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ABSTRACT
Farnesoid X receptor (FXR) is a nuclear receptor for bile acids (BAs) that is widely expressed in the 
intestine, liver and kidney. FXR has important regulatory impacts on a wide variety of metabolic 
pathways (such as glucose, lipid, and sterol metabolism) and has been recognized to ameliorate 
obesity, liver damage, cholestasis and chronic inflammatory diseases. The types of BAs are complex 
and diverse. BAs link the intestine with the liver through the enterohepatic circulation. BAs 
derivatives have entered clinical trials for liver disease. In addition to the liver, the intestine is also 
targeted by BAs. This article reviews the effects of different BAs on the intestinal tract through the 
enterohepatic circulation from the perspective of FXR, aiming to elucidate the effects of different 
BAs on the intestinal tract and lay a foundation for new treatment methods.
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Introduction
Bile acids (BAs) are important signaling molecules 
involved in glucose metabolism, lipid metabolism 
and energy consumption.1–3 BAs dysregulation and 
impaired BAs receptor transduction are associated 
with liver and intestinal diseases, such as steatohe-
patitis, hepatocellular carcinoma, enteritis and col-
orectal cancer.4–6 In 1999, BAs were discovered to 
be endogenous ligands of farnesoid X receptor 
(FXR),7,8 which is widely expressed in the intestine, 
liver, and kidney.9,10 BAs are generated in the liver 
and stored in the gallbladder. Postprandially, BAs 
are secreted into the intestine and metabolized by 
the intestinal flora. However, 95% of the BAs are 
reabsorbed in the ileum and returns to the liver for 
entry into the enterohepatic circulation. Another 
5% of BAs are excreted in feces.11,12 BAs can main-
tain their own synthesis, metabolism and home-
ostasis by regulating FXR and related pathways.13

BAs have different chemical structures, and the 
conversion between these chemical structures are 
mediated primarily by the conjugation of amino 

acids and the metabolism by microorganisms. The 
four known mechanisms of microbial BA metabo-
lism are dehydroxylation, dehydration and epimer-
ization of cholesterol, and deconjugation of amino 
acids.14,15 A recently published study systematically 
analyzed the effects of microorganisms on the 
mouse metabolome using mass spectrometry ana-
lysis and data visualization methods. Researchers 
have discovered a new type of amino acid- 
conjugated BA, which represents a fifth and com-
pletely different mechanism of microbial-mediated 
BA transformation: amide conjugation of the cho-
late backbone with amino acids phenylalanine, tyr-
osine and leucine. Moreover, researchers confirmed 
that the resulting BAs are also present in humans 
and are more common in patients with inflamma-
tory bowel disease and cystic fibrosis. Cells and 
mouse experiments have shown that these BAs 
may affect host physiology by acting on the FXR 
pathway.16 The latest research has revealed the sig-
naling pathway of gut microbe-mediated cholic 
acid (CA) dehydroxylation. CA can be used to 
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induce of 7α- dehydroxylation, through which it 
can be converted into deoxycholic acid (DCA) 
over time in the presence of a mixture of 8 Bai 
enzymes, β-nicotinamide adenine dinucleotide 
(NAD+), coenzyme A and ATP,17 without the 
requirement for additional enzymes. This process 
provides possible opportunities for controlling BA 
metabolism and synthesizing related metabolic 
molecules. Studies have shown that the BA compo-
sition varies across species. The main BAs in 
human bile are CA (30%-40%), DCA (20%-30%) 
and chenodeoxycholic acid (CDCA) (30%- 
40%).18,19 In mice, the main BAs are CA and 
MCA. In rodents, DCA produced by dehydroxyla-
tion in the intestine can be rehydroxylated to gen-
erate CA. However, rehydroxylate does not occur 
in humans; therefore, humans have higher levels of 
secondary BAs such as DCA.20 BAs are not present 
in invertebrates but are present in all vertebrates.21 

The conjugation of BAs varies greatly among spe-
cies. BAs in mice are mainly conjugated with taur-
ine, while those in humans are conjugated with 
glycine and taurine at a ratio of 5:1.20

Currently, some BAs have been used in clinical 
treatment, usually for hepatobiliary diseases.22 

