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Abstract 

Study Objectives:  This protocol paper outlines the methods that will be used to examine the impact of altering meal timing on 
metabolism, cognitive performance, and mood during the simulated night shift.

Methods:  Participants (male and female) will be recruited according to an a priori selected sample size to complete a 7-day within 
and between participant’s laboratory protocol. Participants will be randomly assigned to one of the three conditions: meal at night 
or snack at night or no meal at night. This protocol includes an 8-hour nighttime baseline sleep, followed by 4 consecutive nights 
of simulated nightshift (7 hours day sleep; 10:00–17:00 hours), and an 8-hour nighttime sleep (return to dayshift). During the sim-
ulated night shift, meals will be provided at ~06:30, 09:30, 14:10, and 19:00 hours (no eating at night); ~06:30, 19:00, and 00:30 hours 
(meal at night); or ~06:30, 14:10, 19:00, and 00:30 hours (snack at night). Meal composition will be strictly controlled throughout the 
study (45%–65% carbohydrates, 15%–25% protein, and 20%–35% fat per day) with daily energy provided to meet individual needs 
using the Harris-Benedict equation (light/sedentary activity). The primary outcome measures are serum concentrations of blood 
glucose, insulin, and free fatty acids area under the curve in response to the oral glucose tolerance test. Mixed-effect ANOVAs will 
be conducted.

Conclusions:  This protocol paper describes a methodology to describe an innovative approach to reduce the metabolic disease 
impact associated with shift work.

Key words: meal timing; shiftwork; nightshift; metabolism

Approximately 15% of the Australian population currently work 
shift work [1] with numbers likely rising with increasing demand 
by companies to extend working hours, often to cover 24-hour 
work operations [2]. As a consequence of changes to the normal 
sleep–wake pattern, transitioning on and back off work shift 
schedules leads to circadian misalignment relative to normal 
solar day–night and sleep–wake cycles and is associated with 
performance and safety decrements and increased risk of obe-
sity [3–6], metabolic diseases [7–9], gastrointestinal disturbances 
[10–12] and cardiovascular disease [13]. The incidence of poor 

health in the shift work population is not only important on an 
individual level, but also contributes to a financial costs for the 
organization and the broader healthcare system [14].

Until recently, the primary focus of most dietary interventions 
to reduce metabolic disease in shift workers, and indeed the 
broader community, has been restricting total energy intake and 
improving diet quality (macronutrient composition). By exam-
ining the dietary intake of shift workers, the interplay between 
circadian timing, metabolic physiology, and nutrition is evident. 
Many studies have found no significant differences in total daily 
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energy intake when comparing night shift to day shift and/or day 
off conditions [15–19]. However, when shift workers eat at night 
their meal patterns are often out-of-phase with the underly-
ing circadian regulation of metabolism [19–21]. At night, meal- 
induced secretion of insulin is impaired [22], and multiple studies 
have found elevated glucose responses with nighttime meals 
compared to daytime meals [23–29].

Research in rodents has suggested that limiting the window 
of eating to only the biological day, when working the night shift, 
may reduce the metabolic impacts associated with shift work. In 
these studies, the metabolic impairments associated with simu-
lated “night shift” were reversed when food was withheld during 
the shift, with glucose levels maintained within control ranges 
[30, 31]. In addition, withholding food prevented fat and weight 
gain compared to animals that had free access to food [31]. 
Barclay et al. [30] suggested that these findings may result from 
limiting the peripheral circadian desynchrony caused by “night 
shift.” However, there is limited data regarding the impact of com-
pletely withholding food intake across the night in humans.

A pilot study from our group suggests that not eating at night, 
during simulated night work may limit the adverse metabolic 
consequences of night shift, with increased glucose area under 
curve (AUC) in response to a standard breakfast meal observed 
when participants ate a large meal during the night shift but not 
when those calories were redistributed to the day on either side 
of the night shift [25]. These studies in humans and rodents all 
support reduced eating during the night shift. However, given 
many shift workers might find complete fasting on night shift 
difficult, there is a need to understand the impact of smaller 
meals or snacks on next-day glucose metabolism. Could a small 
meal be a suitable intermediate approach to increase uptake 
and adoption by shift workers while still protecting against met-
abolic disruption?

