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Abstract: Research on multitasking driving has suggested age-related deterioration in driving per-
formance. It has been shown that physical and cognitive functioning, which are related to driving
performance and decline with aging, are positively associated with physical activity behavior. This
study aimed to explore whether driving performance decline becomes severe with advancing age
and whether physical activity behavior modifies age-related deterioration in driving performance. A
total of one hundred forty-one healthy adults were categorized into three groups based on their age;
old-old (74.21 ± 2.33 years), young-old (66.53 ± 1.50 years), and young adults (23.25 ± 2.82 years).
Participants completed a realistic multitasking driving task. Physical activity and cardiorespiratory
fitness levels were evaluated. Older groups drove more slowly and laterally than young adults, and
old-old adults drove slower than young-old ones across the whole driving course. Physical activity
level did not interact with the aging effect on driving performance, whereas cardiovascular fitness
interacted. Higher-fitness young-old and young adults drove faster than higher-fitness old-old adults.
Higher-fitness old adults drove more laterally than higher-fitness young adults. The present study
demonstrated a gradual decline in driving performance in old adults, and cardiorespiratory fitness
interacted with the aging effect on driving performance. Future research on the interaction of aging
and physical activity behavior on driving performance in different age groups is of great value and
may help deepen our knowledge.

Keywords: aging; car-driving; multitasking; driving simulator; physical activity; fitness; old-old;
young-old

1. Introduction

In everyday life, performing complex motor and cognitive tasks simultaneously (mul-
titasking) is required to sustain functionality and independent living. Driving a car is a
typical activity of daily life in which the simultaneous performance of motor tasks such
as steering, braking, accelerating and cognitive tasks such as observing traffic flow, rec-
ognizing traffic signs, or driving directions is indispensable. This simultaneity demands
the interaction of motor, sensory and cognitive functions [1]. In most cases, driving even
includes additional (secondary) tasks like mobile texting, listening to a podcast, or talking
to a fellow passenger. These additional tasks require motor and sensory resources along-
side driving the vehicle in a changing environment. Performing cognitively demanding
secondary tasks might reveal conflicts in distributing the available cognitive resources to
the driving and secondary task and thereby increase the relative risk of a crash [2,3].

Many older adults report that driving brings them freedom, competent control of
their lives, and safety since they conceive public transport as riskier [4]. In addition,
driving seems to be an important component of independence and emotional well-being
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in older adults [5]. However, the growing proportion of drivers aged ≥ 65 years due to
the population aging has been associated with an increased risk of fatal accidents [6,7] and
involvement in motor vehicle collisions [8]. Motor vehicle accident data which is adjusted
for travel distance showed an exponential increase above the age of 75 [9]. Particularly,
those aged ≥ 75 seem to be involved in a higher number of road crashes and mortality rates
than young-old and young adults [10,11], indicating that driving performance declines
(even further) with increasing age. Thus, continuing driving until a high age and driving
safety are important topics for the older driver and society.

It is widely known that motor, sensory and cognitive skills, particularly executive
functions, which all affect driving performance, tend to decline with increasing age [12–16];
thus, driving becomes a more challenging task for older adults [17,18]. For example,
studies comparing old and young adults revealed significant differences in abilities and
skills inevitable for driving performance such as executive functioning, motor program-
ming, processing speed, or working memory [19–26]. Accordingly, the literature indicates
that driving errors engaging older drivers are likely due to declining cognitive abilities
(e.g., cognitive processing speed, sustained attention) [9,27–29].

Age differences in favor of young adults have been found in multitask driving for
reaction time [30], driving safety error [18,28,31–33], and crash rate [24,28]. In all these
experiments, adults between 60 and 80 years of age have been included, but this age range
was not further subdivided. Age ranges for the elderly groups were often extensive in most
of the studies, comprising 10 to 25 years. Some studies did not specify the age range of their
older drivers [28,31,32,34] while others specified a very wide age range [30,33]. However,
aging literature indicates that some perceptual, cognitive, and motor skills (e.g., perception,
temporal information processing, executive functioning, motor coordination) related to
driving ability gradually deteriorate across the adult life span [20,35–39]. Moreover, as
mentioned above, the number of fatal crashes per distance increases with advancing
age. Put together, it may be important to distinguish between young-old and old-old
participants when assessing age-related differences in driving performance. Old-old adults
might perform worse and might therefore be more likely to apply different cognitive
strategies than young-old adults to deal with increased task loads. Mixing those two
groups may obscure the possible consequences of advancing age, as it will average the
potential effects.