A highly effective FXR agonist, 6-ethylchenodeoxy-
cholic acid (6-ECDCA), was recently highlighted 
for the treatment of primary biliary cholangitis 
(PBC),23 and is in late-stage clinical trials for non-
alcoholic steatohepatitis (NASH).24–27 Obeticholic 
acid (OCA) is an agonist of FXR.28 Clinical trials 
have shown that OCA can improve the character-
istics of liver tissue, and OCA is the only investiga-
tional drug for NASH that has been awarded the 
designation of breakthrough treatment.29 But the 
long-term efficacy and safety still need to be further 
confirmed. OCA is still approved to treat PBC that 
does not respond to UDCA.30,31 Itching has also 
been observed in some patients with PBC under 
treatment with OCA, although the mechanism is 
unclear. In some PBC patients with obvious liver 
damage, taking OCA that exceeds the prescription 
can cause further deterioration of liver function 
and death, suggesting that the liver toxicity of 
FXR agonists should not be ignored. Some 
researchers have speculated whether targeted 
intestinal transport of BAs or FXR antagonism 
could improve the therapeutic.31 Recently, some 

researchers have discovered a new mechanism for 
OCA to treat NASH by inhibiting the activity of 
NLRP3 inflammasome in macrophage.32 These 
findings indicated that liver FXR is a viable thera-
peutic target for the development of drugs to treat 
human liver diseases; however, the potential of FXR 
as a drug target for intestinal diseases remains to be 
explored, although its prospects are bright. The 
intestine is a complex ecosystem and intestinal 
dysfunction is a serious threat to the health of the 
host. Generally, intestinal dysfunction is related to 
inflammatory bowel disease, irritable bowel syn-
drome, necrotizing enterocolitis, and even intest-
inal cancer. BAs are important emulsifiers that 
facilitate the absorption of fats and fat-soluble vita-
mins. Therefore, they are called “cleanser” of the 
intestine. Studies have demonstrated that FXR is 
a nuclear receptor that plays an important role in 
maintaining BA metabolism and lipid and sugar 
homeostasis.33,34 Moreover, FXR is an important 
target for treatments related to BA homeostasis. 
Recently, new functions of FXR have been discov-
ered, including intestinal barrier protection, regu-
lation of innate immunity and regulation of 
tumorigenesis.3,35–37 Thus, BAs is not only based 
on FXR acting on the liver and gallbladder through 
enterohepatic circulation, but also may be based on 
FXR acting on related molecules to treat intestinal 
diseases.

The mechanism of action between BAs and 
intestinal diseases still needs in- depth study. 
Current research indicates that modulating inter-
action among the microbiota, BAs and FXR is 
a promising therapeutic approach for the treatment 
of metabolic diseases. Therefore, this article reviews 
the effects of different BAs on the intestinal tract 
through the enterohepatic circulation via FXR to 
improve the treatment of intestinal diseases in the 
future.

BAs and enterohepatic circulation

Classification of BAs

As an endogenous signaling molecules regulating 
lipid, sterol, glucose and energy metabolism,13 BAs 
play important roles in many pathological and phy-
siological activities. BAs have different chemical 
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structures (Figure 1), which are complex and 
diverse. These complex structures of BAs are the 
key to their different physiological functions.

Based on whether they are conjugated with gly-
cine or taurine, BAs are classified as conjugated 
BAs and unconjugated BAs. Notably, human BAs 
are conjugated with glycine and taurine, while 
rodent BAs are conjugated with taurine.7

BAs are also classified as primary BAs and sec-
ondary BAs based on their source.17 The primary 
BAs synthesized in the human liver are CA and 
CDCA. Notably, CA, CDCA, UDCA, α-MCA and 
β-MCA are synthesized in mice.38 Primary conju-
gated BAs are first hydrolyzed by bile salt hydrolase 
(BSH) to generate unconjugated BAs; UDCA is 

then generated through epimerization, and second-
ary BAs are then generated through dehydroxyla-
tion catalyzed by 7α-dehydroxylase. In humans, 
secondary BAs include DCA and LCA. However, 
in rodents, hyocholic acid (HCA), murideoxycholic 
acid (MDCA), ω-MCA, hyodeoxycholic acid 
(HDCA), DCA and LCA can be produced.

