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Abstract

Phenotypic evolutionary models have been used with great success in many areas of biology, but thus far have not been
applied to the study of stem cells except for investigations of cancer. We develop a framework that allows such modeling
techniques to be applied to stem cells more generally. The fundamental modeling structure is the stochastic kinetics of
stem cells in their niche and of transit amplifying and fully differentiated cells elsewhere in the organism, with positive and
negative feedback. This formulation allows graded signals to be turned into all or nothing responses, and shows the
importance of looking beyond the niche for understanding how stem cells behave. Using the deterministic version of this
framework, we show how competition between different stem cell lines can be analyzed, and under what circumstances
stem cells in a niche will be replaced by other stem cells with different phenotypic characteristics. Using the stochastic
version of our framework and state dependent life history theory, we show that the optimal behavior of a focal stem cell will
involve long periods of quiescence and that a population of identical stem cells will show great variability in the times at
which activity occurs; we compare our results with classic ones on quiescence and variability in the hematopoietic system.
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Introduction

The current enthusiasm for stem cells (both adult and embryonic)

[1], and their role in regenerative medicine is based on the

assumption that we can remove stem cells from their natural habitat,

propagate them in culture, transplant them into a foreign

environment and assume that the transplanted cells will do as we

wish or that we can manipulate them in vivo with desired results [2].

For example, stem cells can differentiate into cell lineages that are

different from the tissue in which they originate and adult stem cells

can migrate to sites of injury [3]. Harold Varmus has said that ‘‘It is

not unrealistic to say that [stem cell] research has the potential to

revolutionize the practice of medicine and improve the quality and

length of life’’ (pg. 513 in [4]). But long before that, Theodosius

Dobzhansky said that us ‘‘nothing makes sense in biology except in

the light of evolution’’ [5, pg 449].

There may be enormous differences between what stem cells do

in their original tissue and what they can and will do when put into

culture or when transplanted to a new location [6]. Raff [7] noted

that ‘‘perhaps the greatest challenge in stem cell biology is to

uncover the…mechanisms that determine whether a daughter of a

stem cell division self-renews or commits to a particular pathway of

differentiation. Cracking this problem for the adult mammalian

stem cells of interest will be a crucial step for both developmental

biology and cell therapy.’’ Solutions in this area of stem-cell

biology will require all sorts of different biology, and innovative

ideas. Elsewhere [8] we have argued that the time is right for the

development of evolutionary theory about stem cells and the

microenvironment (their niche) that maintains them.

It is generally agreed that a focal stem cell in its niche is

influenced by signals (both positive and negative feedback) from

the other stem cells in the niche, the support cells in the niche, and

from more differentiated cells throughout the body. How exactly

to model this is unclear, with the consequence that most models of

stem cells focus on a single stem cell (or a population of identically

behaving stem cells) in a single niche. We show how to make

operational the recommendation in [9] that the next advances will

combine probability-based events and mechanistic parameters as

the best approximation to actual phenomena. Our models are

rooted in evolution by natural selection, which is ultimately the

mechanism for all of biology.

Theoretical approaches to stem cell biology have usually involved

typological thinking [10], although there are examples of population

thinking [11]. Typically, one assumes that all stem cells behave in a

similar manner and writes either a set of deterministic differential

equations or a probabilistic master equation [12] to characterize the

dynamics of stem cells, but ignores natural selection. What is now

required is a kinetic theory of stem cell dynamics that accounts for

variation and natural selection [13]. We offer the first such theory

here. We also show how the biological version of the Heisenberg

uncertainty principle [14,15] can be made operational to show how

manipulations may alter the behavior and progeny of stem cells. To

achieve our goals, we use a somewhat stylized model, motivated by

the hematopoietic system. There is much to be learned from such

stylized models, in systems biology [16], ecology [17,18], and

evolution [19–21].

September 2007 was the 50th anniversary of the publication of

the first successful demonstration of the intravenous infusion of
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bone marrow in patients who had experienced radiation or

chemotherapy that destroyed bone marrow [22,23]. In a

subsequent classic study of the hematopoietic stem cell system

[24], stem cell colony forming units showed enormous epigenetic

variation, leading to highly overdispersed numbers of descendant

cells in individual colonies in spleens of experimental animals. We

will show how to interpret this result in terms of variability in the

cell cycle [25]; this begs the question of why such variation has not

been eliminated, or alternatively how natural selection maintains

such variation.

In its niche, a stem cell responds to its local environment (signals

received from the support cells of and the other stem cells in the

niche) and its global environment (signals received from more

differentiated cells) but we assume that the behavior of the focal

stem cell does not affect the behavior of the other stem or more

fully differentiated cells. We are thus able to avoid, at least initially,

game theoretical aspects of stem cell biology; ultimately they must

be considered. Even with this simplified framework, we are able to

understand how natural selection will act on competition between

stem cells with different phenotypic characteristics (explained

below) and how natural selection can lead to both quiescence and

great variation in the behavior of stem cells.

Overview of the Models
Stem cells have the ability to both self-renew and to differentiate.

The niche of the stem cell is the local microenvironment that

supports the maintenance, renewal, and differentiation of stem cells.