Several factors already have been demonstrated to influence driving performance in
older adults, including driving practice [40], sex [31], and living habits [41]. One other factor
that might influence driving behavior, but has been neglected so far, are physical activity
behavior and cardiovascular fitness. Physical activity is defined as any bodily movement
produced by skeletal muscles requiring energy expenditure, including during leisure time,
transport, or work [42]. Many studies report that physical activity level is a determinant
of physical functioning in older adults [43–45]. Even though driving may seem like a
passive activity where drivers are comfortably seated at first glance, it has been shown that
driving difficulties or the risk of crashing are related to physical functioning [46–48]. In this
context, it was already demonstrated that physical training increased driving performance
in physically impaired older drivers [49]. As a modifiable lifestyle determinant, physical
activity level is also discussed as a possible moderating factor for the cognitive deterioration
effects of aging [50–54]. It was shown that, for example, daily activities involving physical
exertion are associated with reduced cognitive loss in older adults [50] and engaging in
physical activity attenuates the risk of progressive cognitive decline [51]. Higher physical
activity level has been associated with better global cognitive function in older adults [52].
Longitudinal studies showed that older adults who engage in physical activity have less
cognitive decline over two to ten years of follow-up [53,54].

Related to physical activity, cardiorespiratory fitness (CRF) is suggested as a criti-
cal mechanism involved in the beneficial effects of physical activity on neurocognitive
health [55–58]. However, typically physical activity level and CRF are only weakly cor-
related [59]. Better cognitive performance in healthy older adults has been also linked to
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higher CRF, especially executive functions that are vulnerable to age [60,61]. Research also
demonstrated that both, physical activity level and CRF, seem to be positively associated
with those cognitive and motor functions in older adults that are related to driving behavior,
such as visuospatial accuracy [62], visual scanning and attention [63,64], spatial attention
and executive control [65–67], or processing speed [68–70]. Considering that cognitive
functions are indispensable for driving [71], the effect of CRF on cognition may also have an
effect on driving performance, particularly under cognitively demanding conditions such
as driving and concurrently performing a secondary task. Hence having a higher physical
activity level and/or CRF might preserve driving performance in older adults, especially
under higher cognitive load. However, few studies investigated the relationship between
physical activity level and/or CRF and driving performance in healthy older adults [72,73].
A cross-sectional study showed that physical activity level was not a predictor of driving
performance [72]. Conversely, one recent study demonstrated that cardiovascular fitness
had a trend-level indirect effect on speed control during dual-task driving [73]. Brought
together, understanding the possible effect of physical activity behavior and CRF on age-
related driving performance loss might provide further insights and strategies to maintain
driving skills even in demanding situations, e.g., while performing secondary tasks.

The primary aim of the present study was to investigate the development of driving
performance decline in older adults and whether the severity of performance loss increases
with advancing older age while performing concurrent subtasks in an ecologically valid
driving scenario. Earlier studies compared young-old and old-old adults on measures
such as hazard perception, change blindness, and gap judgments [35,74,75]. To the best of
our knowledge, no previous research has investigated driving performance in different
groups of older adults under cognitively demanding dual-tasking conditions by focusing
on longitudinal and lateral control measures, the other critical components of road safety.
We hypothesized that the negative effect of advancing age on driving performance would
be demonstrated not only between young and older adults but also within the group of
older adults, between young-old and old-old adults.

The second aim of this study was to understand whether physical activity behavior
and/or CRF modulates the hypothesized age-related deterioration in driving performance.
Considering higher levels of physical activity and/or CRF had been associated with healthy
aging [76,77] and better cognitive performance [50,52]; more active/higher-fitness old
adults might resist the deterioration effect of aging on driving performance. We hypothe-
sized that a higher physical activity level and CRF might interact with the effects of aging
on driving performance. This study goes beyond the previous literature by investigating
the effect of physical activity level and CRF on driving performance in young-old and
old-old adults rather than investigating a wide age range of old adults. We expected the
positive association of higher physical activity level/CRF with driving performance would
differ in age groups and would be more pronounced in the old-old group where age-related
driving performance loss is most prominent.

2. Materials and Methods
2.1. The Study Design and Participants

This study was performed within the DFG (German Research Foundation) Priority
Program SPP 1772 “Multitasking”. The project has two phases, and to test our hypothesis,
data sets from both phases were combined. In total, 141 healthy males (n = 73) and females
(n = 68) between 20 and 79 years of age were recruited via public advertising, including
local/social media, and contacts with senior networks from German Sport University
Cologne and Chemnitz University of Technology, Germany. Participants were divided
into three groups based on their age; old-old (70–79 years, n = 46), young-old (65–69 years,
n = 47), and young adults (20–30 years, n = 48). The demographic characteristics of the
participants of each group are presented in Table 1.
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Table 1. Demographic data.

Variable Young (n = 48) Young-Old (n = 47) Old-Old (n = 46) p

Age 23.25 ± 2.82 66.53 ± 1.50 74.21 ± 2.33 <0.001 **
Sex (m|f) 19|29 25|22 29|17 <0.001 **

BMI (kg/m2) 22.24 ± 2.36 25.19 ± 2.90 25.31 ± 2.89 <0.001 **
Education

(years) 15.43 ± 2.36 15.65 ± 2.69 15.83 ± 3.35 0.680

MET
(min/week) 5.92 ± 1.33 5.31 ± 1.33 5.87 ± 1.93 0.076

VO2peak
(L/min) 2.97 ± 0.95 1.90 ± 0.65 1.89 ± 0.62 <0.001

Note: Means and standard deviations are presented. BMI = Body mass index, MET = metabolic equivalent,
VO2peak = peak oxygen consumption. One-way ANOVA and Chi-squared test were performed to analyze the
group differences. ** p < 0.001.