An additional factor that must be considered when chang-
ing night worker eating patterns, is how cognitive performance 
and safety might be impacted. There is research to suggest that 
energy intake preceding cognitive performance testing during the 
day reduces cognitive performance [32–34]. Our pilot data also 
support this, finding that eating at night increases sleepiness and 
impairs driving performance in the early morning hours com-
pared to not eating at night [35, 36].

This protocol paper describes a study that will examine the 
impact of eating meals at night (snack or meal) compared to 
only eating during daytime hours on glucose metabolism after 
four nights of simulated shift work in healthy men and women. 
Secondary aims focus on understanding how cognitive per-
formance and safety might be impacted by these conditions. 
Primary and secondary study outcomes of the proposed study 
are displayed in Table 1.

Materials and Methods
Study design
This study will be a single-site, single-blinded parallel three-
arm group cluster randomized controlled trial (no meal at night, 
snack at night, and full meal at night), within- and between-group 
experimental study requiring a 7-day in laboratory stay. All par-
ticipants will undergo a simulated shift work protocol, including 
one 8-hour nighttime baseline sleep, followed by 4 consecutive 
days of simulated shift work (7 hours sleep from 10:00 to 17:00 
hours each day), followed by an 8-hour nighttime recovery sleep. 
The study protocol is illustrated in Figure 1.

Study setting
This study, conducted at the University of South Australia’s Sleep 
and Chronobiology laboratory, will recruit healthy individuals 
without obesity residing in Adelaide, Australia. Ambient room 
temperature will be maintained at 22(± 1)°C in the laboratory at 
all times. Light intensity will be set to 50 lux (slightly dimmed 
light), measured via vertical illuminance at the eye level, during 
scheduled wake periods and approximately <0.03 lux (darkness) 
during all scheduled sleep periods.

Randomization
Participants will be cluster randomized at the group level (partic-
ipants will be tested four at a time), with each group undergoing 
the laboratory stay together. Participants will eat in isolation from 
one another in their allocated bedrooms. It is not possible to blind 
the research staff for logistical reasons. Analyses of primary out-
comes will be done by an independent researcher who will not 
participate in data collection.

Ethics and dissemination
The study will be conducted according to the guidelines of the 
Declaration of Helsinki and was approved by the Institutional 
Review Board (or Ethics Committee) of University of South Australia 
(protocol ID: 0000033621, approved October 17, 2014).” Any mod-
ifications to the protocol will be submitted to the University of 
South Australia Human Ethics Committee and updates will be 

Table 1. Study Outcomes

Outcome Timepoint

Primary outcomes

Glucose AUC derived from 
OGTT.

AUC post-OGTT on Baseline and 
Recovery

Insulin AUC derived from OGTT. AUC post-OGTT on Baseline and 
Recovery

Free fatty acid AUC derived from 
OGTT.

AUC post-OGTT on Baseline and 
Recovery

Secondary outcomes

Glucose during breakfast meal 
tolerance test.

AUC post-breakfast on days 3 
and 6 (simulated night-work 
days).

Insulin during breakfast meal 
tolerance test.

AUC post-breakfast on days 3 
and 6 (simulated night-work 
days).

Cognitive functioning is assessed 
by a battery of cognitive tests 
including psychomotor vigilance 
tasks and driving tasks.

Every 2 hours during wake 
periods on Baseline to 
Recovery (day 1 is used for 
acclimatizing to the laboratory 
setting and training).

Markers of sleep quality 
will be assessed using 
polysomnography.

Baseline, day 5, and recovery

Mood is assessed by a battery 
of cognitive tests including VAS 
scales and PANAS.

Approximately every 3 hours 
during wake periods Baseline 
to Recovery.

Salivary sample analysis to 
assess melatonin and cortisol in 
response to night shift.

Every hour during wake periods

AUC, area under the curve; OGTT, oral glucose tolerance test; VAS, visual 
analog scales; PANAS, positive and negative affect scale.
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made to the Australian New Zealand Clinical Trials Registry. The 
protocol has been registered with the Australian New Zealand 
Clinical Trials Registry (ACTRN12616001556437). Informed con-
sent will be obtained from all participants involved in the study 
prior to data collection. All authors will have access to the final 
de-identified dataset. No authors report any relevant conflicts 
of interest. The findings of this study will be disseminated via 
peer-reviewed publications and presentations at national and 
international conferences. The findings will also form part of stu-
dent theses.