In the case of the villi of the small intestine or bone marrow it is easy

to conceive of the niche as a defined physical environment. In other

cases, such as the epidermis, the niche will be determined by the

spatial extent of signaling molecules. Signals and feedback controls

(both negative and positive) affect the pattern of behavior of the stem

cells in their niche. These signals include cell-autonomous promotors

(such as piwi); self-feedback, autocrine and paracrine influences;

hormones, growth factors, cytokines, and short-range cell to cell

signalling pathways (e.g. Notch, Hedgehog, Wnt); hormones from

remote sources; positional cues from chemical gradients as in

classical Turing systems [26]; and adhesion [27]. Thus, stem cells are

not simply single input-output systems, but are complex, nonlinear,

multiple input-output systems [28].

The simplest population biology that one can imagine is to focus

on the number of stem S(t), transit amplifying progenitor A(t), and

fully differentiated D(t) cells at time t associated with the stem cells

in the niche being modeled. In doing so, for simplicity we

compress the differentiation stages of a transit amplifying cell, but

they could be unpacked should one wish to do so. In addition,

there will be other transit amplifying and fully differentiated cells,

produced by other stem cells, that create an additional signaling

background. We denote those cells by B. For simplicity we

consider only one kind of progenitor cell and only one kind of

differentiated cell, but extensions are clear and obvious. The

positive and negative feedback links affecting stem cell fate are

illustrated in Figure 1.

The transitions of stem, transit amplifying, and fully
differentiated cells

Most simply, stem cells divide symmetrically – doubling and

producing two stem cells, divide asymmetrically – doubling and

producing one stem cell and one cell that will be a progenitor of a

fully differentiated cell, undergo apoptosis (to maintain an error-

free genome [29,30]) or migrate out of the niche [31]. Almost all of

the literature focuses on whether stem cells will divide symmet-

rically or asymmetrically.

In fact, there are many more possible transitions of stem cells and

their progeny. We use the following indexing system for transitions of

stem, transit amplifying and fully differentiated cells: 1) a stem cell

divides symmetrically, 2) a stem cell divides asymmetrically, 3) a stem

cell divides and differentiates symmetrically producing two transit

amplifying cells, 4) a stem cell under goes apoptosis or migrates out of

the niche, 5) a transit amplifying cell divides, 6) a transit amplifying

cell undergoes apoptosis, 7) a transit amplifying cell fully

differentiates, 8) a fully differentiated cell undergoes apoptosis. To

fully understand the evolutionary ecology of stem cells we need to

consider the entire range of possibilities of transitions and both

positive and negative feedback. This is implicit in [32]. In

Materials and Methods we describe how to model these

transitions, implement the model and associate a system of ordinary

differential equations with the conditional means of the stochastic

numbers of stem, transit amplifying, and fully differentiated cells.

Trade offs
The transitions of stem, transit amplifying, and differentiated

cells are characterized by a number of parameters. Biological

realities will constrain some choices for parameter values. For

example, we may anticipate that the probability that all stem cells

in the niche either undergo apoptosis or migrate out of the niche is

not too high since if it were the system could not persist. That is, if

the niche empties (either through apoptosis or migration) it has

essentially gone extinct. Similarly, in most situations, the

population of transit amplifying cells is much more active than

the population of stem cells (with consequence that the number of

amplifying cells will thus be larger than the number of stem cells)

and we require parameter values that make this so. We also

require that when there is just one stem cell in the niche, the

numbers of stem cells increase.

In addition, we may expect there to exist links and trade-offs

between the different parameters. For example, since symmetric

renewal, asymmetric renewal and symmetric differentiation

involve many of the same signals and processes, we may expect

that their rates are correlated. Cells that undergo high rates of

replication are more likely to have errors in them and thus are

Figure 1. The feedback network affecting a stem cell in its
niche. Here stem cells are clear circles, transit amplifying cells colored
circles, and fully differentiated cells in black. A focal stem cell has
positive feedback (+) on itself but shares inhibition and negative
feedback (2) with other stem cells. Transit amplifying cells receive
positive feedback from stem cells and exert positive feedback on fully
differentiated cells. Both transit amplifying and fully differentiated cells
exhibit negative feedback on stem cells. The symbols that characterize
these processes are explained in the Materials and Methods.
doi:10.1371/journal.pone.0001591.g001

Models of Stem Cells
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likely to undergo apoptosis. When transit amplifying cells

disappear at a higher rate because of replication error, fewer of

them will become fully differentiated cells and this too can be

captured by a trade-off.

In summary, one may conceive of the parameter set describing

the transitions of the stochastic kinetics as the phenotype of a stem

cell and its descendants, or if all of the stem cells in a niche are

identical descendants of a single cell, then these parameters are the

phenotype of the stem cell clone. These trade-offs are fully

described in Materials and Methods.

The focal stem cell in the niche
To understand fully how natural selection acts on a stem cell, we

need to consider the fitness of a focal stem cell. Stem cells (and

transit amplifying cells) do not by themselves achieve fitness.