Participants were screened for eligibility through a structured phone interview (10–15 min).
The inclusion criteria obtained by self-report comprised

• regular driving history during the last six months (at least once per week)
• body mass index < 30
• no experience of driving simulator research
• good physical and mental health (stated by physician)
• normal or corrected to normal vision and hearing
• no history of neurological/psychological disorder
• no ongoing orthopedic disorder
• right-handedness (only second project phase)

Those who met the above inclusion criteria completed a set of screening tests. Hand
preference was assessed by the “Edinburgh Handedness Inventory”, visual acuity by the
“Freiburg Visual Acuity Test (version 3.9.0, cutoff: 20/60)”, and cognitive impairment by
the “Mini-Mental State Examination” (cutoff: 27/30). Nobody had to be excluded because
of these criteria. Education level was assessed by a demographic questionnaire.

The study was approved by the ethics committee of the German Sport University,
Cologne (Nr.: 27/2015) and Chemnitz University of Technology, Germany (Nr.: V-280-17-
CVR-Multitasking-29062018). A written consent form was obtained from all participants in
accordance with the Declaration of Helsinki.

2.2. Measures
2.2.1. Physical Activity Level
Physical Activity Questionnaire

Physical activity level was assessed by an adapted version of the German version of
the Baecke Physical Activity Questionnaire [78]. The adapted version of the questionnaire
consists of sixteen questions in different domains of occupational, sports, and leisure time
activities. There were additional questions that were not in the German adapted version,
such as secondary sports practice, interruption periods for sports, the intensity of the
weekly average physical activity, and the intensity of the engaged sports. Standing, sitting,
and walking duration for non-sport context was asked for while working (young adults
only) and in leisure time.

Data Analysis

Physical activity behavior was analyzed according to the guidelines of the Baecke
questionnaire [78]. Each domain could receive one to five points, resulting in a total score
ranging from three (minimum) to fifteen (maximum). The information gained from the
questionnaire (the intensity, frequency, and duration of the activity) was then used to
calculate a total metabolic equivalent (MET) score for each activity by representing the
specific activities performed in various settings [79]. Summing the score of MET-hours
per week of each activity presented the total physical activity level. For physical activity
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data, the MET score was calculated by multiplying the corresponding MET value of the
activity by the time involved in this activity. Missing data (n = 2) were imputed by
regression imputation.

2.2.2. Cardiovascular Fitness
Peak Oxygen Uptake (VO2peak)

Cardiovascular fitness was assessed as a peak oxygen uptake estimate that reflects car-
diac function and skeletal muscle mitochondrial capacity [80]. VO2peak (L/min) was esti-
mated by a graded exercise test (spiroergometry, ZAN600 CPET, nSpire Health, Oberthulba,
Germany) on a stationary bicycle (Lode Corival cpet, Groningen, The Netherlands) with a
ramp protocol [81].

Before testing, participants were asked to avoid caffeine and alcohol intake for 12 h
and any strenuous physical activity for 24 h. Participants were required to cycle between
60 and 80 revolutions per minute. During phase I of the project, participants cycled at
30 W initial load that gradually increased by 15 W (male) or 10 W (female) per minute.
Participants of project phase II cycled with a 20 W (male) or 10 W (female) initial load that
gradually increased by 20 W (male) or 15 W (female) per minute. Heart rate (ECG, recorded
with a 10-lead ECG fully digital stress system; Kiss, GE Healthcare, Munich, Germany),
breath-by-breath respiration (oxygen uptake (VO2), carbon dioxide output (VCO2)), the
respiratory exchange ratio (VCO2/VO2), blood pressure (every 2 min), and wattage level
were continuously assessed.

The total protocol lasted about 15–20 min, including a three-minute resting and a
five-minute cool-down period (1 min initial load and 4 min no load). During cycling, the
perceived exertion rate was evaluated using the Borg scale (6: “no exertion at all”, 20:
“maximal exertion”) every 2 min. Test termination criteria were the presence of risk factors
(e.g., chest pain, dizziness, cardiac arrhythmia, blood pressure >230/115 mmHg, and other
abnormalities), volitional exhaustion, or reaching a respiratory exchange ratio of >1.05 for
about 30 s or >1.10 instantly. The assessment was managed under the supervision of an
expert sports scientist.

Data Analysis

In order to improve the peak detection by accounting for typical breath-by-breath
fluctuations, the VO2peak was identified by applying a moving average filter (lag 20,
two-sided to avoid phase distortion) to the VO2 continuous time-series data. The average
for the last five VO2 values of fully completed load level (wattage) was used to calculate
the participants’ VO2peak. (approximately 10 s). We controlled whether participants
reached their submaximal performance level at their highest wattage level based on a
VO2peak >1.5 L/min and a respiratory exchange ratio coefficient (>1.0). The result was
considered missing data if these criteria were not met. Missing values (n = 7) were imputed
by the expectation-maximization (EM) algorithm.

