
fphar-09-01034 September 19, 2018 Time: 18:39 # 1

ORIGINAL RESEARCH
published: 21 September 2018
doi: 10.3389/fphar.2018.01034

Edited by:
Salvatore Salomone,

Università degli Studi di Catania, Italy

Reviewed by:
Bijan Ghaleh,

Université Paris-Est Créteil Val
de Marne, France

Elias Leiva-Salcedo,
Universidad de Santiago de Chile,

Chile

*Correspondence:
Syed Shadab Raza

drshadab@erauniversity.in;
syedshadabraza@gmail.com

Specialty section:
This article was submitted to
Experimental Pharmacology

and Drug Discovery,
a section of the journal

Frontiers in Pharmacology

Received: 04 June 2018
Accepted: 27 August 2018

Published: 21 September 2018

Citation:
Fauzia E, Barbhuyan TK,

Shrivastava AK, Kumar M, Garg P,
Khan MA, Robertson AAB and
Raza SS (2018) Chick Embryo:

A Preclinical Model for Understanding
Ischemia-Reperfusion Mechanism.

Front. Pharmacol. 9:1034.
doi: 10.3389/fphar.2018.01034

Chick Embryo: A Preclinical Model
for Understanding
Ischemia-Reperfusion Mechanism
Eram Fauzia1, Tarun Kumar Barbhuyan1, Amit Kumar Shrivastava1, Manish Kumar1,
Paarth Garg1, Mohsin Ali Khan2, Avril A. B. Robertson3 and Syed Shadab Raza1,4*

1 Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era’s Lucknow Medical College
and Hospital, Era University, Lucknow, India, 2 Era’s Lucknow Medical College and Hospital, Era University, Lucknow, India,
3 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia, 4 Department of
Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India

Ischemia-reperfusion (I/R)-related disorders, such as stroke, myocardial infarction, and
peripheral vascular disease, are among the most frequent causes of disease and death.
Tissue injury or death may result from the initial ischemic insult, primarily determined
by the magnitude and duration of the interruption in blood supply and then by the
subsequent reperfusion-induced damage. Various in vitro and in vivo models are
currently available to study I/R mechanism in the brain and other tissues. However, thus
far, no in ovo I/R model has been reported for understanding the I/R mechanisms and
for faster drug screening. Here, we developed an in ovo Hook model of I/R by occluding
and releasing the right vitelline artery of a chick embryo at 72 h of development. To
validate the model and elucidate various underlying survival and death mechanisms, we
employed imaging (Doppler blood flow imaging), biochemical, and blotting techniques
and evaluated the cell death mechanism: autophagy and inflammation caused by I/R.
In conclusion, the present model is useful in parallel with established in vitro and in vivo
I/R models to understand the mechanisms of I/R development and its treatment.

Keywords: ischemia-reperfusion, chick embryo, Hook I/R model, Doppler blood flow imaging, autophagy, NLRP3
inflammasome, MCC950

INTRODUCTION

The incidence of ischemia-reperfusion (I/R) injury is high, and its pathogenesis involves complex,
multifactorial, and interrelated processes. I/R contributes to the pathophysiology of stroke,
myocardial infarction, peripheral vascular insufficiency, and other thrombotic events. Prolonged
ischemia results in detrimental cellular metabolic and ultrastructural changes. Thus, to minimize
or prevent irreversible cellular injury, restoring blood supply is essential. Notably, reperfusion can
augment the tissue injury compared with that produced by ischemia alone (Mathes et al., 2016;
Tejada et al., 2016; Silachev et al., 2017). Thus, prompt revascularization and blood flow restoration,
with minimal damage to the reperfused area, remain the mainstay of all current therapeutic
approaches for I/R (Linfante and Cipolla, 2016; Strand-Amundsen et al., 2018; Xiong et al., 2018;
Yan et al., 2018). To mimic the aforementioned mechanism, suitable models closely resembling
human pathology in clinical conditions are needed, that can contribute to our understanding of
the mechanisms underlying I/R injury (Milcan et al., 2004; Lai et al., 2006; Kalogeris et al., 2012,
2016; Horvath et al., 2016; Ross et al., 2016; McBride and Zhang, 2017). Such models aid the
understanding of I/R mechanisms and are also used in drug testing pipelines; ultimately translating
to improved patient care.
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In the last three decades, several critical factors that can act in
concert to mediate the detrimental effect of I/R injury have been
identified. However, till date no treatment directed to I/R injury
has shown to lead to an improvement in clinical outcomes. This
is primarily because of the lack of our complete understanding of
the complexity of disease progression, and secondarily because
of inappropriate research model selection. Currently, multiple
species, including non-human primates, rodents, felines, and
certain avian species, are used in I/R research. The disparity
between the results obtained using these models and the results
of clinical trials, in humans, have led to the development of
newer experimental model (Allen et al., 2005; Schmeer et al.,
2008; Anvret et al., 2012; Xu et al., 2014; Gonzalez et al., 2015;
Huang et al., 2016; Sommer, 2017; Yang et al., 2018). In this
study, we used chick embryos as an alternative model to study
the underlying mechanism of I/R injury.