Rather, they support the organism – which can be viewed as an

organized collection of fully differentiated cells. Fitness of the focal

stem cell depends upon what it does, what the other stem cells in

the niche do, and how many transit amplifying and differentiated

cells are present. We thus define a fitness function F(y, s, a, d) to be

the maximum expected accumulated fitness through differentiated

cells, given that the focal stem cell has accumulated y resources

towards the next division, that there are s stem cells in the niche

and that there are a and d transit amplifying and differentiated

cells sending signals back to the focal stem cell. State dependent

life history theory, as implemented through stochastic dynamic

programming [33–36], allows us to compute the fitness-maximiz-

ing responses of the focal stem cell.

Results

A variety of parameters are used in this section; they are

explained in Table 1 and constitute the phenotype of the stem cell

and its descendants. For modeling, it is generally easier to work

with the rates of cell cycles (generically, l) rather than cell cycle

times (generically T).

Another look at Till et al (1964)
We begin with another look at Till et al [24]. Their data lead to

a frequency distribution for cell cycle times that is shown in

Figure 2. We are again led to ask how natural selection maintains

such a broad and slowly declining distribution.

A special case of the differential equations
If the rate of symmetric differentiation is 0, we can solve for the

steady state levels of stem and differentiated cells explicitly and

easily obtain that of the amplifying cells numerically. In particular,

the steady state number of stem cells is

S~K:exp {
m4

l1

� �
ð1Þ

which shows that the steady state number of stem cells increases

with increasing values of l1 and with decreasing values of m4

(Table 1), both of which accord with intuition. If the steady state

number of transit amplifying cells were known, the steady state

number of differentiated cells is

D~
wm6

m8

A: ð2Þ

Thus, by adjustment of any of w, m6 or m8 (Table 1), natural

selection can lead to different numbers of fully differentiated cells

without changing the fundamental structure of the system of stem,

transit amplifying and differentiated cells. That is, we can create a

ratio of fully differentiated to stem cell that ranges from the

observed 3:1 to 2–5,000:1 through the evolution of phenotypic

characteristics.

We obtain a single nonlinear equation for the steady state level

of transit amplifying cells

exp {b0A
� �

~b1A ð3Þ

where b0~e 1zw
m6

m8

� �
and b1~

m6{l5ð Þl1exp m4=l1ð Þ
l2m4K

.

This special case also serves as a check of our numerical

methods.

Qualitative properties of the stochastic system
As described in the Materials and Methods, under very

general conditions, S = 0 is dynamically unstable and has

maximum value K (determined by feedback inhibition). Thus,

the solution of the set of differential equations will move from S = 1

(the minimum non-zero value of the number of stem cells in the

niche) towards K, determined by the balance of m4 and l1. In the

full stochastic simulation, all the same properties hold, as can be

seen from the equations characterizing the transition rates. One

important consequence of S = 0 being dynamically unstable is that

when a niche goes extinct, it will do so quickly [25]. Thus, we

expect extant clones of stem cells to have much longer lifetimes

than those of clones heading for extinction. Similarly, the number

of transit amplifying cells is determined by the balance of m62l5

Table 1. Parameters, Their Interpretations, and Values.

Parameter Interpretation Value

K Parameter of feedback inhibition of stem cells on
each other (Larger K implies less inhibition)

10

l1 Cell cycle rate for symmetric renewal 0.10

l2 Cell cycle rate for asymmetric renewal 0.20

l3 Cell cycle rate for symmetric differentiation 0.01

m40 l1 independent per capita rate of stem cell migration
and apoptosis

0.01

m41 l1 dependent per capita rate of stem cell migration
and apoptosis

0.1

l5 Per capita rate of transit cell amplification 0.05

m60 l1 independent rate of disappearance of transit
amplifying cells

0.05

m61 l1 dependent rate of disappearance of transit
amplifying cells

0.5

w0 l1 independent probability that a transit amplifying
cell differentiates

0.9

w1 l1 dependent reduction in w 1.0

m8 Mortality rate of fully differentiated cells .04

e Parameter for feedback inhibition from amplifying
and differentiated cells

0.001

c Parameter for feedback inhibition from amplifying
and differentiated cells

0.01

B Background level of transit amplifying and fully
differentiated cells

100

dt Time step for iterating the equations 0.01

yd Threshold level of resources needed for differentiation 5.5

cc Sensitivity of error correction to resources 3.0

doi:10.1371/journal.pone.0001591.t001

Models of Stem Cells
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and w. The number of fully differentiated cells is determined by m8,

w, and m6 – thus a variety of simple mechanisms can create tissues

with different structures.

Quantitative results
In Figure 3, we show the trajectories for transit amplifying

(Figure 3, upper panel) and fully differentiated (Figure 3, lower

panel) cells and the associated solution of the differential equation

system. We see that the set of differential equations is a good proxy

for the mean trajectory of the stochastic system and that the

number of fully differentiated cells has a trajectory that mimics

that of the transit amplifying cells, as it must. In Figure 4, we show

the realizations of the stochastic system as phase plane plots of the

density of stem cells and transit amplifying cells (upper panel) or

stem cells and fully differentiated cells (lower panel). We see that a

wide-range of cell numbers is expected due to the inherent

stochasticity in the system.