2.2.3. Driving Task
Driving Simulator and Scenario

The driving simulator setup (Carnetsoft version 8.0, Groningen, The Netherlands)
consisted of three 48 inch screens laterally angled with a horizontal field of view of 195◦, a
conventional car seat (VW Golf), a steering wheel and a pedal set (Logitech, International
S.A., Lausanne, Switzerland). A traditional numeric keypad with visible numbers from
1 to 6 was located on the right side of the steering wheel, where it could conveniently be
reached by participants. The visual field around the screens was covered by black fabric to
avoid possible perceptual conflicts with peripheral visual structures. Participants wore a
regular headset that was used to present tasks auditorily, and to create a realistic driving
sound. More details, and an illustration of the setup, can be found in Wechsler et al. [18].

Real-life and laboratory multitasking may differ in their motor, cognitive, and sensorial
requirements, leading to a limitation for understanding the driving performance under
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subtasks [82,83]. Therefore, we used an ecologically valid, virtual driving task that mimics
daily car driving, demanding a rich repertoire of motor, cognitive and sensorial actions. The
driving scenario consisted of 25.7 km on a rural road, in an environment that included other
vehicles, gas stations, traffic signs, mountains, trees, meadows, and small animal enclosures,
all under a blue sky with some clouds. The participants’ car was escorted by a rear car
that followed the driver at a reasonable distance, and a lead car that drove at 70 km/h.
The lead car slowed down slightly if the distance to the participant increased above 100
m, and returned to 70 km/h when the participant’s car caught up. The participants were
instructed to follow the lead car at a reasonable distance.

At ten locations along the road, a 40 km/h speed limit sign or a construction site
was encountered. There, the lead car performed a braking maneuver: it slowed down to
40 km/h for about 6 s, and then accelerated back to 70 km/h again. These braking sections
did not overlap with the tasks of interest for the present study (see “Additional tasks”
below) and were not analyzed here. In case participants had an accident, a shattering of
the front window was simulated, and the driver’s car was relocated between the rear car
and the lead car.

Additional Tasks

Participants performed different additional tasks in the driving simulator, a typing
task and a reasoning task, both of which were presented either visually or auditorily.

The typing task mimicked, for example, using a GPS navigator, radio, or bluetooth
mobile phone connection. Participants were instructed to type a three-digit number, which
was presented via the headset or on the simulated windshield. Digits ranged from one to
six and had to be entered into the numeric keypad. The presentation time of the visual
stimuli was 5 s, and the presentation time of the auditory stimuli lasted ~3 s. The reasoning
task mimicked a conversation with a passenger. It included arguments that could not
be answered by “yes” or “no”, and participants were asked to provide verbal answers
preferably with one sentence. For example, they were asked to give a reason for cost-free
train travel in Germany. Arguments were limited to 10 words and 80 characters. The
presentation time of the visual stimuli was 5 s, and the presentation time of the auditory
stimuli varied from 3 to 4 s according to the length of the argument.

All additional tasks were presented in mixed order at irregular time intervals (M = 17.75 s,
SD = 4.55 s). Each participant received the same order of tasks at the same locations. No
given type of task was presented more than twice in a row in the same modality. In the
first phase of the project, additional memorizing tasks were included, where subjects had
to compare traffic news (auditory) or gas station prices (visual). As those tasks were not
part of the second phase of the project, they were not analyzed here. Nevertheless, the total
number of stimuli was similar between both phases (n = 60), while the number of trials per
task type and modality differed slightly (n = 10 trials per task type and modality for the
first phase of the project and n = 15 trials per task type and modality for the second phase).
For further details, see Stojan et al. [73].

Participants were instructed to respond to each additional task as quickly and as
correctly as possible, and not to prioritize driving or the additional tasks. They were
familiarized with the driving simulator for 3–4 min, each for driving only and for the
additional tasks only, but not for the combination of both (see Stojan et al. [73] for further
information). Familiarization was followed by data registration under three conditions
(randomized order): driving only, additional tasks only, or driving while performing
the additional tasks. Each driving course took about 25 min. For further details, see
Wechsler et al. [18] and Stojan et al. [73]. Here, we analyzed only data of the driving course
where participants drove and performed additional tasks.

Data Analysis

Driving performance parameters were recorded continuously at 10 Hz, including the
lateral position of the driver’s car and its forward velocity, which are the main outcome
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parameters of the present study. Both variables are prevalent in driving research and
were demonstrated to be responsive to driving under natural conditions and sensitive to
distractions through additional tasks performed while driving [18,73,84,85]. These outcome
measures were calculated separately for each trial. After outlier rejection by the ±3.29 SD
criterion (within each subject and per task type and modality) [86], data were averaged
across all trials of a given task type and presentation modality.

The present study addresses driving behavior only. For an analysis of additional task
performance, see Wechsler et al. [18].