Recruitment and screening
Participants will be recruited via advertising flyers posted on 
notice boards and posting on web-based advertising platforms. 
Figure 2 displays screening process and participant cluster ran-
domized to the study condition. Interested participants will 
initially be screened for eligibility via telephone screening to 
collect self-reported height/weight, age, smoking status, sleep 
patterns (sleep and wake times), general health status, daily/
weekly alcohol consumption, and caffeine intake. Study inclu-
sion and exclusion criteria are presented in Table 2. If interested 
participants remain eligible following initial screening, they will 
be invited to attend a face-to-face screening session to complete 
a more in-depth general health questionnaire (medical his-
tory), the Pittsburgh Sleep Quality Index to assess sleep quality 
(exclusion > 5) [37], the composite Morningness–Eveningness 
questionnaire to determine chronotype (exclusion < 31 or > 69) 

[38] and the Beck Depression Inventory to determine psycholog-
ical health (exclusion > 14) [39]. A fasted blood sample will also 
be collected to determine general health, with levels assessed 
by the study physician to ensure they are within accepted nor-
mal ranges and determine whether the participant does not 
have indicators of any underlying condition that may affect 
metabolism. To control for the effects of menstrual phase on 
metabolism, female participants will only be scheduled to par-
ticipate during the luteal phase of their menstrual cycle [40].

One week prior to commencing the in-laboratory study, par-
ticipants will be invited to tour the laboratory, test the driving 
simulator, and look through the menu to ensure all foods could 
be consumed without problems. At this visit, they will be given 
a take-home pack including a sleep diary and wrist actigraph 
and instructed to keep to a strict sleep schedule of going to sleep 
between 22:00 and 23:00 hours and waking between 06:00 and 
07:00 hours for the following week (verified by the wrist actigra-
phy and sleep diary). Participants will also be asked to abstain 
from caffeine, alcohol, and napping in the week prior to the study 
commencing.

Laboratory protocol
Participants will enter the laboratory at 12:00 hours on training day 
and will be familiarized with the laboratory environment. All par-
ticipants will then be given one sleep opportunity of 8 hours time 
in bed (TIB; 22:00–06:00 hours) before transitioning to the night 
shift protocol. During the subsequent 4 days of simulated night 
shift participants will be awake from 16:00 to 10:00 hours with a 

Figure 1. Study Design with Primary Outcomes. Black bar; sleep opportunities, white bar; wakefulness, grey box; meal or snack times, S; snack, BF; 
breakfast, L; Lunch, D; dinner,  black circle; Oral Glucose Tolerance Testing (OGTT). Meal conditions will be divided into control; no eating at night, 
snack; a light snack served at night, and meal; a lunch-equivalent meal served at night.
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daytime sleep of 7 hours TIB (10:00–17:00 hours). Upon comple-
tion of the night shift schedule, participants will have a noctur-
nal recovery sleep of 8 hours TIB (22:00–06:00 hours). During wake 
periods participants will complete several physiological and cogni-
tive tasks (The timing of these tasks is shown in Table 1).

Conditions
The diet will be standardized and fit within the Australian dietary 
recommendations for the percentage of daily energy from macro-
nutrients; 45%–65% carbohydrates, 15%–25% protein, and 20%–
35% fat per day [41]. The energy content of the meals will be based 
on individual daily dietary energy requirements (kJ) calculated 
using the Harris-Benedict equation with a light/sedentary activ-
ity level (laboratory condition). Energy intake will be consistent 
across conditions per 24-hour period, but the energy distribution 
of the meals differed by condition as shown in Figure 3. All food 
provided will be weighed and recorded pre- and post-consumption. 
Participants will be given a 30-minute eating window to consume 
all food within the given meal. Participants will not be permitted 
food outside these times; water will be accessed ad libitum.

Meal at night
Food intake for those in the meal at-night condition will be sep-
arated into breakfast, dinner, and a lunch-type meal at night. 
The schedule will be as follows, breakfast with 30% daily energy 
intake at 06:30 hours (toast, cereal, etc), dinner meal with 40% 
daily energy intake at 19:00 hours (mixed dishes, salad, vegetable, 

etc), and a lunch type meal 30% daily energy intake at 00:30 hours 
(sandwiches etc).