In Figure 5, we show two results of the invasion/replacement

analysis. First (upper panel) we consider the invasion of a resident

population of stem cells by a new phenotype with a different value

of cell cycle rate for symmetric renewal l�1
� �

. Here we see that in

general if l1 exceeds l�1 then the residents will resist the invasion by

the new stem cell type and in general if the converse is true then

the residents are excluded by the invading stem cell. However,

there is a small region in which both kinds of stem cells coexist.

Second (lower panel) we consider the replacement analysis when

the value of the rate of the cell cycle for symmetric differentiation

l3 varies between the resident and invading stem cells. Here the

region of coexistence is greater and the boundary curves, while still

symmetrical are more complicated.

In Figure 6 we show the frequency distributions of transitions by

the focal stem cell following the behavior determined from the

stochastic dynamic programming model. These data refer to

22,200 simulations in which there are about 3507 transitions of the

simulated stem cells, of which only 6.42 per cent were symmetric

renewal; the remaining transitions were asymmetric renewal. The

minimum value of resources needed for a transition is yd = 5.5, but

in the simulated stem cell population the average value of

resources at the time of transition is 7.1, and the variance of those

resources is 0.84. The average number of transit amplifying and

background cells at the time of transition is 11.1, and the variance

in those numbers is 53.5.

Discussion

Phenotypic models of evolutionary processes have made

important and long-lasting contributions in ecology and evolu-

tionary biology [37–39] and in the study of cancer [20,40]. They

offer promise to help us understand great swaths of the life history

and dynamics of stem cells and their descendants. Most of our

work in this paper is in developing the population biology of stem,

transit amplifying and fully differentiated cells in their niche to

provide a fundamental structure for the analyses shown in

Figures 5 and 6. This structure provides the framework for

answering a wide range of questions about the evolutionary

biology of stem cells. The results of Figure 5 show that it is possible

to use evolutionary replacement analyses to understand conse-

Figure 2. The distribution of cell cycle times inferred from the
overdispersed data of Till et al. This should be compared to Figure 6.
doi:10.1371/journal.pone.0001591.g002

Figure 3. The stochastic trajectories for 100 simulations of the
stem-transit amplifying-differentiated system described in the
text and the solution of the differential equations 25–27 (red
line).
doi:10.1371/journal.pone.0001591.g003

Models of Stem Cells
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quences of manipulation of stem cell life history parameters in vivo

and show, for example, that not all manipulations will be

successful (the invading stem cell line cannot persist) or perhaps

may be too successful (the invading stem cells fully replace the

resident ones). We have not allowed mutations in the phenotypic

parameters of the stem cell clones, but this is possible too with our

methods [38] and would allow one to investigate how the clone

changes over time due to mutation.

Figure 6 shows that it is possible to understand the key

properties of stem cells – quiescence and great variability in

activity – in terms of natural selection acting on the decisions of

stem cells in response to the signals from the local microenviron-

ment (the other stem cells) and from the more differentiated cells in

the rest of the organism. Although it is comforting to see the

similarity of Figure 2 and 6, one should remember that pattern

does not imply process. However, the mechanistic model that

underlies Figure 6 will allow us (elsewhere) to explore the key

components of the process that lead to the pattern.

An empirical goal suggested by our work would be to more

carefully identify these trade-offs and the feedback functions

(described in detail in Materials and Methods) that charac-

terize asymmetric renewal and symmetric differentiation. We have

used simple exponential functions, but others – in which the all-or-

nothing response is built in – are clearly possible [16]. How the

strength of these signals will evolve also remains an open question.

Our work also provides a number of qualitative insights. For

example, in healthy organisms, we should not expect the stem

populations to be at their maximum sizes. Rather, the stochastic

processes of birth and death will lead to population sizes smaller

than the maximum. This, of course, makes identifying pathological

situations more difficult, but should also help us avoid leaping to

inappropriate conclusions. Furthermore, one cannot conceive of

the transitions of stem cells (quiescence, symmetric renewal,

asymmetric renewal, symmetric differentiation, apoptosis, or

Figure 4. The results of the stochastic simulation can be shown
as phase plots of stem cells and transit amplifying cells (uppere
panel) or stem cells and fully differentiated cells (lower panel)
doi:10.1371/journal.pone.0001591.g004

Figure 5. Deterministic replacement analysis allow us to
determine when a mutation in one of the phenotypic
parameters or the introduction of stem cells with different
phenotypic parameters into a niche will lead to replacement of
one stem cell clone by another, or coexistence of clones in the
same niche. Upper panel) Stem cells differ in the cell cycle rate for
symmetric renewal l1. Lower panel) Stem cells differ in the cell cycle
rate for symmetric differentiation l3.
doi:10.1371/journal.pone.0001591.g005

Models of Stem Cells
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migration) in the absence of feedback from the amplifying transit

cells and the fully differentiated cells. Indeed, they are crucial to

what happens in the niche. We have also shown that a single

framework can account for the observed ratio of fully differenti-

ated to stem cells [41] by varying the phenotypic characteristics.