2.3. Procedure

Before the first session of the experiment, eligible participants determined by telephone
interview took general information about the project, informed consent forms, and a
questionnaire on demographics, health status, handedness, driving status, and physical
activity level via post. The participants were requested to fill out the documents and bring
them in the first session. Testing sessions comprised four days in project phase I, and two
days in phase II. Because the experimental process included different cognitive and motor
tests presented in previous studies [18,73], the order of tests followed pseudorandomized
schedules. For this reason, the cardiorespiratory fitness test and multitasking driving task
were applied on different days, with at least 24 h off in-between. The experimental flow is
depicted in Figure 1.
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2.4. Statistical Procedures

The first hypothesis on age differences in driving performance was assessed by multi-
variate analyses of covariance (MANCOVAs), with the dependent variables Mean Velocity
and SD Lateral Position separately for all modalities (visual, auditory) of additional tasks
(typing, reasoning). Age group (young, young-old, old-old) was added as independent
variables. Sex (male/female) and BMI were included as covariates based on the possible
influence of these characteristics on the variables of interest [87,88]. To address the second
hypothesis, physical activity level (MET) and CRF (VO2peak) were entered as continuous
variables into the model. As reported above, data were screened for missing values and
outliers before the main analysis. They were also screened for violations of MANCOVA
assumptions before the main analysis. If the homogeneity of the variance-covariance ma-
trices was violated, Pillai’s Trace value was used to control for biases [86,89]. In case a
main or interaction effect reached statistical significance, follow-up univariate analysis of
covariance (ANCOVA) were performed for each driving parameter. Pairwise comparisons
between groups were performed using estimated marginal means and adjusted through
Bonferroni correction. Partial eta squared (ηp

2) provided an index of effect size [90]. The
significance level was set at 0.05. IBM SPSS Statistics, version 25 (IBM Corp., Armonk, NY,
USA) was used for these calculations.
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3. Results

MANCOVA revealed a significant main effect of age on driving performance after
controlling for BMI and sex (p < 0.001). No significant interaction between age and physical
activity level was found. The interaction between age and VO2peak on driving performance
was significant (p = 0.012). MANCOVA results are presented in Table 2.

Table 2. MANCOVA results.

Pillai’s Trace F df p ηp
2

Age 0.639 7.628 16, 260 <0.001 ** 0.32
PA level 0.054 0.919 8, 128 0.49 0.05
VO2peak 0.049 0.830 8, 128 0.51 0.05

Age × PA level 0.126 1.039 24, 381 0.38 0.06
Age × VO2peak 0.307 1.807 24, 381 0.012 * 0.10

Note: Age included three levels (young, young-old, old-old). PA level and VO2peak were continuous independent
variables. Gender and BMI were included as covariates. * p < 0.05 ** p < 0.001.

Univariate follow-up tests for the main effect of age were significant on Velocity and
Lateral Position scores for all loading tasks and modalities (Table 3). Pairwise comparisons
on the main effects of age on each driving performance variable are presented in Table 4.

Table 3. Univariate follow-up results for the main effect of age.

Driving Parameter Young Young-Old Old-Old F b df p ηp
2

VelocityType-v 19.09 (0.16) 18.11 (0.15) Y 17.37 (0.15) Y,YO 26.10 2 <0.001 ** 0.27
VelocityType-a 18.87 (0.16) 17.96 (0.15) Y 17.13 (0.15) Y,YO 26.99 2 <0.001 ** 0.28

VelocityReasoning-v 18.74 (0.16) 18.19 (0.15) 17.25 (0.16) Y,YO 19.35 2 <0.001 ** 0.22
VelocityReasoning-a 18.88 (0.16) 18.23 (0.15) 17.65 (0.15) Y,YO 14.03 2 <0.001 ** 0.17

Lateral PositionType-v 0.21 (0.008) 0.29 (0.008) Y 0.30 (0.008) Y 29.50 2 <0.001 ** 0.30
Lateral PositionType-a 0.23 (0.012) 0.32 (0.011) Y 0.36 (0.011) Y 29.23 2 <0.001 ** 0.30

Lateral PositionReasoning-v 0.18 (0.007) 0.22 (0.006) Y 0.22 (0.006) Y 8.60 2 <0.001 ** 0.11
Lateral PositionReasoning-a 0.19 (0.006) 0.23 (0.006) Y 0.23 (0.006) Y 11.18 2 <0.001 ** 0.14

Note: Type: typing, visually (-v) and auditorily (-a), Y: young, YO: young-old. Y,YO indicate the denoted value
is significantly different from that of the group in the same column. Data are presented as mean ± standard
deviation. ** p < 0.001. b ANCOVA with sex and BMI as covariates.

Table 4. Pair-wise comparisons for the effect of age on each driving performance variable score
between age groups.

