	0.4586	0.6089	0.083*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0280 (13)	0.0560 (17)	0.0546 (17)	-0.0014 (12)	-0.0031 (12)	0.0004 (14)
N2	0.0246 (12)	0.0407 (14)	0.0425 (14)	0.0028 (10)	-0.0018 (10)	0.0017 (11)
O1	0.0295 (11)	0.0415 (12)	0.101 (2)	0.0045 (10)	-0.0078 (12)	-0.0150 (13)
O2	0.0244 (10)	0.0315 (10)	0.0654 (14)	0.0001 (8)	-0.0053 (9)	-0.0033 (10)
C1	0.0315 (16)	0.070 (2)	0.0445 (19)	-0.0033 (16)	-0.0056 (14)	-0.0094 (17)
C2	0.0290 (15)	0.060(2)	0.0471 (19)	-0.0009 (15)	0.0003 (13)	-0.0041 (16)
C3	0.0280 (14)	0.0391 (16)	0.0396 (17)	-0.0045 (12)	-0.0025 (12)	0.0014 (13)
C4	0.0333 (16)	0.0456 (17)	0.0434 (18)	-0.0023 (14)	0.0012 (13)	-0.0022 (15)
C5	0.0284 (15)	0.054 (2)	0.055 (2)	0.0012 (14)	0.0033 (14)	-0.0022 (17)
C6	0.0306 (15)	0.0446 (17)	0.0378 (17)	-0.0034 (13)	-0.0018 (13)	0.0003 (14)
C7	0.0282 (14)	0.0413 (17)	0.0399 (17)	-0.0038 (13)	-0.0037 (12)	0.0026 (13)
C8	0.0279 (14)	0.0412 (16)	0.0372 (17)	-0.0009 (13)	-0.0003 (12)	0.0106 (13)
C9	0.0251 (14)	0.0488 (18)	0.0407 (17)	-0.0015 (13)	-0.0006 (12)	0.0032 (14)
C10	0.0340 (15)	0.0440 (17)	0.0358 (17)	-0.0020 (14)	-0.0015 (13)	0.0039 (13)
C11	0.0305 (15)	0.0434 (17)	0.0351 (16)	-0.0067 (13)	-0.0014 (12)	0.0109 (14)
C12	0.0260 (14)	0.0458 (18)	0.054 (2)	0.0030 (13)	0.0052 (13)	0.0096 (15)
C13	0.0323 (15)	0.0440 (17)	0.0508 (19)	-0.0018 (14)	-0.0015 (14)	0.0001 (15)
C14	0.0364 (16)	0.0374 (16)	0.0467 (18)	-0.0047 (14)	0.0030 (14)	0.0050 (14)
C15	0.0360 (16)	0.0392 (17)	0.0450 (18)	-0.0033 (14)	0.0022 (14)	0.0058 (14)
C16	0.0277 (14)	0.0407 (16)	0.0357 (16)	-0.0067 (13)	-0.0022 (12)	0.0071 (13)
C17	0.0223 (14)	0.0345 (16)	0.064 (2)	0.0040 (13)	-0.0026 (14)	0.0067 (15)
C18	0.0237 (14)	0.0319 (15)	0.0438 (17)	0.0016 (12)	-0.0013 (12)	0.0048 (13)
C19	0.0298 (14)	0.0383 (16)	0.0332 (16)	-0.0022 (13)	-0.0004 (12)	0.0003 (13)
C20	0.0322 (15)	0.0419 (17)	0.0360 (16)	-0.0060 (13)	-0.0007 (12)	-0.0046 (13)
C21	0.0263 (14)	0.0293 (14)	0.0452 (17)	-0.0011 (12)	-0.0017 (12)	-0.0004 (12)
C22	0.0280 (14)	0.0425 (16)	0.0307 (16)	0.0013 (13)	0.0024 (12)	0.0027 (12)
C23	0.0328 (15)	0.0473 (18)	0.0391 (17)	0.0055 (14)	0.0012 (13)	-0.0076 (14)
C24	0.0404 (17)	0.0456 (18)	0.0382 (17)	-0.0020 (15)	0.0022 (13)	-0.0134 (14)
C25	0.0267 (14)	0.0379 (16)	0.0518 (19)	-0.0036 (13)	-0.0022 (13)	0.0041 (14)
C26	0.0275 (14)	0.0515 (18)	0.0383 (17)	0.0093 (14)	0.0022 (12)	0.0031 (14)
C27	0.0424 (17)	0.0476 (19)	0.051 (2)	-0.0014 (15)	0.0002 (15)	-0.0026 (15)
C28	0.0389 (17)	0.081 (3)	0.047 (2)	0.0071 (17)	0.0121 (15)	0.0084 (18)