BA molecules contains a hydrophilic pole 
(hydroxyl and carboxyl groups) and 
a hydrophobic pole (alkyl group). Due to the dif-
ferent modifications of their surface structure, BAs 
can have both a hydrophilic surface and 
a hydrophobic surface; that is, BAs have amphi-
pathic properties. Hydrophilic BAs include UDCA 
and taurodeoxycholic acid (TDCA); hydrophobic 

Figure1. Structure diagram of bile acids. Abbreviations: Cholic acid (CA), Hyodeoxycholic acid (HCA), α-Muricholic acid (α-MCA), β- 
Muricholic acid (β-MCA), ω-Muricholic acid (ω-MCA), Ursodeoxycholic acid (UDCA), Chenodeoxycholic acid (CDCA), Deoxycholic acid 
(DCA), Lithocholic acid (LCA), Murideoxycholic acid (MDCA); Hyodeoxycholic acid (HDCA).
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BAs include DCA, LCA and CDCA. Generally, 
different forms of BAs play different roles in 
organisms.

FXR

BAs are produced in the liver through the break-
down of cholesterol and are then further metabo-
lized by the intestinal flora to produce a set of 
chemically heterogeneous steroids. These steroids 
bind and activate members of cell surface and 
nuclear receptor families, collectively referred to 
as BA-activated receptors.39 BA-activated receptors 
include FXR, Takeda G protein-coupled receptor 5 
(TGR5), liver X receptor (LXR), pregnane 
X receptor (PXR), vitamin D receptor (VDR), con-
stitutive androstane receptor (CAR), cholinergic 
receptor muscarinic 2 (CHRM2), et al.40,41 

Among these receptors, FXR is the most important 
receptor that controls the BA, affects the transport 
of BA, and regulates the homeostasis of BA.42–44 

FXR is the bridge between the liver and intestines to 
control the level of BAs and regulate the concentra-
tion of BAs in the enterohepatic circulation.13 FXR 
regulates the expression of genes involved in BA 
synthesis and transport in the liver and intestines 
and is thus the main modulator of BA homeostasis 
and enterohepatic circulation. FXR affects the con-
centration of BAs in various ways, mainly to reg-
ulate their synthesis, metabolism, recovery and 
transport of BAs. FXR regulates BAs through the 
enterohepatic circulation mainly via 3 main path-
ways: the small heterodimer partner (SHP) path-
way, the mouse fibroblast growth factor 15 or 
fibroblast growth factor 19 (FGF15/ FGF19) path-
way and the c-Jun N-terminal kinase (JNK) path-
way. Liver FXR activation increases the expression 
of the target gene SHP,45 which leads to the inhibi-
tion of cholesterol 7α-hydroxylase (CYP7A1) and 
sterol 12α-hydroxylase (CYP8B1).33,34,46 However, 

interestingly, in Shp-null mice, BAs were shown to 
inhibited the expression of CYP7A1.47,48 This find-
ing indicates that transcriptional inhibition of 
CYP7A1 by BAs involves other pathways that 
depend on not only SHP. Intestinal FXR activation 
by BAs can increase the expression of the intestinal 
FGF15/FGF19,49 induce these proteins to enter the 
liver through the enterohepatic circulation, act on 
fibroblast growth factor receptor 4 (FGFR4), acti-
vate the JNK signaling pathway, inhibit the expres-
sion of CYP7A1, reduce BA synthesis, and improve 
cholestasis.50–53 However, the expression of 
CYP7A1 in Fgfr4-null mice was found to be 
increased, as was the BA pool, further indicating 
that increased expression of FGF15 and FGFR4 
inhibits the synthesis of BAs.54 Intestinal FXR can 
also reduce the absorption of BAs by epithelial cells 
of the small intestinal mucosa and inhibit the enter-
ohepatic circulation of BAs to further reduce the 
BA toxicity in hepatocytes and maintain BA 
homeostasis.

Numerous studies in mice have shown that Fxr- 
null is related to the pathological processes of many 
serious diseases. Liver Fxr-null mice showed ele-
vated serum cholesterol and triglyceride levels and 
elevated levels of circulating free fatty acids, leading 
to abnormal glucose metabolism and severe fatty 
liver.45,55 Studies have indicated that intestinal Fxr- 
null mice is resistant to HFD-induced obesity, insu-
lin resistance and NAFLD; thus, intestinal FXR has 
been confirmed to be related to exacerbation meta-
bolic diseases.56,57

FXR has a typical nuclear receptor structure.58 It 
consists of an N-terminal ligand-independent tran-
scription activation function 1 (AF1) domain, 
a DNA binding domain (DBD), a ligand binding 
domain (LBD), a carboxy-terminal ligand- 
dependent transcription activation function 2 
(AF2) domain, and a hinge region (Figure 2).59 