Driving Parameter
Old-Old vs. Young-Old Old-Old vs. Young Young-Old vs. Young

t p t p t p

VelocityType-v 3.41 0.003 * 7.21 <0.001 ** 4.21 <0.001 **
VelocityType-a 3.84 0.001 * 7.33 <0.001 ** 3.92 <0.001 **

VelocityReasoning-v 4.18 <0.001 ** 6.02 <0.001 ** 2.29 0.071
VelocityReasoning-a 2.75 0.020 * 5.28 <0.001 ** 2.84 0.051

Lateral PositionType-v 0.90 0.364 7.41 <0.001 ** 5.75 <0.001 **
Lateral PositionType-a 2.26 0.096 7.41 <0.001 ** 5.75 <0.001 **

Lateral PositionReasoning-v 0.33 0.758 4.00 0.001 * 3.66 0.001 *
Lateral PositionReasoning-a 0.01 0.997 4.33 <0.001 ** 4.33 <0.001 **

Note: Type: typing, visually (-v) and auditorily (-a). * p < 005, ** p < 0.001.

Univariate follow-up tests showed a significant age × VO2peak interaction for
VelocityReasoning-a (p = 0.03, ηp

2 = 0.06) and Lateral PositionType-a (p = 0.006, ηp
2 = 0.08). The

interaction between age and VO2peak approached significance for VelocityType-a (p = 0.05,
ηp

2 = 0.04) and VelocityReasoning-v (p = 0.06, ηp
2 = 0.04). Interaction effects were visualized

in Figures 2–5. A higher VO2peak corresponded to driving faster in young and young-old
adults, unlike old-old adults (Figures 2, 4 and 5). A higher VO2peak corresponded to
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driving more laterally (more on the left side of the street) in older adults, unlike young
adults (Figure 3).
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Figure 2. Interaction effect between age and VO2peak on VelocityReasoning-a after controlling for BMI
and sex. The fit lines represent the trend of the data for subgroups. Green: young adults, Blue:
young-old adults, Red: old-old adults. Young and young-old adults with a higher VO2peak drove
faster, while old-old adults drove slower.

Brain Sci. 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 

Figure 3. Interaction effect between age and VO2peak on Lateral PositionType-a after controlling for 

BMI and sex. The fit lines represent the trend of the data for subgroups. Green: young adults, Blue: 

young-old adults, Red: old-old adults. Young adults with higher VO2peak drove less laterally, 

while old-old and young-old adults drove more laterally. 

 

Figure 4. Interaction effect between age and VO2peak on VelocityReasoning-v after controlling for BMI 

and sex. The fit lines represent the trend of the data for subgroups. Green: young adults, Blue: 

young-old adults, Red: old-old adults. Young and young-old adults with higher VO2peak drove 

faster, while old-old adults drove slower. 

Figure 3. Interaction effect between age and VO2peak on Lateral PositionType-a after controlling for
BMI and sex. The fit lines represent the trend of the data for subgroups. Green: young adults, Blue:
young-old adults, Red: old-old adults. Young adults with higher VO2peak drove less laterally, while
old-old and young-old adults drove more laterally.
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Figure 4. Interaction effect between age and VO2peak on VelocityReasoning-v after controlling for
BMI and sex. The fit lines represent the trend of the data for subgroups. Green: young adults, Blue:
young-old adults, Red: old-old adults. Young and young-old adults with higher VO2peak drove
faster, while old-old adults drove slower.
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Figure 5. Interaction effect between age and VO2peak on VelocityType-a after controlling for BMI and
sex. The fit lines represent the trend of the data for subgroups. Green: young adults, Blue: young-old
adults, Red: old-old adults. Young and young-old adults drove faster with higher VO2peak, while
old-old adults drove slower.

4. Discussion

This study investigated whether advancing age has a deteriorating effect on driving
performance and whether physical activity/CRF moderate that hypothesized aging effect.
Young, young-old, and old-old adults operated a driving simulator while performing
concurrent cognitively demanding tasks in an ecologically valid scenario. Old-old adults
drove slower with a more lateral lane position than young ones across the whole driving
course. In accordance with our first hypothesis, we also observed differences in driving
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performance between old-old and young-old adults. Old-old adults drove slower than
young-old ones across the whole driving course. Young-old adults drove more laterally
across the whole driving course than young ones. They drove slower than young drivers
except for the reasoning tasks. Contrary to our second hypothesis, physical activity level
did not interact with the aging effect on driving performance. However, cardiovascular
fitness interacted with age for the VelocityReasoning-a and Lateral PositionType-a.

4.1. Aging Effect

In line with the current literature, our findings showed a detrimental effect of advanc-
ing age on driving performance [32,34,91,92]. Research on driving performance demon-
strated that advancing age is associated with slower driving speed [18,31,93]. Musselwhite
and Haddad [94] reported that older drivers had difficulty maintaining a constant speed at
the speed limit, particularly while comprehending road signs, and they compensated for
this by driving at low speed. They also showed that reacting accurately when something
unpredicted occurred on the road was difficult for older drivers, and a compensation
mechanism was again to lower the driving speed.