Many questions remain and there is much work to be done,

ranging from the development of systems biology models for the

phenotypic parameters, to the evolution of the signalling functions

and their parameters, to the development of more complicated

game theoretical aspects. Each will provide new insight into the

evolutionary ecology of stem cells and their niches.

Materials and Methods
Another look at Till et al 1964

Till et al. [24] recognized that overdispersed data (in which the

variance is much larger than the mean) such as theirs could not be

described by a Poisson distribution. Instead, they fit a gamma

distribution [25] to their data. The Poisson process is equivalent to

the assumption that the probability of a stem cell being active in the

next dt is lDt+o(Dt), where o(Dt) indicates times that are higher powers

of Dt. An improvement upon their approach is the following. It is

known that there is variation in cell cycle times [42]. Thus, rather

than fitting the counts with a gamma density, we assign a gamma

density to l, leading to a negative binomial distribution for the

counts [25]. We use the method of moments to infer the parameters

of this gamma density. Since the cell cycle time T = 1/l, it is then an

elementary calculation to determine the frequency distribution of cell

cycle time, given the inferred gamma density.

The stochastic kinetics of transitions
We use s, a, d for particular values of the number of stem, transit

amplifying, or fully differentiated cells. We characterize the

feedback network in Figure 1 as follows. We let DS, DA and DD

denote the change in the number of stem, amplifying, or

differentiated cells in the interval of time Dt, which is assumed

to be small. As noted before, o(Dt) denotes terms that are higher

powers of Dt (typically Dt2, Dt3 etc.).

Symmetric Renewal.

Pr DS~1,DA~0,DD~0 S tð Þ~s,A tð Þ~a,D tð Þ~djð Þ

~r1 s,a,dð ÞDtzo Dtð Þ
ð4Þ

r1 s,a,dð Þ~l1
:s:w1 sð Þ ð5Þ

In this equation, l1 = 1/T1 is the cell cycle time for stem cells

that renew symmetrically. We assume no variation in this rate.

The function W1(s) characterizes the inhibition of stem cells upon

each other [43]. A variety of function forms are possible [16] but

the key is that W1(s) decreases as s increases (which captures the

inhibition); for computations we use W1(s) = ln(K)2ln(s).

Asymmetric Renewal.

Pr DS~0,DA~1,DD~0jS tð Þ~s,A tð Þ~a,D tð Þ~dð Þ~

r2 s,a,dð ÞDtzo Dtð Þ
ð6Þ

r2 s,a,dð Þ~l2
:s:W1 sð Þ:W2 a,d,bð Þ ð7Þ

In analogy to Eqn (5), l2 is the cell cycle rate when a stem cell renews

asymmetrically, with associated cell cycle time T2. Inhibition of

symmetric renewal occurs for two reasons. First, negative feedback

from stem cells on stem cells decreases overall activity. Second,

negative feedback from existing transit amplifying and fully

differentiated cells inhibits the production of transit amplifying

cells. Thus W2(a,d,b) characterizes the signal from the transit

amplifying and fully differentiated cells to the stem cells. Once

again, this function will decrease as the number of transit amplifying

and fully differentiated cells increases. For computations or analysis

we use W2(a,d,b) = e2s(a+d+b) which is equivalent to a Hill function

0.42 2.11 3.8 6.94 10.55 19.97 46.78 73.58 113.79
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Figure 6. The forward simulation of the decisions by the focal stem cell allows us to generate the frequency distribution of the rates
of transition, comparable to Figure 2.
doi:10.1371/journal.pone.0001591.g006
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when the argument is small. e measures the sensitivity of the stem cell

population to what is happening in the population of transit

amplifying and fully differentiated cells. Stem cells convert graded

stimuli into all or nothing responses [44] and we have specifically

chosen a graded rather than all or nothing response [16] because

that allows the all or nothing response to emerge, rather than to be

built into the model.

Symmetric Differentiation.

Pr DS~{1,DA~2,DD~0jS tð Þ~s,A tð Þ~a,D tð Þ~dð Þ~

r3 s,a,dð ÞDtzo Dtð Þ
ð8Þ

r3 s,a,dð Þ~l3
:s:W1 sð Þ:W3 a,d,bð Þ ð9Þ

Here l3 and W3(a,d,b) are analogous to those above but can be

understood as a ‘more desperate’ signal. For computations or

analysis we use W3(a,d,b) = e2c(a+d+b) where c is the sensitivity

parameter for symmetric differentiation.

Migration/Apoptosis. From the viewpoint of the focal stem

cell, whether another stem cell undergoes apoptosis or migrates out

of the niche (which is surely important for the state of the organism) is

immaterial – the consequence is the same, a reduction in the number

of stem cells in this niche. Thus we combine them in

Pr DS~{1,DA~0,DD~0jS tð Þ~s,A tð Þ~a,D tð Þ~dð Þ~

r4 s,a,dð ÞDtzo Dtð Þ
ð10Þ

r4 s,a,dð Þ~m4
:s ð11Þ

Here m4 measures the rate of migration of stem cells out of the niche

plus the rate of apoptosis, both on a per stem cell basis.