Snack at night
Food intake for those in the snack at night condition will be 
separated into breakfast, two snack meals, and a dinner meal. 
The schedule will be as follows: breakfast with 30% daily energy 
intake at 06:300 hours (toast, cereal, etc), an afternoon snack with 
20% daily energy intake at 17:00 hours (sandwiches, etc), a dinner 
meal with 40% daily energy intake at 19:00 hours (mixed dishes, 
salad, vegetable, etc) and a snack at night 10% daily energy intake 
at 00:30 hours (fruit, crackers, etc).

No meal at night
Food intake for those in the no meal at night condition will also 
be separated into breakfast, two snack meals, and a dinner meal. 
The schedule will be as follows: breakfast with 30% daily energy 
intake at 06:30 hours (toast, cereal, etc), a morning snack with 
10% daily energy intake at 09:30 hours (fruit, crackers, etc), an 
afternoon snack at 20% daily energy intake at 17:00 hours (sand-
wiches, etc), and a dinner meal 40% daily energy intake at 19:00 
hours (mixed dishes, salad, vegetable, etc).

Data collection
Oral glucose tolerance test.
Blood will be collected via an in-dwelling cannula in the median 
cubital vein into Ethylenediaminetetraacetic acid (EDTA; for 

Figure 2. Consort diagram of the screening process and participant cluster randomized to study condition.



Yates et al. | 5

measuring insulin and FFA) and sodium fluoride (for measuring 
glucose) tubes. Cannulas will be flushed with saline to ensure 
cannula patency and reduce heparinization. The cannula will 
be moved to other suitable veins if required. The gold standard 
oral glucose tolerance tests (OGTT) will be conducted at ~07:00 
hours on baseline and recovery days. Blood samples will be col-
lected at −15 and 0 minutes prior to consuming a 75 g glucose 
drink. Participants will be given 5 minutes to consume the drink 
and regular blood draws will be taken for the next two and a half 

hours (at 15, 30, 60-, 90-, 120- and 150 minutes post-drink) on each 
of these days. Blood samples will be centrifuged for 10 minutes 
at 4°C and plasma separated and stored at −80°C for later anal-
yses. Glucose concentrations will be assayed using a commer-
cial kit with a Konelab 20XT clinical chemistry analyzer (Thermo 
Fisher Scientific, Waltham, MA, USA). Insulin will be measured by 
enzyme-linked immunosorbent assay (ELISA; Mercodia, Uppsala, 
Sweden). FAA will be analyzed by photometric assay on the Roche 
Cobas c702 analyzer.

Table 2. Study Inclusion and Exclusion Criterion

Criterion Scale/assessment Inclusion criteria Exclusion criteria

Age General Demographic 
Questionnaire

18–45 years

Weight General Demographic 
Questionnaire

BMI normal to overweight (20–
29 kg/m2), and stable weight 
over the preceding 3 months.

Language ability Verbal
 communication

Competent written and spoken 
English skills

Smoking status General
 Demographic Questionnaire

Current smoker

Alcohol 
consumption

General Demographic 
Questionnaire

>2 standard alcoholic drinks per day

Caffeine 
consumption

General Demographic 
Questionnaire

>2 standard cups per day

Dietary 
requirements and 
difficulties

General Demographic 
Questionnaire

Restrictive dietary requirements or difficulties 
including Gluten intolerance, restrictive eaters, 
allergies

Medications Confidential medical screen Regular medications that may impact outcome 
measures (e.g. Glucocorticoids, sleep aids, 
antidepressants, etc)

Drug use Urine drug sample, and 
confidential medical screen

Positive urine drug result, and current or 
suspected use of illicit drugs, including but not 
limited to, benzodiazepines, amphetamine, 
cocaine, and marijuana.

Typical sleep–wake 
pattern

Sleep–wake survey Habitual sleep duration between 
7 and 8 hours a night, and self-
reported nighttime lights out 
after 2100 and wake-up earlier 
than 0900 hours during

 weekdays.
Typical napping Sleep–wake survey >1 nap per week

Sleep quality Pittsburg Sleep 
Quality Index

Score > 5

Sleep disorder Sleep–wake survey No history of diagnosed sleep
 disorder

Sleep apnea Berlin Questionnaire, and Stop 
Bang Questionnaire

Defined as high risk for one or both questionnaires

Chronotype Morningness–Eveningness
 Questionnaire

Score < 31 or > 69

Shiftwork status General Demographic 
Questionnaire

Previous history of shiftwork in the 3 months preceding

Trans-meridian
travel

Sleep–wake survey Overseas travel within 60 days
 prior to the study

Physical health Confidential medical screen History of medical conditions; cardiovascular disease,
 neurological disorder, kidney dis
 ease, liver disease.