FXR can bind to many endogenous BAs, including 

Figure 2. FXR receptor structure diagram. Abbreviations: N-terminal ligand-independent transcription activation domain (AF1), DNA 
binding domain (DBD), ligand binding domain (LBD), carboxy-terminal ligand-dependent transcription activation domain (AF2).
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CDCA, taurocholic acid (TCA), DCA, LCA, CA 
and polyphenolic acid.60 However, the pleiotropic 
downstream effects of FXR vary across BAs, and the 
metabolic effects of different BA receptors in dif-
ferent organs are also vary.9 The strength of the 
natural activators of FXR follows the order of 
CDCA> DCA> CA> LCA,57 and the natural inhi-
bitors of FXR are tauro-α-MCA (T-α-MCA), tauro- 
β- MCA (T-β-MCA) and UDCA.61–63 Notably, 
glycodeoxycholic acid (GCDCA), TCA and TDCA 
are weak activators of FXR.64 Compared with con-
jugated BAs, unconjugated BAs have a stronger 
ability to activate FXR. These results may be 
explained by the different structures of BAs or the 
different mechanisms of binding to FXR; that is, the 
type and content of BAs produced in the body may 
regulate the expression of FXR. Therefore, it is 
important to consider the different mechanisms of 
different BAs and to link different types of BAs with 
specific diseases to provide valuable guidance for 
the diagnosis and clinical treatment of related 
diseases.

Enterohepatic circulation of BAs

BAs are the intermediates between the intestine and 
liver. BAs are the final product of cholesterol cata-
bolism. Primary BAs are synthesized in hepatocytes 
through the classical or alternative pathway,65,66 

conjugated with amino acids and secreted into the 
bile duct via bile salt export protein (BSEP).67,68 

Postprandially, BAs are secreted into the duode-
num through the biliary tract. Conjugated BAs are 
dehydroxylated under the action of the intestinal 
flora and BSH to generate secondary BAs. 
Approximately 95% of BAs are reabsorbed by 
intestinal cells in the terminal ileum through the 
apical sodium-dependent bile acid transporter 
(ASBT) and are transported to hepatocytes through 
the portal vein;38,69–71 this route is referred to as the 
enterohepatic circulation. However, approximately 
5% of the remaining BAs content undergoes oxida-
tion by microbes in the colon for side chain mod-
ification and is then excreted in the feces. (Figure 3)

Under physiological conditions, the taurine/gly-
cine conjugates in the side chain of BAs can be 
removed under the action of intestinal 
microorganisms.72 Intestinal microorganisms can 
oxidize or dehydroxylate the hydroxyl groups at 

C3, C7 and C12 in the BA molecular structure to 
form unsaturated BAs, and can also convert BAs via 
carbonyl reduction or epimerization.31,73 CA is 
converted into DCA; CDCA is coverted to LCA; α- 
MCA and β-MCA in mice are converted to ω- 
MCA, HCA, and HDCA; et al.74 Two main 
mechanisms control the reabsorption of BAs in 
the intestine. The first is active transport, which 
occurs mainly in the distal ileum, by which BAs 
can be effectively recovered by ASBT.75 Almost all 
types of BAs are transported through this mechan-
ism, but the absorption rates are different; these 
differences may depend mainly on the number of 
hydroxyl groups and molecular states of different 
BAs. The second mechanism is passive transport, 
which occurs mainly in the small intestine and 
colon. The rate of passive selective reabsorption 
depends on the degree and polarity of ionized. 
Unconjugated BAs and glycine conjugates of dihy-
droxy BAs (nonionized form) can also be reab-
sorbed by simple diffusion through the membrane 
of the small intestine can occur in any part of the 
small intestine. In summary, different BAs have 
different physical and chemical properties in the 
enterohepatic circulation, and the degree of action 
may be altered accordingly.

Effects of different BAs on the intestine

Roles of BAs in cells

The dynamic balance among intestinal epithelial 
cells, the intestinal flora and the intestinal mucosa 
is very important for maintaining intestinal perme-
ability and normal tissue function. BAs have 
amphiphilic properties, and when combined with 
polar phospholipids, dietary lipids can be incorpo-
rated into the mixed solution in the intestinal 
lumen. This incorporation results in 
a micellization process, which is essential for fat 
absorption and systemic energy balance. In cells, 
BAs can be inserted into cell membranes, including 
plasma membranes; supraphysiolgical doses can 
also damage cell membranes and cause cell lysis. 
The hydrophobicity of BAs determines their cyto-
toxicity, which decreases in the following order: 
UDCA <CA <CDCA <DCA <LCA.76 