Geometric parameters (Å, °)

N1—C5	1.334 (4)	С13—Н13	0.9300
N1-C1	1.336 (4)	C14—C15	1.317 (4)
N2-C22	1.364 (3)	C14—H14	0.9300
N2—C25	1.461 (4)	C15—C16	1.463 (4)
N2-C26	1.461 (3)	C15—H15	0.9300
O1—C17	1.212 (3)	C16—C20	1.356 (4)
O2-C18	1.381 (3)	C16—C17	1.453 (4)
O2—C17	1.392 (3)	C18—C21	1.378 (4)
C1—C2	1.372 (4)	C18—C19	1.398 (4)
С1—Н1	0.9300	C19—C24	1.395 (4)
C2—C3	1.396 (4)	C19—C20	1.409 (4)
С2—Н2	0.9300	С20—Н20	0.9300

C3—C4	1,392 (4)	C21—C22	1,413 (4)
C3—C6	1.464 (4)	C21—H21	0.9300
C4—C5	1.379 (4)	C22—C23	1.417 (4)
C4—H4	0.9300	C_{23} C_{24}	1 366 (4)
C5—H5	0.9300	C23—H23	0.9300
C6—C7	1 333 (4)	C24_H24	0.9300
C6—H6	0.9300	C_{25} C_{27}	1 506 (4)
C7—C8	1 465 (4)	C25—H25A	0.9700
C7—H7	0.9300	C25—H25B	0.9700
C_{8} C_{13}	1 390 (4)	C26-C28	1 514 (4)
	1.590(1) 1 403 (4)	C26—H26A	0.9700
C_{0} C_{10}	1.403(4) 1.373(4)	C26_H26B	0.9700
C_{0} H0	0.0300	C27 H27A	0.9700
C_{10} C_{11}	1.387(A)	$C_27 = H_27R$	0.9000
C10_H10	0.0200	$C_2 / - H_2 / B$	0.9000
C10—H10	1 404 (4)	$C_2 = H_2 A$	0.9000
C11—C12	1.404(4)	C_{20} H_{20} H_{20}	0.9600
C12 - C12	1.4/5 (4)	C28—H28B	0.9600
C12—C13	1.392 (4)	C28—H28C	0.9600
С12—Н12	0.9300		
C5 N1 C1	115 4 (2)	C20 C1(C15	120.2 (2)
C3—NI—CI	115.4 (3)	$C_{20} = C_{16} = C_{15}$	120.3 (3)
$C_{22} = N_2 = C_{23}$	122.0 (2)	C1/-C16-C15	121.0 (3)
$C_{22} = N_2 = C_{26}$	122.1 (2)	01 - 01 - 02	114.4 (3)
$C_{25} = N_2 = C_{26}$	115.9 (2)	OI - CI / - CI6	127.7 (3)
C18 - O2 - C17	122.1 (2)	02-C1/-C16	117.9 (2)
NI—CI—C2	124.7 (3)	C21—C18—O2	116.6 (2)
NI-CI-HI	117.6	C21—C18—C19	123.5 (3)
C2—C1—H1	117.6	02	119.9 (2)
C1—C2—C3	119.5 (3)	C24—C19—C18	116.3 (2)
C1—C2—H2	120.3	C24—C19—C20	125.2 (3)
C3—C2—H2	120.3	C18—C19—C20	118.5 (3)
C4—C3—C2	116.3 (3)	C16—C20—C19	122.7 (3)
C4—C3—C6	120.6 (3)	С16—С20—Н20	118.7
C2—C3—C6	123.1 (3)	С19—С20—Н20	118.7
C5—C4—C3	119.6 (3)	C18—C21—C22	119.2 (3)
C5—C4—H4	120.2	C18—C21—H21	120.4
C3—C4—H4	120.2	C22—C21—H21	120.4
N1—C5—C4	124.4 (3)	N2—C22—C21	121.4 (3)
N1—C5—H5	117.8	N2—C22—C23	120.9 (2)
C4—C5—H5	117.8	C21—C22—C23	117.7 (2)
C7—C6—C3	126.4 (3)	C24—C23—C22	121.1 (3)
С7—С6—Н6	116.8	С24—С23—Н23	119.5
С3—С6—Н6	116.8	С22—С23—Н23	119.5
C6—C7—C8	126.2 (3)	C23—C24—C19	122.2 (3)
С6—С7—Н7	116.9	C23—C24—H24	118.9
С8—С7—Н7	116.9	C19—C24—H24	118.9
C13—C8—C9	117.0 (3)	N2-C25-C27	113.2 (2)
C13—C8—C7	120.7 (3)	N2—C25—H25A	108.9
C9—C8—C7	122.3 (3)	С27—С25—Н25А	108.9