Transit Cell Amplification. Transit cells amplify and since

they send a signal back to the niche, their dynamics must be

included. Hence

Pr DS~0,DA~1,DD~0jS tð Þ~s,A tð Þ~a,D tð Þ~dð Þ~

r5 s,a,dð ÞDtzo Dtð Þ
ð12Þ

r5 s,a,dð Þ~l5
:a ð13Þ

Here l5 is the cell cycle rate for transit amplifying cells. As mentioned

above, we have compressed the n stages of development from transit

amplifying to fully differentiated cell; unpacking this assumption can

be done through a linear chain [38,45,46].

Transit Cell Mortality. Transit amplifying cells will

disappear because of apoptosis (e.g. because they have too many

DNA errors) and because they fully differentiate. We let m6 denote

the total per capita rate at which transit amplifying cells disappear;

a fraction w of them are converted to differentiated cells and the

remainder experience apoptosis. Thus the mortality of transit

amplifying cells is

Pr DS~0,DA~{1,DD~0jS tð Þ~s,A tð Þ~a,D tð Þ~dð Þ~

r6 s,a,dð ÞDtzo Dtð Þ
ð14Þ

r6 s,a,dð Þ~ 1{wð Þ:m6
:a ð15Þ

Transit Cell Differentiation. Transit amplifying cells that

disappear but do not die are converted into fully differentiated cells

as in

Pr DS~0,DA~{1,DD~1jS tð Þ~s,A tð Þ~a,D tð Þ~dð Þ~

r7 s,a,dð ÞDtzo Dtð Þ
ð16Þ

r7 s,a,dð Þ~w:m6
:a ð17Þ

Note that r6+r7 = m6a, the total rate at which transit amplifying

cells disappear.
Mortality of Differentiated Cells. Finally, fully differenti-

ated cells die, so that

Pr DS~0,DA~0,DD~{1jS tð Þ~s,A tð Þ~a,D tð Þ~dð Þ~

r8 s,a,dð ÞDtzo Dtð Þ
ð18Þ

r8 s,a,dð Þ~m8
:d ð19Þ

Here m8 accounts for all sources of mortality of fully differentiated

cells.

State dynamics using Gillespie’s t method
We use the Gillespie t-method [47–50] to convert from rates of

transitions in a small interval of time Dt to the dynamics of the

populations of cells. We assume that the time to the next transition

of the system, t, is a random variable with exponential distribution

and mean time determined by the rate of all processes. The overall

rate is

R s,a,dð Þ~
X8

i~1

ri s,a,dð Þ ð20Þ

so that

Pr tvtð Þ~1{exp {R s,a,dð Þtð Þ ð21Þ

Given the current values of S(t), A(t) and D(t) we first compute the

time of the next transition by comparing the right hand side of

Eqn 21 with a uniformly distributed random variable.

Next, given that a transition has occurred we compute

fi s,a,dð Þ~Pr transition i occured, given a transitionð

has occurredÞ
ð22Þ

Since when time t has elapsed one of the transitions has occurred,

we have

fi s,a,dð Þ~ ri s,a,dð Þ
R s,a,dð Þ ð23Þ

Thus, the fi are the probability density function for the transitions

of the system. It is also useful in numerical implementation to deal

with the cumulative distribution function Fi(s,a,d) defined by

Fi s,a,dð Þ~
Xi

j~1

fj s,a,dð Þ ð24Þ

Associated differential equations
The numbers of stem, transit amplifying, and fully differentiated

cells are random variables. The rates of transitions of stem cells are

nonlinear functions of the states, thus it is a nontrivial matter to
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connect the transition rates to ordinary differential equations for

the states [51–56]. It is perhaps easiest to associate differential

equations with the transitions if we interpret the differential

equations as the mean of conditioned kinetics [56]. Thus, taking

expectations and following the method of [56] we associate the

following differential equations with the transitions described in

the previous section

dS

dt
~S:W1 Sð Þ: l1{l3

:W3 A,D,Bð Þð Þ{m4
:S ð25Þ

dA

dt
~S:W1 Sð Þ: l2

:W2 A,D,Bð Þz2:l3
:W3 A,D,Bð Þð Þ

z l5{m6ð Þ:A
ð26Þ

dD

dt
~w:m6

:A{m8
:D ð27Þ

This set of ordinary differential equations will allow us to develop a

number of novel insights about stem cells, their niche, and

replacement dynamics of stem cells in their niche.

Biological constraints on parameter values
The transitions of stem, transit amplifying, and differentiated cells

are characterized by a number of parameters. Biological realities will

constrain some choices for parameter values. For example, we may

anticipate that the probability that all stem cells in the niche either

undergo apoptosis or migrate out of the niche is not too high since if

it were the system could not persist. That is, if the niche empties

(either through apoptosis or migration), it has essentially gone

extinct. In computation, we choose parameters so that the

probability of extinction of the niche is less than 20 percent.

Similarly, in most situations, the population of transit amplifying

cells is much more active than the population of stem cells (with

consequence that the number of amplifying cells will thus be much

larger than the number of stem cells). For purposes of computation

we use the condition r5.4r1.