Unborn embryos, such as chick, zebrafish, and Xenopus,
have been extensively used in biomedical research. Chick
embryos are widely used because of their ready accessibility,
ethical acceptability, relatively large size, cost effectiveness, and
fast growth (Seabra and Bhogal, 2010). Chick embryos have
played a vital role in anatomical, embryological, developmental
biology studies and they are an effective model for blood
circulation research (Harvey, 1628; Lee et al., 2011; Smith
et al., 2016). Furthermore, the blood vessel network of chick
embryos can be a repository system for implanted human
cells without any rejection (Wilson and Chambers, 2004;
Deryugina and Quigley, 2009). Because the third day chick
embryos possess a well-defined circulatory system, we selected
a 72-h chick embryo as an appropriate model to study
the I/R mechanism (Figure 1A). The model used (hereafter
referred to as the Hook I/R model) in the present study can
effectively mimic all downstream pathway, e.g., oxidative and
inflammatory pathways. Our model is simple, reproducible,
and can be used for drug screening, and for routine I/R
studies.

MATERIALS AND METHODS

Ethics Statement
The experimental protocol for the use of chick embryos was
submitted to the Era’s Lucknow Medical College and Hospital’s
Institutional Animal Ethical Committee, which issued a written
waiver stating that according to the Committee for the Purpose
of Control and Supervision of Experiments on Animal (CPCSEA)
no formal approval was necessary to perform these experiments.
Though, Standard Operating Procedures were followed to
minimize any possible suffering by embryos.

Materials and Equipment
We used fertilized White Leghorn chicken eggs, 37◦C egg
incubator (Lab Guard, India), Kim-wipe, 70% ethanol, surgical
scissors, 26G needle and syringe, laser Doppler blood flow
imaging system (Moors Instrument, United Kingdom),
micromanipulator (Narishige, United States), and surgical
microscope (Olympus, Japan). The primary antibodies used were

rabbit polyclonal anti-HIF1α (NB100-449, Novus Biologicals),
mouse polyclonal anti-LC3 (SC16756, Santa Cruz), rabbit
polyclonal anti-Beclin1 (24352, SAB), rabbit polyclonal anti-
SOD 1 (3458-100, Biovision), rabbit polyclonal anti-SOD
2 (NB100-1992SS, Novus Biologicals), rabbit monoclonal
Caspase-1 (ab179515, Abcam), mouse monoclonal Caspae-
3 (NB100-56708SS, Novus Biologicals), mouse monoclonal
Cathepsin B (ab58802, Abcam), rat monoclonal LAMP1
(ab25245, Abcam), mouse monoclonal LAMP-2 (NBP2-22217SS,
Novus Biologicals), rabbit monoclonal IFNγ (ab133566), rat
monoclonal anti-NLRP3 (MAB7578-SP, Novus Biologicals),
rabbit polyclonal anti-ASC (PA5-50915, Invitrogen), mouse
monoclonal anti-IL-1β (701304, Invitrogen), rabbit polyclonal
anti-Ambra 1 (GTX17003, Genetex), rabbit polyclonal anti-
ATG7 (PA535203, Themofisher), rabbit polyclonal anti-SQSTM1
(PA520839, Invitrogen), rabbit polyclonal anti-ORP150 (NBP2-
14113, Novus Biologicals), rabbit polyclonal anti-NF-Kβ

(51-0500, Invitrogen), rabbit polyclonal anti-TNFα (NB600-
587SS, Novus Biologicals), and rabbit polyclonal anti-GAPDH
(ITI5052, GBIO). The secondary antibodies were HRP-
conjugated donkey anti-rabbit (Jackson ImmunoResearch,
126333) and HRP-conjugated goat anti-mouse (Cell Signaling
Technology, 70765) antibodies. An ECL chemiluminescence
kit (Biorad, 170-5060), RIPA (Sigma Aldrich, R0278), protease
inhibitor (Cell Signaling Technology, 5872), 2-thiobarbituric
acid (Sigma Aldrich, T5500), sulfanilamide (Sigma Aldrich,
S9251), and N-1-napthylenediamine (Sigma Aldrich, N9125)
were obtained from the indicated sources.

Chick Eggs and Embryos
Fertilized White Leghorn chicken were procured from Central
Avian Research Institute, Bareilly, Uttar Pradesh, India, and
where kept in our in campus poultry farm. Zero-day-old eggs
were incubated in a 37◦C egg incubator at 60–65% humidity for
72 h. After 24 h, the eggs were taken out for layering: 5–6 mL of
albumin was drawn out. On the third day of incubation, the eggs
were removed from the incubator, and windowing was performed
to assess the embryo as described below.