Hematology Pre-study blood test Clinically significant values (as determined by the reviewing study physician) for any 
hematology or

 chemistry parameter.

Psychological 
health

Clinical history, and Beck
 Depression Inventory.

Previous or current diagnosis of psychiatric concerns requiring hospitalization 
(including anxiety disorder). BDI score ≥ 14.

<, less than; >, greater than; ≥, greater than or equal to.
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Breakfast meal tolerance test.
On all other study days participants will consume “breakfast” 
between 06:30 and 07:00 hours. The breakfast meal will be a high 
carbohydrate, high glycaemic index meal designed to challenge 
the metabolic system and will be identical between participants 
each day. The contents of the breakfast meal are listed in Table 
3. On days 3 and 6 a cannula will be inserted, and blood samples 
will be collected at -15 and 0 minutes prior to and 15, 30, 60-, 90-, 
120- and 150-minute post-breakfast on each of these days. Blood 
samples will be handled as for the OGTT.

Cognitive testing
Cognitive testing will occur at 13:00, 20:00 22:30, 01:30, and 04:00 
hours for all conditions during wake times using the measures 
outlined below. Figure 4 shows the proposed order of testing.

Psychomotor vigilance task.
The psychomotor vigilance task (PVT) is a test designed to objec-
tively evaluate sustained attention and vigilance via response times 
to visual stimuli. Participants respond to a stimulus as quickly as 
possible by pressing a button on a hand-held device with the thumb 
of their dominant hand. They will be instructed to react immedi-
ately and make the least number of false starts (responding before 
the stimulus appears) as possible. Participants will complete both 
the 3- and 10-minute versions of the PVT. The inter-stimulus inter-
val varies from 1000 to 4000 ms (3-minute PVT) and 2000–10 000 ms 
(10-minute PVT). The PVT has been found to be a reliable and valid 
test of sustained attention in various settings. For both the 3- and 
10-minute versions of the PVT, measures of sustained attention 
will include reaction time (stimulus to pressing button latency) and 
number of lapses (reactions over 500 milliseconds). False starts will 
be defined as reactions prior to 100 milliseconds.

Figure 3. Representation of energy distribution by condition. %E; percentage energy, Sun symbol; day, Moon symbol; night.

Table 3. Breakfast Meal Macronutrient Composition

Foods (quantity) Energy (kJ) Total Fat (g) Protein (g) Carb (g) Fiber (g)

White bread toasted (35 g) 305.0 0.6 3.1 13.1 1.0

Margarine (5 g) 140.2 3.8 0.0 0.0 0.0

Strawberry jam (5 g) 74.1 0.0 0.0 4.5 0.1

Reduced fat milk (200 mL) 428.0 2.5 7.7 12.1 0.0

Orange Juice (200 mL) 340.2 2.0 1.2 18.0 0.4

Cornflakes (57 g) 884.9 0.3 4.9 45.7 1.8

Total 2171.9 9.2 16.9 93.5 3.2

g, grams; ml, milliliters; kJ, kilojoules; Carb, carbohydrate.

Figure 4. Diagram showing the order of testing in the cognitive test battery. PVT, Psychomotor Vigilance Task; VAS, Visual Analogue Scale; PANAS, 
Positive and Negative Affect Schedule. This testing battery will be conducted for all conditions at 13:00, 20:00, 22:30, 01:30, and 04:00 hours during 
wake times.
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Driving task.
A computer-based driving simulation task will be performed as a 
measurement of cognitive functioning (York Computer Technologies 
Inc., 2018). To simulate a realistic driving experience, a steering 
wheel, accelerator, and brake will be installed on the computers. 
Participants will experience a monotonous 40-minute country drive 
of a standard motorway road scene with lane markings but not traf-
fic or street signage. Participants will be instructed to stay within the 
left-hand lane and keep their hands on the steering wheel at the 10 
and 2 clock position at all times. They will be instructed to maintain 
the speed limit as closely as possible, 100 km/h on straight roads 
and 80 km/h around the bends. The York Driving Simulator has good 
convergent validity regarding its sensitivity to other cognitive per-
formance measures which are sensitive to sleep loss, including self- 
reports, vigilance tests, and sleep latency tasks [42]. As previously 
used in the pilot study, the variables derived from this task will be 
lane deviation, speed deviation, and number of crashes [36].