We require that the number of support cells is sufficient such

that when there is just one stem cell in the niche, the numbers of

stem cells increase. In terms of the associated ordinary differential

equations, this is equivalent to
dS

dt
w0 when S = 1. Since W3(A,D,B)

will be a decreasing function of A, D and B, it follows from Eqn 25

that we require

ln Kð Þw m4

l1{l3W3 0,0,0ð Þ ð28Þ

In addition, we may expect there to exist links and trade-offs

between the different parameters. For example, since symmetric

renewal, asymmetric renewal and symmetric differentiation

involve many of the same signals and processes, we may expect

that the cell cycle rates l1, l2, and l3 are correlated. Thus, for

computations, we use l2 = 2?l1 and l3 = 0.05?l2. Similarly, cells

that undergo high rates of replication are more likely to have

errors in them and thus be more likely to undergo apoptosis. The

simplest version of that trade-off is a linear one in which

m4~m40zm41
:l1 ð29Þ

m6~m60zm61
:l1 ð30Þ

For example, the disappearance of stem cells from the niche is

decomposed into terms characterizing migration to other niches

(m40) and mortality due to apoptosis. The second equation above

allows us to separate the disappearance of transit amplifying cells

into those potentially converting to differentiated cells and those

suffering apoptosis.

When transit amplifying cells disappear at a higher rate because

of replication error, fewer of them will become fully differentiated

cells. This can be captured by a trade-off between w and l1 as in

w~w0{w1
:l1 ð31Þ

In summary, we may think of the parameter set

[l1,l2,l3,m40,m41,l5,m60,m61,w0,w1,m8] as the phenotype of a stem

cell and its descendants, or if all of the stem cells in a niche are

identical descendants of a single cell, then these parameters are the

phenotype of the stem cell clone. But, of course, all the stem cells

in a niche need not be conspecifics. We thus turn to the

competition between different stem cell phenotypes.

Coexistence, replacement, and invasion
We can use evolutionary replacement analysis [38,57–61] with

the system of ordinary differential equations to explore the

competition between and modification of stem cell clones and

when manipulation of stem cell transition parameters will be

successful. We now use i and j to index the stem cell clone with

different phenotypic parameters, let cji denote the influence of

transit amplifying and fully differentiated cells of type j on stem cell

clone i so that

1

Si

dSi

dt
~W1

X
j

Sj

 !
: l1i{l3i

:W3

X
j

cjiAj ,
X

j

cjiDj ,B

 ! !

{m4i

ð32Þ

dAi

dt
~Si

:W1

X
j

Sj

 !
: l2iW2

X
j

cjiAj ,
X

j

cjiDj ,B

  !

z2:l3i
:W3

X
j

cjiAj ,
X

j

cjiDj ,B

 ! !
z l5i{m6ið Þ:Ai

ð33Þ

dDi

dt
~wi

:m6i
:Ai{m8i

:Di ð34Þ

In these equations, we assume that all stem cells share the

functional forms for the influence of transit amplifying and fully

differentiated cells on asymmetric renewal and symmetric

differentiation. After specifying the set of phenotypic parameters,

we can integrate the coupled differential equations to determine

the outcome of competition between any number of stem cell

clones that differ in their phenotypic parameters.

However, to illustrate the ideas and explain them in as simple a

manner as possible, consider the situation in which we wish to

manipulate some of the phenotypic parameters in a niche by

inserting a new stem cell with different parameters into an existing

clone. In that case, we need to consider the stem cells present (the

‘resident’ stem cells) and the new one (the ‘invading’ stem cell). For

definiteness, let us assume that the rate of symmetric differenti-

ation of the residents is l3 and of the invader is l�3. We first solve
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Eqns 25–27 for the steady state numbers of stem, transit

amplifying, and fully differentiated cells with the resident

phenotype which we denote by S l3ð Þ,A l3ð Þ,D l3ð Þ
� �

to focus

our attention on these steady state values as they depend upon the

value of l3 (clearly, they depend upon the other phenotypic

parameters too, but we only consider the manipulation of l3 here).

To make the notation simpler let us return to Eqn 25 and

rewrite it as

1

S

dS

dt
~g S,A,Djl3ð Þ ð35Þ

Then g S l3ð Þ,A l3ð Þ,D l3ð Þjl3

� �
~0 since those values correspond

to a steady state. Now imagine that we introduce a stem cell with

different phenotypic parameters. We let S� l�3
� �

denote the

number of stem cells with symmetric differentiation rate l�3. A

number of outcomes are possible.

First, it is possible that g S l3ð ÞzS� l�3
� �

,A l3ð Þ,D l3ð Þ l�3
��� �

v0
when S� l�3

� �
~1 (initially there are no transit amplifying or fully

differentiated cells descended from the invading stem cells). In this

case, the number of stem cells with symmetric differentiation rate

l�3 declines and we say that the resident stem cells resist invasion or

replacement.