Inducing Ischemia in the Chick Embryo
Through the Hook I/R Method
Ischemia was induced in the chick embryo at 72 h of
development. The RVA, the artery responsible for carrying
oxygen and nutrients to the embryo, was pulled out by a spinal
needle [Ramsons, India; 25GA, 3.50 IN (90.51 × 90 mm)]
under the guidance of a surgical microscope (Figure 1 and
Supplementary Figure S1). Two small holes were created on
the right and left side of the RVA in the sac (Supplementary
Figure S2), with the help of 18G needle. A hook was custom-
designed at the base of the spinal needle (Figure 1B), attached
to the micromanipulator (Narishige, Japan) to lift up the RVA.
The length of the bent part was approximately 1 ± 0.5 mm. The
needle was inserted beneath the RVA through the two small holes
created, to lift up the artery. The artery was raised gently till
the Doppler reading for arterial blood flow showed a decreased
of 80–90% of the baseline value. The Doppler was positioned
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FIGURE 1 | Representative pictures of the I/R setup for Hook Model. (A) A 72-h Leghorn chick embryo in an in ovo culture, Annotations: A = eye, B = heart, C = left
vitelline artery, C’ = right vitelline artery. The rectangle area represents the site of the occlusion. (B) The typical setup to induce I/R, x = laser Doppler flow probe,
y = spinal needle (insight picture shows the bent edge of the spinal needle), z = micromanipulator. The magnification B’ shows the enlarge picture of the artery while
occlusion. B” shows the spinal hook (arrow) inserted beneath RVA (arrow-head) to lift up the artery. (C) The changes in the flux during normoxia (A), ischemia (B),
and reperfusion (C). (D) The baseline arterial blood flow in I/R treated RVA vs. control RVA, and the changes observed in I/R RVA during ischemia-reperfusion
(n = 12/group/experiments). Control represents Sham. ∗∗P < 0.01 and ∗∗∗P < 0.001.

directly onto the RVA at a distance of 5 ± 1 mm post-ischemic
site (Supplementary Figure S2). Post-ischemia the artery was
released slowly and the spinal needle was retracted back with the
help of the micromanipulator. During reperfusion, the Doppler
reading reached a normal value (Supplementary Figure S3).
After 5 min of ischemia, reperfusion was allowed for the next
5.5 h. After occlusion, a few drops of phosphate buffer saline were
added to the yolk to prevent drying; subsequently, the egg was
sealed with cello-tape and placed back into the 37◦C incubator.
After 5.5 h, the egg was taken out of the incubator for further
treatment. For the control experiments, Sham without surgery
was taken.

Vascular Blood Flow Imaging
To validate the model, the blood flow in the RVA was monitored
before, during, and after ischemia by using a laser Doppler flow

meter (moorVMS-LDF1, Moor Instruments, United Kingdom;
Figure 1C).

Biochemical Analysis
NO Estimation
NO production was evaluated by measuring the level of nitrite
(an indicator of NO) in the supernatant of right vitelline
artery of control and experimental ischemic chick embryos
using Griess reagent (Green et al., 1982). Briefly, 150 µL of
tissue supernatant was mixed with 150 µL of Griess reagent
[0.1% N-(1-naphthyl) ethylene diamine dihydrochloride, 1%
sulfanilamide, and 2.5% H3PO4]. After incubation at room
temperature in the dark for 10 min, absorbance was measured
on a microplate ELISA reader (Biorad, United States) at
540 nm.
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FIGURE 2 | Representative pictures of Effect of I/R on ischemic and oxidative parameters. Effect of I/R and the activation of oxidative stress were measured by
quantifying HIF1α, NOX2, ORP150, SOD1, and SOD2 expression. Initially to measure the effect of ischemia, HIF1α was quantified for different time point for which
RVA was occluded (A). All the occlusion time point showed significant differences compared to control (∗∗∗P < 0.001). (B) The Kaplan Meier survival curve for the
embryos receiving ischemia at different time points compared to the control (∗P < 0.05; n = 12/group/experiment). The effect of reperfusion was further quantified by
HIF1α. A significant change as compared to the control was observed in all the time point since reperfusion is allowed (∗∗∗P < 0.001). No significant differences were
observed in-between the ischemia and reperfusion time points (C). Kaplan Meier survival curve for the reperfusion for different time points compared to the control
showed a significant difference between (∗P < 0.05; n = 12/group/experiment) (D). (E,F) The changes in NOX2 (∗∗P < 0.01), ORP150 (∗∗P < 0.01), SOD1
(∗∗P < 0.01), and SOD2 (∗∗P < 0.01) compared to their respective controls. Results represent mean ± SE (n = 3). The graph shows the densitometry quantification
of western blot bands. (G) The changes in the level of TBARS after 6 h of I/R. Right, I/R vessels showed significant changes as compared to the right control
(∗∗∗P < 0.001). No changes were observed in left control vitelline arteries vs. right control. (H) The changes in NO production in right I/R vs. right control vessels
(∗∗∗P < 0.001). Results represent mean ± SE (n = 3). Control represents Sham in all the experiments. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