Mood testing
Visual Analogue Scales.
Visual Analogue Scales (VAS) will be used to assess mood and 
associated symptoms which are commonly altered during peri-
ods of shiftwork [43]. These include hunger, fullness, desire to 
eat, thoughts about food, headache, dizziness, stomach distur-
bance, and bloating. Participants will be asked to rate the extent 
to which they experience each symptom by placing a vertical 
line on a 100 mm horizontal scale anchored with extremes of 
each symptom. For example, participants describe their expe-
rience of hunger from “not at all hungry” to “as hungry as I’ve 
ever felt.” Scales and respective anchors include hunger (“not at 
all hungry” to “as hungry as I’ve ever felt”), fullness (“not at all 
full” to “as full as I’ve ever felt”), desire to eat (“very weak desire 
to eat” to “very strong desire to eat”), thoughts of food (“no 
thoughts of food” to “very preoccupied with food”), headache 
(“no headache at all” to “extremely bad headache”), dizziness 
(“no dizziness” to “a lot of dizziness”), stomach disturbance (“no 
stomach upset” to ‘extremely upset stomach) and bloating (“I 
don’t feel bloated” to ‘I feel very bloated). VAS have been found 
to be a valid and reliable measure to assess mood [44].

Positive and Negative Affect Schedule.
The Positive and Negative Affect Schedule (PANAS) will be employed 
as a subjective measure of the two primary dimensions of mood, 
positive and negative affect [45]. Two PANAS subscales each com-
prising of 10-items (one positive and one negative). Participants will 
rate their experience of each effect in the last week on a 5-point 
Likert scale ranging from 1 (very slightly) to 5 (extremely). Positive 
affects include “proud” and “excited,” while negative affects include 
“irritable” and “ashamed.” Both subscales show high internal con-
sistency largely uncorrelated with one another [45]. Particularly 
within sleep literature, the PANAS is considered sensitive to the 
fluctuations in mood commonly experienced with the alteration of 
habitual sleep patterns [46]. Composite scores for each scale range 
from a minimum of 10 to a maximum of 50, with a larger score 
reflecting a greater presence of affect.

Physiological testing
Sleep.
Baseline, day 5 and Recovery sleep will be recorded, using 
Compumedics GRAEL hardware and Profusion Version 5 software 
(Melbourne, Australia). Electroencephalography (EEG) data will be 

collected from sites F3, F4, C3, C4, O1, and O2 and will be referenced 
to a contralateral mastoid (M1, M2). Electrooculography (EOG) and 
Electromyography (EMG) will also be recorded. On the first night 
of the study, respiratory signals will be collected to ensure partic-
ipants do not have any undiagnosed sleep conditions including 
OSA. Participants will be monitored via an infrared camera over-
night by an experienced sleep technician. Studies will be scored 
according to Rechtschaffen and Kales [47] sleep staging criteria. 
Sleep variables analyzed will include TIB, total sleep time, wake 
after sleep onset, sleep efficiency, sleep onset latency, and time in 
minutes of rapid eye movement, stages 1, 2, 3, and 4.

Melatonin and cortisol.
Approximately every 2 hours during the study(baseline, day 3–6, 
and recovery) saliva samples will be collected using Salivettes® 
(Sarstedt, Numbrecht, Germany). The Salivettes® tubes contain-
ing the plugs will then be stored at −80°C, thawed, and centri-
fuged prior to analysis. Saliva melatonin will be assayed by the 
Adelaide Research Assay Facility at the University of Adelaide 
by double antibody radioimmunoassay, using standards and 
reagents supplied by Novolytix (RKDSM-2, Novolytix, Witterswil, 
Switzerland). This assay is based on the Kennaway G280 anti- 
melatonin antibody [48] and uses [125I]2-iodomelatonin as the 
radioligand. The assay will use the protocol provided by Novolytix 
and the samples (200 µL) assayed in duplicate. Saliva cortisol will 
be analyzed at the Adelaide Research Assay Facility by Enzyme-
Linked Immunosorbent Assay (ELISA; 1-3002, Salimetrics, State 
College PA, USA).