Hydrophobic BAs have high affinity for lipids and 
can damage mitochondria. DCA can colocalize 
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with the outer mitochondrial membrane and dis-
rupt its structure. Hydrophobic BAs have been 
shown to cause HepG2 cell apoptosis through 
endoplasmic reticulum stress. N-acyl phosphatidy-
lethanolamine D (NAPE-PLD), an enzyme 
expressed in the brain and intestines, can convert 
membrane lipids into unique active lipids, and 
hydrophobic substrates can bind and stabilize 
NAPE-PLD. LCA has been shown to inhibit NAPE- 

PLD, while CDCA and DCA have been shown to 
activate NAPE-PLD; these difference may be attrib-
uted to the different hydroxyl sites in different 
BAs.7

Enteroendocrine L cells are chemical sensors 
located in the intestinal epithelium that can sense 
BAs, monosaccharides, fatty acids and their micro-
bial metabolites.77 L cell hormones are secreted 
according to changes in the intestinal 

Figure 3. Synthesis and transformation of BAs in liver and intestine. Abbreviations: cholesterol 7α-hydroxylase (CYP7A1); sterol 27- 
hydroxylase (CYP27A1); oxysterol 7α-hydroxylase (CYP7B1); sterol 12α-hydroxylase (CYP8B1); acyl-CoA oxidase 2(ACOX2); bile acid– 
CoA: amino acid N-acyltransferase (BAAT); bile salt hydrolase (BSH); 3β-hydroxy-Δ5-C27-steroid dehydrogenase (HSD3B7); 
D-bifunctional protein (HSD17B4).
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microenvironment, and the steady-state regulation 
of BAs affects the intestinal microenvironment. 
Niss Kristoffer et al.78 used proteomic and gene 
expression data from GLUTag L cells to suggest 
that FXR is a multifaceted activating factor in 
L cells, but the mechanism by which FXR regulates 
intestinal L cell metabolism is unclear.

Hang Saiyu et al.79 screened nearly 30 primary 
and secondary BA compounds and found two 
derivatives of LCA: 3-oxoLCA and isoalloLCA. 
3-OxoLCA can the differentiation of IL-17a- 
expressing T helper cells (Th17 cells) by directly 
binding to its key transcription factor retinoid- 
related orphan receptor γt (RORγt), while 
isoalloLCA can enhance Treg cells differentiation 
through the production of mitochondrial reactive 
oxygen species (mitoROS). This finding suggests 
that BA metabolites can directly regulate the bal-
ance of Th17 and Treg cells, thereby regulating 
host immunity. Soon afterward, a new study 
showed that BA metabolites generated by the 
intestinal flora can induce the production of 
Treg cells and that these two components form 
a complex regulatory network to maintain the 
balance of the intestinal mucosal immune 
response. This study showed that in the presence 
of dendritic cells (DCs), 3-oxoDCA is less effec-
tive than isoDCA in promoting Treg cell prolif-
eration and that 6-oxo-MCA is less less successful 
than ω-MCA in promoting Treg cell prolifera-
tion. This patten indicates that epimerization 
may play an important role in the biotransforma-
tion of BAs in the presence of bacterial flora. 
Ultimately, this study further revealed the effect 
of secondary BA metabolites of intestinal micro-
organisms on Treg cells and proved that isoDCA 
limits the activity of FXR in DCs and exerts an 
anti-inflammatory effect.80 In addition, intestinal 
Paneth cells modulate innate immunity. Studies 
have found that Western diets rely on 
Clostridium-mediated increase in DCA levels in 
the ileum, as well as excessive transduction of 
FXR and type I interferon signals in intestinal 
epithelial cells, which leads to Paneth cell dys-
function in humans and mice. This study reveals 
the link between poor diet and innate immunity 
in the gut.81 These studies clearly reveal the 
importance of BAs in shaping the host immune 
system.