Thiobarbituric Acid Reactive Substances Assay
LPO was estimated by measuring thiobarbituric acid reactive
substances (TBARS, a marker for LPO) following the method of
Utley et al. (1967), with some modification. In brief, 0.2 mL of
supernatant was pipetted into a 2.0 mL flat bottom eppendorf

tube and was incubated at 37◦C in a metabolic water bath
shaker at 120 strokes up and down; another 0.2 mL of the
same supernatant was pipetted into a microcentrifuge tube and
was incubated at 0◦C. After 1 h of incubation, 0.4 mL of 5%
TCA and 0.4 mL of 0.67% TBA were added to both samples
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(i.e., those incubated at 0 and 37◦C). The reaction mixture was
centrifuged at 3000 g for 15 min. The supernatant was transferred
to another test tube and placed in a boiling water bath for 10 min.
Thereafter, the test tubes were cooled, and absorbance was read at
535 nm. The LPO concentration is expressed as nmol of TBARS
formed/h/mg protein using the molar extinction coefficient of
1.56× 105/M/cm.

Western Blotting
The proteins (30 µg; loaded to each well) from the RVA
and its adjoining tissue (Supplementary Figure S2), from the
control and I/R groups were analyzed through western blotting.
In brief, tissues were lyzed in ice-cold RIPA buffer (Sigma
Aldrich, R0278) containing protease and phosphatase inhibitors
(Cell Signaling Technology, 5871S) and were homogenized
in tissue homogenizer in the same buffer used for cell lysis
and centrifuged at 20,000 g for 20 min at 4◦C. The protein
concentration was measured using a Pierce BCA protein assay kit
(Life Technologies, 23225). The proteins were then fractionated
through SDS-PAGE and transferred on to a PVDF membrane
(Biorad, 1610177). The membranes were blocked with 5% non-
fat milk, probed with primary antibodies overnight at 4◦C, and
incubated with HRP-conjugated secondary antibodies at room
temperature for 1 h. Immunoblot bands were quantified using
densitometry on ImageJ. Densities were normalized to control
treatment, and relative fold changes were normalized to GAPDH.

DNA Gel Electrophoresis for DNA
Damage
The I/R and control samples RVA (20 mg) were ground with
liquid nitrogen, and DNA extraction buffer (pH 7.5) and
proteinase K were added. The samples were then incubated in a
heat block at 60◦C for 30 min and centrifuged at 13,000 rpm for
15 min. Ammonium acetate (5M) and isopropanol were added
to the supernatant, which was again centrifuged at the same
speed (13,000 rpm) for 5 min. The DNA pellet was then washed
with ethanol and re-suspended in 50 µL of TE buffer containing
RNAase for the experiment. The isolated DNA (2 µg) from each
treatment was examined for DNA damage by conducting DNA
electrophoresis in 0.2% agarose gel in Tris/acetate buffer at 15 V
for 2 h. At the end of electrophoresis, DNA was visualized in
Chemidoc (Las500, GE).

Drug Treatment
For drug treatment, the RVA was excised after 1 h of I/R, placed
in Ringer’s solution (NaCl, KCl, CaCl2, pH = 7.4) containing anti-
ischemic molecules [MD (Sigma Aldrich, M5199) and TMZ (i.e.,
1-(2,3,4-trimethoxy benzyl); Sigma Aldrich, 653322)]; an anti-
inflammatory molecule (MCC950), a ROS inhibitor (NAC; Sigma
Aldrich, A7250), and their respective controls and incubated at
37◦C for another 4.5 h.

Statistical Analysis
The results were statistically evaluated with different tests.
All the experimentations have been done three times as
n = 3/group/experiments, unless otherwise indicated. Significant

differences between the experimental groups were analyzed with
student’s t test and with one-way ANOVA followed by Newman–
Keuls multiple comparison test. Differences were considered
statistically significant when p < 0.05. All data were presented
as means ± SE. Student’s t-test was used to analyze data
presented in Figures 1D, 2E–H, 3B–F and Supplementary
Figures S4, S5. One-way ANOVA followed by Newman–
Keuls multiple comparison test was used to analyze data in
Figures 1A,C, 4. Graph Pad Prism 5 software was used to
calculate all the above data.

RESULTS

Chick Embryo Hook I/R Model
Ischemia-reperfusion was induced in a chick embryo by
occluding the right vitelline artery (RVA) for 5 min; after
occlusion, the artery was released for the next 5.5 h. Functional
changes in vascularization during the I/R period were mapped
through laser Doppler perfusion imaging, which is widely used
for microcirculatory imaging in human and rodents; however,
to the best of our knowledge, this is the first instance in which
this technique has been used to monitor blood flow in a chick
model. The flux intensity of the control and I/R groups was
measured, and a significant difference observed in the blood flow
of the two groups (Figure 1D). During ischemia, we observed a
flux intensity drop of >80% of the baseline normoxia level. The
finding was consistent in all chick embryos employed; those with
a lower drop (<80%) were discarded. The flux intensity reached
a normal value after reperfusion was allowed (Supplementary
Figure S3). Furthermore, to validate the chick embryo I/R Hook
model, we employed western blotting and biochemical assays.