Different cognitive, physiological, and perceptual declines have been described and re-
lated to diminished driving performance in older adults [71]. Since less cognitive flexibility
makes older adults more vulnerable to an unpredictable and changing environment, they
may need more time to react correctly. It has also been reported that older drivers tend to
brake harder and slower [95,96], and their reaction time was longer to take over the control
of the vehicle [97]. Therefore, they may reduce their speed while making driving decisions.
Further, older adults’ cognitive processing speed is slower [98], so they might be staring
at the speedometer longer than young ones. Besides, accommodation of the eye takes
longer in older adults [99]. The difficulty they experience while shifting their gaze between
the speedometer and the road might cause them to drive slower as a built-in strategy.
Thus, they do not to check the speedometer constantly. Overt orienting of attention (gaze
shifting required to control the speedometer) is another cognitive dimension that is known
to decline with age [100]. Precise motor control and tactile sense (pressure applied to the
gas pedal) are components of the sensorimotor system which are sensitive to age-related
deterioration [101,102]. Increased sensory attenuation [103], prolonged movement times,
and more corrective sub-movements demand for proprioceptive acuity [104] might lead to
poorer speed control in older adults. Whilst the current study did not assess the mentioned
cognitive or sensory-motor performances, it is possible to assume that decreased driving
ability in old adults might be related to age-related loss in the above-mentioned areas.

Besides confirming earlier findings, our study provided new insights by reporting a
gradual decrement in driving speed between young-old and old-old drivers. Data from
several sources have identified a gradual decline in processing speed [38,105], cognitive
flexibility [38], and visuospatial attentional skills [106–108] in older adults. Therefore, our
findings might be related to a progressive loss in driving-related cognitive skills with
advancing age. In addition, considering that driving slower serves as compensation to cope
with decreased cognitive skills, it is likely that old-old adults need more compensation due
to their further loss.

Interestingly, there was no significant speed difference between young-old and young
adults in the reasoning tasks. The reasoning task may have been less challenging than the
typing task as the participants did not need to take their eyes off the screen or perform a
manual task to conduct the task, so driving speed may not have differed between young-old
and young adults. Another explanation might be that older adults use different cognitive
strategies than younger adults to accomplish the argumentation task. Older adults have
higher crystallized intelligence and may find it easier to provide arguments to issues of
general interest from their higher repertoire of potential answers [92]. Younger adults
instead may find this task more difficult due to their lower crystallized intelligence and
experience that they can rely on. However, they can still maintain driving performance on
a higher level as their brain and cognitive reserve are sufficiently high.
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Consistent with what has been found in previous research, our findings demonstrated
poorer performance in lane keeping with advancing age [28,109–111]. For a safe driving
experience, drivers need to perceive, update, inhibit and integrate the information of the
environment through attentional control [112] and working memory mechanisms [113,114]
continuously. In particular, lane keeping during cognitively demanding driving conditions
is particularly related to attentional control and visuospatial working memory [28,115–117]
which are known to deteriorate with advancing age [118–120]. The observed more lat-
eralized driving in the elderly groups could be attributed to the probable decline in the
above-mentioned cognitive skills. Unlike our expectations, old-old and young-old adults
showed similar lane keeping abilities. It has been proposed that driving at a slower speed
reduces the driver’s lateral position [121]. Hence, no significant difference between the
old-old and young-old group’s lateral position might be due to the reduced driving speed
of the old-old participants. Driving slower might have obscured the difference in lane
keeping among the old-old and young-old adults.

Additionally, in our experimental setup, there was a leading car that the driver was
constantly following and with which he/she should not cause collision. Furthermore, only
a few vehicles came across on the opposite lane. One possible explanation for why driving
speed is more susceptible to aging than lane keeping is that speed control might be a more
critical parameter to avoid collisions, and old-old adults might have tried to act more
controlled in this regard. It should be also noted that multitasking driving studies have
shown that driving speed, reaction time, and hazard perception are more susceptible to
performance costs than lane keeping [122–124]. However, further experimental investiga-
tions are needed to understand which driving parameter is more susceptible to demanding
tasks and for what reason among older adults.

4.2. Interaction Effect of Physical Activity/Cardiorespiratory Fitness and Advancing Age on
Driving Performance

Contrary to our expectation, physical activity level did not interact with the advancing
age effect on driving performance. Physical activity has been linked to better physical
functioning in older adults [125], such as better neck rotation, shoulder flexibility, etc., all
of which are associated with good driving behavior [46,126]. Research also indicates that
being physically active is associated with generally better brain health and might dampen
the age-related deterioration in cognitive skills related to driving, such as processing speed,
inhibition, cognitive flexibility, working memory, and attentional orientation [65,127–129].
However, our results did not confirm that a higher physical activity level is associated
with higher driving behavior, especially for older adults, those more fragile to demanding
task conditions. Given the challenging and complex nature of driving, it is likely that the
devastating effect of age on driving performance might resist the improving impact of being
physically active. It should also be kept in mind that our study population was healthy
and physically active adults. Similar physical activity levels of the older age groups may
have obscured the potential effect of physical activity on driving performance. A broader
range of physical activity levels would provide a more reliable sample to investigate the
interaction between advancing age and physical activity level.

While PA level is a behavioral parameter, CRF is described as the capacity of the
muscular, respiratory, and circulatory systems to provide oxygen during physical exer-
cise [130]. It should be remembered that although PA level and CRF are related, they
are not identical. In this study, contrary to physical activity, CRF interacted with the age
effect in VelocityReasoning-a and Lateral PositionType-a. Interaction effect was trend-level for
VelocityReasoning-v, VelocityType-a parameters. Higher-fitness young-old and young adults
drove faster while higher-fitness old-old adults drove slower compared to the less fit ones.
Higher-fitness young-old and old-old adults drove more laterally, unlike higher-fitness
young adults.