Second, it is possible that g S l3ð ÞzS� l�3
� �

,A l3ð Þ,
�

D l3ð Þ l�3
�� Þw0 when S� l�3

� �
~1. In this case, the number of

invading stem cells will increase, and lead to transit amplifying and

fully differentiated descendants. One effect will be that the resident

stem cells will be disturbed from their steady state. Then their

numbers may decline, in which case we say that the invading stem

cell has replaced or excluded the resident stem cells. Alternatively,

after the perturbation by the invading them cell (and the production

of transit amplifying and fully differentiated cells from the invader)

the resident stem cells may remain steady or even increase. In that

case, we say that the two kinds of stem cells coexist.

The focal stem cell in its niche
We now describe how one may characterize the behavior of a

focal stem cell in its niche. To be sure, thinking of a single stem cell

having behavior while others cells in the niche (and the transit

amplifying and fully differentiated cells) have a fixed behavior is a

simplification. Ultimately, one should view stem cells in their niche

as playing a dynamic cooperative game, but we reserve that for

subsequent work. For the time being, we focus on the state

dependent life history of a focal stem cell, determining the optimal

life history through stochastic dynamic programming [33–36].

Like all cells, the focal stem cell must accumulate resources for

division. We denote by Y(t) the resources available for cell division

at time t, assuming that a minimum resource level yd. We assume

that the inhibition of the focal stem cell by other stem cells also

affects the flow of resources to the focal stem cell and has the same

functional form as used in the inhibition of cell cycling. Thus

dY

dt
~q:W1 sð Þ: ð36Þ

Here q can be scaled out by interpreting t as multiples of 1/q, so we

set it equal to 1.

We assume that the organism gains fitness from these fully

differentiated cells at rate RF(d) when there are d fully differentiated

cells sending signals to the focal stem cell. We assume that the

decision of the focal stem cell is made at the time of the next

transition of the stem, amplifying or differentiated cells. Using the

methods describe above, we compute t(s,a,d), which is the random

variable describing the time to the next transition, and the vector

D = (DS,DA,DD) that describes the changes in stem, transit

amplifying and differentiated cells when a transition occurs.

When this transition occurs, the focal stem cell has level of

resources y. If y is less than the resources available for

differentiation, then the focal stem cell cannot do anything other

than remain quiescent. In that case

F y,s,a,dð Þ~EtED R dð Þ:tzF yð zW1 sð Þ:t,szDS,az½

DA,dzDD�
ð37Þ

which we define as V0, the fitness value of remaining quiescent.

The right hand side of this equation represents the future

accumulation of fitness and is averaged over the time of the next

transition and the change in the cell population when that

transition occurs.

If y exceeds yd, then in the simplest case the focal stem cell may

remain quiescent (with value V0 given above), renew symmetrically

(with value V1 to be determined) or renew asymmetrically (with

value V2 also to be determined). Allowing for full differentiation of

the focal stem cell, or migration out of the niche requires certain

complications which we will postpone for a later paper. After a

division resources y2yd remain for correcting errors in the

daughter cells. We thus let Y(y2yd) denote the probability that a

daughter cell is error free (i.e. does not undergo apoptosis), given

that y2yd resources are used for correcting errors. For computa-

tions we use Y(z) = 12exp(2ccz) where cc is a parameter.

If the stem cell renews symmetrically, we assume that the focal

stem cell remains error-free and a daughter stem cell joins the

other stem cells in the niche. Assuming segregation of errors upon

division [29,31], all resources remaining after division are used to

ensure that the daughter stem cell is error free. We thus have

V1~EtED R dð Þ:tzY y{ydð ÞF W1 sz1ð Þ:t,szDSz1,azð½

DA,dzDDÞz 1{Y y{ydð Þð ÞF W1 sð Þ:t,szDS,azDA,dzDDð Þ�
ð38Þ

On the other hand, if the stem cell renews asymmetrically, a new

transit amplifying cell is produced and the resources remaining

after division are used to correct errors in the new transit

amplifying cell. In this case

V2~EtED R dð Þ:tzY y{ydð ÞF W1 sð Þ:t,szDS,azDAzð½

1,dzDDÞz 1{Y y{ydð Þð ÞF W1 sð Þ:t,szDS,azDA,dzDDð Þ�
ð39Þ

Thus, when y exceeds yd we have

F (y,s,a,d�~max V0 y,s,a,dð Þ,V1 y,s,a,dð Þ,V2 y,s,a,dð Þ½ � ð40Þ

Note that there is no explicit time in any of these equations. Thus,

they cannot be solved by the usual method of backward iteration

[33–36]. Rather, we determine F(y,s,a,d) by value iteration (see [62]

for a general discussion and [63] for an application in behavioral

biology). When the value iteration has stabilized, we have found in

addition to fitness, the optimal decisions i*(y,s,a,d) of the focal stem

cell when its accumulated resources for division are y, there are s

other stem cells in the niche and the number of transit amplifying

and differentiated cells sending signals to the niche are a and d

respectively. We then use the Markov simulation described

previously to create the environment of the focal stem cell and

follow its subsequent behavior (quiescence, symmetric renewal, or

asymmetrical renewal) as the number of stem cells in the niche and
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the number of amplifying and differentiated cells change through the

stochastic processes described previously. In this way, we are able to

construct the times between transitions of the focal stem cell, and

thus the analogue of the distribution of Till et al. [24].
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