Western Blotting Analysis for I/R Injury
Elevated expression of HIF1α is considered a protective measure
mediated by the cell to protect itself against I/R-inflicted damage
(Bergeron et al., 1999; Lee, 2000; Baranova et al., 2007). Here,
we measured HIF1a expression, in the ischemic chick embryo
model, as an early marker of ischemic tissue damage. We
initially quantified HIF1α expression after 2.5, 5, and 10 min of
ischemia to the RVA. The result suggested that ischemia induced
in the tissue even for such a short duration was sufficient to
stabilize HIF1α expression (∗∗∗P < 0.001; Figure 2A) in chick
embryo. The observed fold changes during 2.5, 5, and 10 min of
ischemia were 0.9-, 1.03-, and 1.14-fold, respectively. Although
the fold changes during 10 min of ischemia were slightly higher
(non-significant), the Kaplan–Meier survival curve showed 100%
viability within 5 min of treatment (Figure 2B). Thus, we applied
5 min of ischemia in subsequent experiments. Because the
restoration of blood supply often causes more damage to the
tissue than the ischemic episode itself, we analyzed the effect of
reperfusion at different time intervals (Figure 2C): compared
with control, the level of HIF-1α expression increased rapidly
after ischemia (∗∗∗P < 0.001); however, no significant differences
were observed between 0 and 24 h of reperfusion. Notably, no
changes were observed in the reperfusion time window, and the
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FIGURE 3 | Representative pictures of effect of I/R on DNA damage, cell survival, and inflammation. (A) DNA gel electrophoresis diagram. (B) The phosphorylation
of H2AX in response to I/R-induced DNA damage (∗∗∗P < 0.001 vs. control). Western blot analysis expression level of LC3 I/II (∗P < 0.05) (C), Beclin1
(∗∗∗P < 0.001), SQSTM1 (∗P < 0.05), and ATG7 (∗∗P < 0.01) (D) and lysosomal associated proteins Lamp1 (∗∗P < 0.01), Lamp2 (∗P < 0.05), and
Cathepsin B (∗P < 0.05) (E) in total protein extract from RVA of I/R treated vs. control group. (F) The expression of NLRP3 (∗∗∗P < 0.001), Caspase-1 (∗∗P < 0.01),
ASC (∗∗P < 0.01), and IL-1β (∗∗P < 0.01). Results represent mean ± SE (n = 3). The graph shows the densitometry quantification of western blot bands. Here
control group represented Sham group. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

maximum survival was obtained at 6 h (Figure 2D). Therefore,
we used 6 h of reperfusion in subsequent experiments.

Involvement of Oxidative Stress
Ischemia-reperfusion activates several processes with detrimental
effects on the tissue, including the generation of reactive
oxygen species (ROS). Because NADPH oxidase 2 (NOX2)
is a major source of O2 and H2O2, we investigated the
contribution of NOX2 to oxidative stress in the chick embryo
on the third day after I/R by measuring the changes in
NOX2 expression. Compared with control embryos, we obtained
strong evidence that NOX2 augments the tissue injury by
61% in I/R embryos (∗∗P < 0.01; Figure 2E). Moreover, we
examined the expression of ORP-150, a novel stress protein
that is activated in the pathophysiology of ischemic (Bando
et al., 2004; Kitano et al., 2004) and oxidative (Goswami
et al., 2003; Ozawa et al., 2005) diseases. Compared with the
control group, ischemia, followed by reperfusion, upregulated
ORP150 expression by approximately 76% in the I/R group

(∗∗P < 0.01; Figure 2E), which corroborated the aforementioned
finding.

An important hallmark of I/R injury is the detrimental
and strong oxidative stress resulting from the intrinsic
antioxidant body defense systems’ response to ROS. Among the
antioxidant defense systems, superoxide dismutases (SOD) are
key antioxidant enzymes that provide the first line of defense
against ROS by catalyzing the conversion of O2 to H2O2. Thus,
we examined the activity of cytoplasmic and mitochondrial
SOD in ischemic vessels. Compared with the control group, I/R
enhanced the activity of cytoplasmic SOD1 by 80% (∗∗P < 0.01)
and mitochondrial SOD2 by 112% (∗∗P < 0.01) in the I/R
group (Figure 2F). According to I/R research, the damage to the
affected tissue results from the oxidative stress induced by free
radicals, and the measurement of lipid peroxidation is one of
the most commonly used assays for evaluating radical-induced
damage (Svingen et al., 1979; Sevanian and Hochstein, 1985).
We evaluated the level of lipid peroxides in the I/R and control
groups. Our study confirmed the formation of thio-barbituric
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FIGURE 4 | The effect of drug treatments on I/R RVA. Western blot analysis for MD (A), TMZ (B), MCC950 (C), and NAC (D) shows that MD (1 mM, ∗∗∗P < 0.001)
and TMZ (1 mM, ∗∗∗P < 0.001). Similarly, significant changes were found in the expression of MCC950 (5 µM, ∗∗∗P < 0.001) and NAC (100 µM, ∗∗∗P < 0.001)
attenuates I/R mediated changes in I/R group compared to Ischemic group. Results represent mean ± SE (n = 3). The graph shows the densitometry quantification
of western blot bands. Control group represents Sham group. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