Previous literature on CRF as a predictor of multitasking has discrepancies. Madden
and colleagues [131] reported that 16 weeks of aerobic exercise that increases CRF did not
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improve dual tasking. Dupuy and colleagues [132] demonstrated that higher-fitness middle-
aged and older athletes had better dual-task performance than lower-fitness counterparts.
A previous path analysis by our team showed that CRF had a trend-level indirect effect
on driving speed through cognitive functioning in healthy older adults [73]. This study
goes beyond the previous literature by comparing the interaction of age and CRF across
different age groups recruiting young, young-old, and old-old adults. As we expected,
higher-fitness young-old and young adults drove faster than old-old ones. Our results are
also consistent with previous finding that showed that CRF is more associated with driving
speed rather than lane keeping in old adults [73]. However, unlike our hypothesis, higher
VO2peak corresponded to driving slower in old-old adults. We can only speculate about
the reasons. The higher-fitness older adults might prefer walking or jogging rather than
driving in their daily lives. Another interpretation of this finding might be that the benefit
of being a more experienced driver due to chronological age may have covered up the
potential positive effect of CRF on driving performance. Yet, driving experience should
specifically be evaluated to test these ideas.

Another explanation might be that higher-fitness old-old adults correctly judge their
reduced driving skills and therefore reduce their speed as a compensatory measure whereas
unfit ones overestimate their driving skills and therefore don’t reduce their driving speed.
Given that higher-fitness older adults drove more laterally during the auditory typing task,
this unexpected result also may be related to higher-fitness older adults being more likely
to engage in risky driving behavior because they are more self-confident. Nonetheless, it is
difficult to explain such results without having a more detailed approach that compares
the driving habits of the participants.

Interestingly, the interaction effect of age and CRF on driving performance seems to be
related to the stimulus type. This effect was more pronounced in the auditorily presented
tasks than visually presented ones in our study. It is widely known that simultaneous
performance of two or more different tasks results in the deterioration in task performance
and it is referred to as task interference [133]. The interference effect during multitasking
might depend on the pairings of input and output modalities [134]. A natural tendency
has been proposed to central processing of specific pairings of input and output modalities
easier [135]. According to this view, binding auditory stimuli to vocal responses and
visual stimuli to manual responses is the preferred processing way due to these pairing
being ‘modality compatible’ and characterized by low processing demand [136]. In this
case, visual reasoning and auditory typing tasks are incompatible pairings, while auditory
reasoning and visual typing are compatible pairings. Given that the interaction effect
of age and CRF was more prominent in incompatible pairings in our findings including
trend-level results, these tasks might be more susceptible to the supporting effect of higher
CRF on driving performance because they are more cognitively demanding. However,
further research is required to address different factors influencing the interaction of CRF
and advancing age on driving performance, particularly for different age groups.

The present study has some limitations that should be considered when interpreting
results. The first limitation is regarding the age ranges of older adults. In our study, the
old-old adults were between 70 and 79 years of age. Considering that the population tends
to age and life expectancy increases [137], future studies should include the elderly over 80
years old as a third group of older adults.

The second limitation is regarding the driving experience. We questioned the partic-
ipants’ driving experience in the last six months. However, the information on driving
experience across the life span might also be beneficial. These data would enable the as-
sessment of driving performance by controlling the driving experience as much as possible.
Future studies should control the driving experience by a more comprehensive assessment.

Finally, because our study consisted of two phases with different numbers of experi-
mental sessions and different durations, this difference varied the durations between the
assessment of VO2peak and the driving task. In future studies, the time between two
sessions should be standardized.



Brain Sci. 2022, 12, 608 14 of 19

5. Conclusions

As far as we know, no previous research has addressed the potential discontinuity in
advancing age effects on driving speed and lane keeping during multitasking driving.

We believe that investigating different groups of older adults could contribute to
understanding the development of driving performance within older adults.

The present study showed that age-related driving performance varied in the young-
old and old-old adults, and performance losses are not identical for the entire elderly phase.
These findings highlight a critical point for aging studies and suggest that the typical results
obtained for the young-old adults cannot be generalized to the old-old ones. At a more
general level, understanding the development course may guide planning therapeutic
strategies for the requirements of older adults on time. Our data suggest that past research
on older drivers is difficult to interpret because the age range in those earlier studies either
was very wide or was not specified. Future work should clearly distinguish between the
performance of young-old and old-old drivers.

For the first time, we demonstrated that a high cardiovascular fitness could contribute
to good driving performance in young and young-old adults, unlike old-old adults. Future
studies are needed to get a deeper insight into the interaction of physical activity level/CRF
and advancing age on driving performance in different age groups. In this way, the
potential contribution of physical activity to provide and maintain a safe driving experience
can be evaluated more comprehensively.
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