Effects of BAs on the intestinal mucosa

The destruction of BA homeostasis plays a key role 
in intestinal inflammation.82 Indeed, accumulating 
evidence indicates that BA metabolism disorders 
are related to malnutrition and mucosal 
inflammation.11 In addition, studies have shown 
that a lack of intestinal FXR leads to increased 
intestinal permeability and decreased intestinal 
mucosal integrity.83 The enterohepatic circulation 
regulates BA synthesis and the BA pool size 
through the joint action of FXR and FGF19.84 In 
the ileum, BA-dependent FXR activation induces 
the expression of the intestinal factor FGF19. The 
first study revealing that FGF19-M52 can protect 
mice with FXR function against colitis proved that 
the FXR-FGF19-M52 axis plays a role in regulating 
the relative content of CDCA and CA by reducing 
BA synthesis.85 However, interestingly, systemic 
and local anti-inflammatory activity was abolished 
in Fxr-null mice, emphasizing the necessity of 
FXR.86 These results also showed that FXR is clo-
sely related to the integrity of the intestinal epithe-
lial barrier and the suppression of inflammatory 
immune responses. This study assessed preclinical 
treatment of experimental colitis with FXR-FGF19 
and BAs.

Regarding DCA, studies have shown that long- 
term excessive supplementation with DCA will 
inhibits the expression of organic solute transpor-
ter-β (OST-β) in the ileum,87 significantly increases 
expression of CYP7A1 and CYP27A, and affects the 
intestinal FXR-FGF15 signaling pathway. 
Therefore, the negative feedback on BA synthesis 
is abolished,88 leading to dysregulation of BAs in 
the small intestine and an excess concentration of 
BAs in feces, thereby promoting intestinal 
inflammation.83,89,90

Barrier dysfunction can increase intestinal 
microbial abundance and barrier permeability. 
Destruction of the intestinal vascular barrier causes 
the translocation of bacteria or bacterial products.91 

The key to barrier maintenance is proper regulation 
of epithelial cell turnover through apoptosis. OCA 
can activate FXR to control intestinal permeability 
and play a role in intestinal barrier dysfunction and 
bacterial translocation.92 In contrast, UDCA is an 
FXR antagonist,93 but it can inhibit small intestinal 
inflammation by inducing immunosuppression, 
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reducing bacterial translocation, increasing mucin 
production, inhibiting lipopolysaccharide produc-
tion, and inducing intestinal cell apoptosis.91 Some 
studies have suggested that UDCA and LCA can 
prevent intestinal inflammation in mouse models 
of colitis. UDCA and LCA may inhibit the lysis of 
colonic epithelial cells and expression of caspase-3 
through FXR or TGR5 to resis t apoptosis.94,95 

Current clinical studies have reported that UDCA 
and TUDCA can prevent or treat chronic inflam-
mation of the small intestine.96 UDCA has been 
proven to inhibit the expression of mucosal factors 
and reduce the severity of disease. CDCA is an 
effective inducer of epithelial permeability,97 

increasing epithelial damage, while CA does not 
induce epithelial permeability but is highly cyto-
toxic to intestinal epithelial cells.98 Autophagy and 
inflammation are regulated bidirectionally.99 Gupta 
Biki et al.98 showed that both the cecal CDCA 
content in mice and cell permeability were 
increased and that sevelamer hydrochloride pre-
vented the loss of barrier function induced by 
CDCA. CDCA and OCA inhibit autophagy via 
a mechanism dependent on FXR. UDCA can 
induce the formation of autophagosomes indepen-
dent of FXR and enhance autophagic flux.100

Regulation of the intestinal flora

A complex metabolic network connects the intestinal 
flora and BAs.101 BAs are important metabolites that 
not only can regulate but also are modified by the 
intestinal flora. On the one hand, BAs can shape the 
microbiome through direct antibacterial effects and 
antimicrobial peptides produced by FXR, which can 
inhibit the bacteria in the intestinal tract and limit 
excessive proliferation of the flora.102 On the other 
hand, the intestinal flora converts conjugated BAs 
into unconjugated BAs by encoding and expressing 
related enzymes (Figure 4);103 primary BAs are thus 
transformed into secondary BAs, resulting in changes 
in the composition and concentration of the bile 
pool.104–106 For example, BSH metabolizes TCA into 
CA, and CA is metabolized into DCA by 
Clostridiumscindens 7α-dehydoxylation through the 
Bai operon. Recently, some researchers have success-
fully transferred the plasmid related to Bai enzyme 
into C. sporogenes to produce the MF001 strain. After 
the MF001 strain is incubated with CA, DCA can be 

produced with the incubation time. Therefore, the 
researchers successfully constructed a strain with the 
core Bai gene family and sufficient to promote the 
dehydroxylation of CA.17 Chen Ming-liang et al.107 