acid reactive species in ischemic RVA compared with non-
ischemic arteries (∗∗∗P < 0.001 vs. control; Figure 2G). We also
estimated the nitric oxide (NO) level in I/R and control arteries
using the Griess reagent, and the resulting pattern was the same
as demonstrated in lipid peroxidation (∗∗∗P < 0.001 vs. control;
Figure 2H).

Model for DNA Integrity
Reports have documented that I/R can cause DNA damage in
cells and tissues (Ge et al., 2017; Kim, 2017; Hu et al., 2018). Thus,
we examined the effect of 5 min of ischemia, followed by 5.5 h
of reperfusion, on the mechanical integrity of DNA. Profound
fragmentation of DNA was evident in the I/R group compared
with the control group, indicating the loss of DNA integrity
(Figure 3A). To confirm the results, we quantified the expression
of H2AX, a highly sensitive marker of double-stranded DNA
damage that localizes to the site of the DNA break. Western

blot analysis of H2AX indicated that the I/R group showed
two fold higher DNA damage than that in the control group
(∗∗∗P < 0.001; Figure 3B).

Model for Cell Death Mechanisms
Ischemia-reperfusion activates autophagy (Chen et al., 2017;Yang
et al., 2017; Huang et al., 2018; Peng et al., 2018; Xie et al.,
2018). Thus, we investigated the effect of I/R on the autophagy
mechanism in the chick embryo. As shown in Figures 4A,B,
the expression of LC3 (autophagosome marker; ∗P < 0.05),
Beclin1 (a central regulator of autophagy in mammalian cells;
∗∗∗P < 0.001 vs. control), p62 (cargo protein; ∗P < 0.05 vs.
control), and ATG7 (required for basal autophagy; ∗∗P < 0.01 vs.
control) of the I/R group was significantly higher than that of the
control group (Figures 3C,D). We next examined the expression
of the following autolysosomal proteins: lysosomal-associated
membrane proteins LAMP1 and LAMP2, and Cathepsin B.
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Their expression pattern showed a strong correlation with the
expression of initiation and cargo proteins (Figure 3E). After
5 min of ischemia, followed by 5.5 h of reperfusion, the expression
of LAMP1, LAMP2, and Cathepsin B increased by 94, 40, and
52% in I/R arteries, respectively. We also tried to observe the
effect of I/R on apoptosis (Supplementary Figure S4) and the
outcome indicate that the model may also be used to study the
other pathways of cell death (e.g., apoptosis).

Chick Embryo as a Model for I/R
Inflammation
To verify the efficacy of this model for conducting inflammatory
research, we evaluated the expression of the NOD-like receptor
pyrin domain-containing protein 3 (NLRP3) inflammasome
pathway, and pro-inflammatory cytokines NF-kβ and IFNγ,
involved in exaggerating inflammation. This study provided
evidence for the activation of both the NLRP3 inflammasome
(Figure 3F) as well as NF-kβ and IFNγ (Supplementary
Figure S5) in response to I/R induced in the RVA. Six hours of
I/R increased the expression of NLRP3, cleaved caspase-1, ASC,
and cleaved IL-1β by 1.4-, 0.9-, 0.83-, and 1.3-fold, respectively,
and the changes in the levels of NF-kβ and IFNγ were 1.2-and
0.8-fold, respectively.

Treatment With Meldonium Dihydrate,
Trimetazidine, MCC950, and N-Acetyl
Cysteine
The main advantage of generating a model is that it can be used
to test the efficacy of drugs. To verify that the Hook I/R model
can be used for drug screening, we evaluated the protective effect
of meldonium dihydrate (MD), trimetazidine (TMZ), MCC950,
and N-acetyl cysteine (NAC). Several doses of these drugs were
tested; the doses were chosen arbitrarily (with 10-fold increases
in the concentration of the primary dose), or the doses selected
were intermediate between the dose selected for cell culture
and that used in animal models in other studies. Six hours of
I/R induced changes in the expression of HIF 1α and NLRP3
in the I/R group. However, compared with the I/R group, I/R
induction was blocked in the drug-administered group treated
with MD (1 mM, ∗∗∗P < 0.001; Figure 4A) and TMZ (1 mM,
∗∗∗P < 0.001; Figure 4B). Similarly, significant changes were
found in the expression of MCC950 (5 µM, ∗∗∗P < 0.001;
Figure 4C) and NAC (100 µM, ∗∗∗P < 0.001; Figure 4D) treated
groups respectively, as compared to I/R group. The expression of
the respective proteins in the I/R group and the groups treated
with the MD, TMZ, MCC950, and NAC indicated that ischemia,
inflammation and oxidative stress, respectively, were significantly
ameliorated.