Data management and analysis
For the primary outcomes, area under the curve (AUC) will be 
calculated from samples taken between 0 and 150 minutes 
post-glucose drink administration for plasma glucose, insulin, 
and FFA from the OGTT at baseline and recovery. Differences in 
response to day and night eating versus day eating only will be 
examined using mixed effects modeling for longitudinal data, 
which accounts for inter-individual differences at baseline and 
as a response to treatment. Models for glucose and insulin will 
specify fixed effects (main and interaction) of condition (meal at 
night/snack at night/no meal at night), and day (baseline/recov-
ery), with a random effect of participant.

Sample size and power
Sample size calculations are focused on achieving sufficient 
power to detect the condition effect in this study. Our previous 
published pilot data [25] from participants (night eating n = 4, day 
only eating n = 7) undergoing the same protocol found a post-
prandial mean AUC glucose of 734.1 ± 210.6 (SD) mmol/L for meal 
at night group and 883.6 ± 160.5 (SD) mmol/L for no meal at night 
group (large effect size d = 0.78) after four nights of simulated 
shiftwork. Based on this effect size for the difference between 
conditions, the proposed study would require 52 participants to 
be sufficiently powered (α = 0.05, 1−ß = 0.80).

The current study also requires sufficient power to detect the 
condition (meal at night/snack at night/no meal at night) by day 
(baseline/recovery) interaction. For glucose, our published pilot 
data [25] from participants (night eating n = 4, day only eating 
n = 7) undergoing the same protocol, yielded large effect size esti-
mates for the day (baseline/recovery; partial η2 = 0.54) and the 
condition*day interaction (partial η2 = 0.53). To be sufficiently 
powered for this condition*day interaction, we would require a 
total of 9 participants (α = 0.05, 1−ß = 0.80).
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Given that participants will be required to stay in the labora-
tory for 7 days, we expect an attrition rate of ~15%. Participants 
will be run in groups of four and allowing for attrition we plan 
to recruit n = 60 participants, for N = 52 in the final sample to be 
sufficiently powered to detect the effects of primary interest.

Discussion
The rates of obesity and diabetes are increasing. Over 60% of 
Australians are overweight or obese, and approximately one in 
20 have diabetes [49, 50]. In 2020–21, Australians processed over 
16.5 million scripts for diabetes medications attributing to an 
estimated $3.4 billion on the Australian health system [50]. 
Preventative strategies to reduce the incidence of metabolic dis-
orders are timely and important. Rates of type 2 diabetes and 
obesity are elevated among shift workers, compared to the gen-
eral population, even after controlling for lifestyle and socioec-
onomic status [51, 52]. In this way, studying shift workers may 
provide a “magnifying glass” to identify potentially modifiable risk 
factors for metabolic disease. Our preliminary data [25, 53] show 
that shift workers eat more at night and that this meal timing 
plays an important role in metabolic disturbance. The public and 
private health costs of not acting to curb the metabolic effects 
of shift work will be very high; added to this are the likely reduc-
tions in work performance and productivity by those with these 
conditions.

This study will use an innovative approach to reduce the met-
abolic disease impact associated with shift work. Not eating at 
night while working the night shift is a straightforward interven-
tion that could be readily translated to existing dietary guidelines. 
This simplicity may provide significant advantages over more 
complex lifestyle prescriptions in terms of compliance. Given the 
1.5 million Australian shift workers [1] who are likely to eat dur-
ing the night, as well as those chronically awake and eating at 
night for other reasons, including feeding an infant or suffering 
a sleep disorder, such dietary manipulation could provide signifi-
cant improvements in health.

Primary study outcomes will be (1) A detailed characterization 
of the changes in glucose metabolism when a meal or a snack 
versus no meal is consumed at night and how this impairment 
accumulates over multiple night shifts; (2) Description of an 
intervention to reduce the negative metabolic impact of shift 
work. This intervention has a straightforward message that 
simply changes one behavior rather than trying to limit certain 
macronutrients e.g. carbohydrates or overall kilojoules; and (3) 
An evidence base to potentially change industry recommenda-
tions and workplace policy to improve the health costs of millions 
of workers.
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