proved that resveratrol can regulate the intestinal flora 
and reduce atherosclerosis. Specifically, resveratrol 
can increase the abundances of Lactobacillus and 
Bifidobacterium by inhibiting the ileal FXR-FGF15 
axis, thereby increasing the activity of BSH, promot-
ing the deconjugation of conjugated BAs, increasing 
the excretion of BAs in feces, and finally reducing the 
content of BAs in the ileum. BAs not only inhibit the 
overproduction and harmful colonization of the 
intestinal flora but also rely on the numerous species 
of symbiotic bacteria to assist in digestion. FXR can 
regulate the entry point of bacterial translocation to 
regulate the intestinal vascular barrier.91 Therefore, 
the toxic changes in BAs are closely associated with 
the intestinal flora, and the intestinal flora is recipro-
cally involved in the production of BAs.108 Studies 
have shown that OCA activates the FXR receptor, 
which can inhibit the synthesis of endogenous BAs, 
reduce the proliferation of bacteria, and thereby affect 
the composition of the small intestinal flora.109–111 

FXR-dependent inhibition of endogenous BA secre-
tion alters the intestinal flora instead of exerting 
a direct effect on OCA.112,113

DCA affects the relative abundances of intestinal 
flora. This molecule is positively correlated with the 
Clostridium and Eubacteriaceae abundances and 
negatively correlated with the Bacteroides abun-
dances. Recent studies have shown that chokeberry 
polyphenols can reduce the relative contents of CA 
and DCA by extending the treatment time to alter 
the composition of the intestinal flora and can 
increase the relative content of CDCA.114 These 
changes were found to be positively related to the 
Bacillus abundance and negatively related to the 
Clostridium abundance.115 This research led to the 
conclusion that treatment with chokeberry polyphe-
nols is likely to activate FXR or TGR5.109

Unconjugated BAs have stronger antibacterial 
activity than conjugated BAs, and gram-positive 
bacteria are more sensitive to BAs than gram- 
negative bacteria. OCA stimulates FXR, inhibits 
BA synthesis, and reversibly induces the prolifera-
tion of gram-positive bacteria in the small 
intestine.112 Clostridium difficile is a gram- 
positive spore-forming bacillus that can damage 
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Figure 4. Conversion of bile acids in the intestine. (a). Conjugated BAs: T/GCA structural transformation in the intestine. (b). Conjugated 
BAs: T/GCDCA structural transformation in the intestine. Abbreviations: 7β-hydroxysteroid dehydrogenase (7β-HSDH); (3α-HSDH) 3α- 
hydroxysteroid dehydrogenase; sterol 6β-hydroxylase (Cyp2c70); bile salt hydrolase (BSH).
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the intestinal epithelium and cause a strong inflam-
matory response, which can lead to diarrhea. 
Clostridium difficile is a gram-positive spore- 
forming bacillus that damages the intestinal epithe-
lium and causes a strong inflammatory response, 
which can lead to diarrhea. Studies have found that 
OCA regulates liver BA synthesis through feedback 
inhibition of intestinal FXR, thereby improving the 
severity of Clostridium difficile infection in obese 
mice induced by a high-fat diet (HFD).116 An 
increase in LCA can reduce the toxicity to the 
cecal microbiota and increase the abundance of 
Clostridia. Clostridia can synthesize DCA and 
LCA, which can improve metabolism of the 
host.117 UDCA can inhibit harmful bacteria, 
increase the proportion of Bacteroides, and play 
an important role in intestinal bacterial homeosta-
sis. CDCA and DCA can reduce sodium reabsorp-
tion and increase chloride ion secretion in the 
human ileum and colon, while CA cannot. 
However, through the action of intestinal bacteria, 
nonsecreted CA can be transformed into DCA, 
which is secreted in feces. Therefore, supplementa-
tion with DCA may be able to alleviate the symp-
toms of constipation. Many studies have shown 
that the intestinal flora is related to various meta-
bolic diseases, including obesity, nonalcoholic fatty 
liver and insulin resistance.110,118 In the future, it 
may be possible to regulate BA metabolism by 
identifying specific flora to control and treat corre-
sponding intestinal diseases.