DISCUSSION

Ischemia-reperfusion research focuses on developing therapeutic
strategies to prevent cell death and improve recovery. In this
study, to overcome the existing challenges in I/R research, we
developed an I/R chick embryo model. We aimed to develop

a reliable and reproducible model of I/R to study stress signals
(e.g., oxidative and inflammatory stress). In addition to the
high output, simplicity, and flexibility of the model for routine
analysis, the model can be used for short-term stem cell homing
studies (ongoing studies).

Ischemia is the deprivation of blood supply; hence, tissues
and the body parts are deprived of oxygen and nutrients (Hunt
et al., 1985; Mansfield et al., 1997; Madarame et al., 2013;
Matsubara et al., 2015), and ischemia is typically caused by the
narrowing or blockage of blood vessels or arteries. Reperfusion
is the only intervention that can reliably reduce the infarct size
in animals and humans (Hale et al., 2013; Wei et al., 2016;
Borges and Verdoorn, 2017; Misir et al., 2017; Sunagawa et al.,
2018). Several preclinical cell culture and animal testing models
are currently available to identify, assess, and prioritize the day-
to-day new preventive and therapeutic inventions against I/R
injury. However, each model has limitations; for example, cell
culture models lack whole physiology, immune system, and
microvasculature; similarly, rodents studies are highly regulated
and supervised, costly, time-consuming, and have ethical issues.
In the present study, we investigated, for the first time, the
possibility of using chick embryos as a model organism to
study I/R. Previous efforts have been made to develop a chick
embryo-based flow-manipulation model for studies of shear
stress (Hogers et al., 1999; Dittmar et al., 2006; Groenendijk
et al., 2007; Wang et al., 2009). These studies have evaluated the
consequences of low blood flow for embryo development and
cardiovascular malformation. Recently, Majumder et al. (2010)
used ligation to induce ischemia in a chick embryo; however, the
model lacked the reperfusion phenomenon. Thus, in the present
study, we developed a model that can efficiently recapitulate the
I/R events. To validate the model, we employed laser Doppler
perfusion imaging. The measuring capacity of Doppler imaging
relies on the structure, density, and depth of the capillaries. In our
study, the laser probe was directly adjusted onto the RVA, so that
the flux intensity was measured with maximum accuracy. The
Doppler reading showed a drop of ≥80% of the baseline during
ischemia in the I/R group.

In chick embryos, vitelline vessels are responsible for the
circulation of blood from embryos to the yolk sac. Through
vitelline circulation, embryos obtain nutrients from the yolk and
diffused oxygen from air; hence, blocking any of the vitelline
vessels can interfere with nutrient and oxygen transport. Based on
these facts, we induced ischemia by occluding the blood supply to
the RVA for 5 min, followed by reperfusion for another 5.5 h. The
present study clearly demonstrated that the occlusion of the RVA
induced ischemia, as evident by laser Doppler imaging and HIF1α

expression. Oxidative and inflammatory stresses are among the
pathophysiological changes postulated to occur in response to I/R
(Aragno et al., 2003; Chen et al., 2007; Wong and Crack, 2008;
Granger and Kvietys, 2015; Kurian et al., 2016; Rovcanin et al.,
2016; Gao et al., 2017). Thus, we examined the expression of the
following proteins involved in oxidative stress and inflammation:
NOX2 (Lou et al., 2018; Zhang et al., 2018), ORP150 (Kitano et al.,
2004; Ye et al., 2013), SOD1 (Jiang et al., 2015; Dibas et al., 2018),
SOD2 (Haines et al., 2010; Xu et al., 2010), NLRP3 (He et al., 2017;
Liu et al., 2018), NF-κβ (Su et al., 2017; Ye et al., 2017, 2018), and
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IFNγ (Sun et al., 2016; Ferhat et al., 2018). The high expression
of these proteins in the present I/R model implied that even a
short period of ischemia, followed by reperfusion, played a major
role in exaggerating tissue damage. Furthermore, the induction
of NF-κβ and IFNγ expression in the I/R embryo indicates that
the present model can effectively be used to explore numerous
inflammatory pathways involved in I/R.