C_{10} C_{9} C_{8}	121 3 (3)	N2 C25 H25B	108.0
	121.5 (5)	$N_2 = C_{23} = H_{23} D$	100.9
C10—C9—H9	119.4	C2/—C25—H25B	108.9
С8—С9—Н9	119.4	H25A—C25—H25B	107.7
C9—C10—C11	122.0 (3)	N2-C26-C28	112.9 (2)
С9—С10—Н10	119.0	N2—C26—H26A	109.0
C11—C10—H10	119.0	C28—C26—H26A	109.0
C10—C11—C12	117.4 (3)	N2—C26—H26B	109.0
C10—C11—C14	118.2 (3)	C28—C26—H26B	109.0
C12—C11—C14	124.3 (3)	H26A—C26—H26B	107.8
C13—C12—C11	120.4 (3)	С25—С27—Н27А	109.5
C13—C12—H12	119.8	С25—С27—Н27В	109.5
C11—C12—H12	119.8	H27A—C27—H27B	109.5
C8—C13—C12	121.9 (3)	С25—С27—Н27С	109.5
С8—С13—Н13	119.1	H27A—C27—H27C	109.5
C12—C13—H13	119.1	H27B—C27—H27C	109.5
C15—C14—C11	126.5 (3)	C26—C28—H28A	109.5
C15—C14—H14	116.7	C26—C28—H28B	109.5
C11—C14—H14	116.7	H28A—C28—H28B	109.5
C14—C15—C16	128.8 (3)	C26—C28—H28C	109.5
C14—C15—H15	115.6	H28A—C28—H28C	109.5
C16—C15—H15	115.6	H28B—C28—H28C	109.5
C20—C16—C17	118.7 (2)		

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the pyridine ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C21—H21…O1 ⁱ	0.93	2.48	3.351 (4)	156
C25—H25A····N1 ⁱⁱ	0.97	2.60	3.485 (4)	152
C25—H25 <i>B</i> ···O1 ⁱ	0.97	2.56	3.433 (4)	150
С9—Н9…Сg2 ^{ііі}	0.93	2.94	3.728 (4)	143

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-3/2, -y+1/2, z-1/2; (iii) -x+5/2, y-1/2, -z+3/2.