Regulation of tumors

The diversity of BA is receiving more and more 
attention because it not only affects host metabo-
lism and innate immunity, but also has tumor- 
promoting properties.7,119,120 Suppression or 
induction of FXR expression can cause various 
diseases, such as gastrointestinal diseases, liver 
hypertrophy, cirrhosis, cholestasis, atherosclerosis, 
inflammation and cancer.121 Whole-body Fxr-null 
mice spontaneously developed liver tumors,37 but 
the lack of mouse hepatocyte-specific FXR did 
not promote the occurrence of spontaneous liver 
tumors.86,122,123 Absil et al. pointed out that the 
high expression of FXR in breast cancer cells 
promotes bone metastasis of tumor cells.124 In 
addition, overexpression of FXR may cause non- 

small cell lung cancer (NSCLC) and esophageal 
adenocarcinoma. Among the various nuclear 
receptors, FXR is considered to be a tumor sup-
pressor that can block the initiation of colorectal 
cancer (CRC) through metabolic or epigenetic 
mechanisms.104–106 FXR can regulate BAM meta-
bolism and exhibit a tumor-suppressive effect in 
the colon.125 Intestinal inflammation is 
a contributing factor to the development of 
CRC in patients with Irritable bowel disease 
(IBD).126 Enteral malnutrition is one of the 
most likely predisposing factors for IBD. 
However, intestinal malnutrition leads to 
a decrease in microbial diversity and a decrease 
in Firmicutes bacteria, resulting in decrease in 
intestinal secondary BAs levels and increase in 
conjugated BAs level.127 Hydrophobicity increases 
the levels of BAs in tumors, while hydrophilicity 
has the opposite effect. The hydrophobicity of BA 
is determined by cytotoxicity.128 DCA, LCA, 
CDCA and TCDCA have been individually pro-
ven to have cytotoxic and cancer-promoting 
properties.129 Among them, DCA affects the sig-
nal transduction pathway of epithelial cells, lead-
ing to the development of CRC. In addition, 
studies of CRC mouse models have shown that 
elevated levels of fecal BAs lead to an increase in 
the incidence of CRC. In studies of obesity- 
related CRC, HFD increases the risk of CRC in 
humans, which may be due to the excretion of 
CA into the intestine and increase the production 
of secondary BAs.130,131 Studies have revealed that 
the convergence of HFD and dysregulated WNT 
signals changes the BA profile to drive the malig-
nant transformation of Lgr5 expression (Lgr5 +) 
cancer stem cells and promote the progression of 
adenoma-adenocarcinoma. In mechanism, FXR 
controls the proliferation of Lgr5+ intestinal 
stem cells. In CRC, dietary and genetic risk fac-
tors are shown to converge to drive FXR- 
dependent Lgr5 + CSC proliferation and disease 
progression. Conversely, the activation of FXR in 
the intestine reduces the severity of the disease, 
thereby significantly improving survival.132 

Inflammation of the intestine reduces FXR activa-
tion. Therefore, FXR can not only inhibit the 
inflammatory response, but also can be targeted 
by the inflammatory response itself. This may 
lead to a vicious circle. Decreased FXR activity 
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leads to decreased inhibition of inflammation, 
which leads to the occurrence of chronic intest-
inal inflammation, and may lead to the occur-
rence of inflammation-induced colorectal 
cancer.35 FXR maintains the BA concentration 
in the physiological concentration range, thereby 
preventing the cytotoxicity induced by BAs. FXR 
is the main regulator of BA homeostasis. In view 
of the relationship between abnormal levels of BA 
and CRC, researchers have presented a large 
amount of evidence that FXR plays a role in 
intestinal tumorigenesis. In view of the key role 
of FXR in maintaining the concentration of BAs 
within the physiological range, thereby preventing 
BAs-induced cytotoxicity.

Conclusion and future perspectives

As a signaling molecules regulating glucose, sterol 
and lipid metabolism, BAs has attracted widespread 
attention. This article reviews the latest research on 
different types of BAs on the intestinal tract from 
the perspective of FXR and will provide a reference 
for subsequent basic and clinical research. Different 
BAs have different effects on the intestine and liver, 
but few clinical studies have focused on the intes-
tine. Thus, the regulation of intestinal microbial 
metabolism and intestinal mucosal inflammation 
by BAs needs further research. Different BAs have 
different structures, act on different regions, and 
activate different receptors and downstream signal 
transduction pathways, which may lead to various 
effects. The final outcome may be the result of 
competition among several different signaling 
pathways under the influence of specific environ-
mental factors. In this review, the role of BA-FXR 
receptor signaling in intestinal regulation and the 
effects of changes in the BA composition on host 
metabolism are discussed. BAs may be a new tar-
geted treatment method for metabolic syndrome.
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