Cells undergo cell death through many pathways, such
as necrosis, apoptosis, and autophagy. Both apoptosis and
autophagy are types of programmed cell death (PCD). Most
knowledge on the role and regulation of PCD has been
primarily obtained through three model systems: the nematode
Caenorhabditis elegans, the fruit fly Drosophila melanogaster,
and mouse (Fuchs and Steller, 2011). In this context, we
tested the mechanism of cell survival and death in chick
embryos. The expression of several proteins associated with
autophagy was examined. The result suggested that 5 min
of ischemia, followed by 5.5 min of reperfusion, promoted
autophagy in chick arterial cells. The result indicated that
a short period of I/R was sufficient to activate autophagy.
Furthermore, our result indicated that the present model can
be used to study all events associated with autophagy, and may
also be employed to study other PCD pathways (Supplementary
Figure S4).

Although many notable drug development achievements have
been made in the last two decades in ischemic research, a key
challenge in drug candidate screening is the lack of a suitable
screening model, which can translate preclinical drug candidates
into clinical success (Andreadou et al., 2008; Bahjat et al., 2017).
In this study, we critically evaluated the role anti-oxidative, anti-
ischemic, and anti-inflammatory drugs after 6 h of I/R. The
result indicated that treatment with the anti-ischemic drugs MD
(Sisetskii et al., 1992; Hayashi et al., 2000) and TMZ (Zhou
et al., 2012; Yao et al., 2015) reversed the I/R response in the
arteries. MCC950, a potent and selective inhibitor of the NLRP3
inflammasome (Coll et al., 2015; Salla et al., 2018), also protected
the RVA against I/R in our model, corroborating the earlier
reports of animal I/R models (Ye et al., 2017; Ismael et al.,
2018). Additionally, we employed NAC, a scavenger of ROS,
which was found to reverse the outcome of 6 h of I/R. Taken
together, the results imply that the developed model can be
effectively used to classify several drug types and their targets in
I/R research.

In addition to I/R research, the present model can be employed
for a range of other pathological mechanisms associated with
I/R and for screening numerous drug types. Because of its high
reproducibility, cost-effectiveness, and simplicity, we anticipate
that our model can be a valuable resource for basic science and
translational research, and that it can be widely used in I/R
research. A direct infarct measurement could also been a good
indicator of I/R mediated injury, and to map up the effect of
various therapeutic drugs. Thus, we tried to quantify the infarct
area, however, due to the delicate structure of the 72 h developed
chicks we have yet not been able to measure the infarct area. Thus,
further investigation is warranted for the comprehensive analysis
of methods and pathways associated to I/R that we could not
examine in this study.
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FIGURE S1 | Represent the schematic picture of the third day chick embryo I/R
experimentation. (A) The day 0 processing. At the day 0, eggs were sterilized with
70% ethanol, and put into the 37◦C egg incubator with 60–65% humidity. At day
1, the eggs were taken out for layering (B). (C) A normal white Leghorn egg just
before I/R surgery. (D) A typical setup to induce I/R in the chick embryo. The
probe of the Doppler flow meter was put onto the ischemic RVA (5 ± 1 mm from
the site of ischemia at distal end). (E) The magnified image of the setup: egg with
micromanipulator and laser Doppler probe. (F) The insertion of the spinal need
hook into the artery, and the lifting of the artery.

FIGURE S2 | A typical picture of the third day embryo; the rectangle shows the
site of excision of the tissue for western blotting, The star represents the site of the
occlusion, and the holes created on the right and left side of the RVA are
represented by two circles on the right and left sides of the artery, and is to insert
the needle beneath the artery to lift it up. (S2’) The magnified image of S2. (S2”)
The area of excision of tissue in the vicinity of RVA. And the straight line represents
the RVA emerging from the embryo trunk. The star on the line denotes the position
of laser Doppler flow probe. The intersection represents the site of occlusion.
From the site of occlusion the arteries were excised up to 15 ± 1 mm (distal from
the trunk), 5 ± 1 mm each on the left and right side of the artery, and 2 ± 1 mm
toward the trunk. S2” is a representative of the right side of the chick embryo.

FIGURE S3 | A typical laser Doppler flow meter signal measured on 3-days-old
embryo chick artery from a control group chick (A). (B) Events of baseline (1),
immediate pre-lifting of RVA (2), during normoxia (3), immediate post-lifting of RVA
(4), during ischemia (5), immediate pre-releasing of RVA (6), immediate
post-reperfusion (7), during reperfusion (8) in ischemia treated group as recorded
by laser Doppler flow meter.

FIGURE S4 | Western blot analysis expression level of Caspase-3 (∗∗∗P < 0.01) in
total protein extract from RVA of I/R treated vs. control group. Results represent
mean ± SE (n = 3). The graph shows the densitometry quantification of western
blot bands.

FIGURE S5 | Western blot analysis expression level of NF-kβ (∗∗∗P < 0.001) and
IFNγ (∗∗∗P < 0.001) (Figure 4C) in total protein extract from RVA of I/R treated vs.
control group. Results represent mean ± SE (n = 3). The graph shows the
densitometry quantification of western blot bands.
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