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Much is known about electroencephalograph (EEG) patterns during sleep, but until
recently, it was difficult to study EEG patterns during conscious, awake behavior.
Technological advances such as powerful wireless EEG systems have led to a renewed
interest in EEG as a clinical and research tool for studying real-time changes in the
brain. We report here the first normative study of EEG activity while healthy young adults
completed a series of cognitive tests recently published by the National Institutes of
Health Toolbox Cognitive Battery (NIH-TCB), a commonly-used standardized measure
of cognition primarily used in clinical populations. In this preliminary study using a
wireless EEG system, we examined power spectral density (PSD) in four EEG frequency
bands. During baseline and cognitive testing, PSD activity for the lower frequency bands
(theta and alpha) was greater, relative to the higher frequency bands (beta and gamma),
suggesting participants were relaxed and mentally alert. Alpha, beta and gamma activity
was increased during a memory test compared to two other, less demanding executive
function tests. Gamma activity was also inversely correlated with performance on the
memory test, consistent with the neural efficiency hypothesis which proposes that better
cognitive performance may link with lower cortical energy consumption. In summary, our
study suggests that cognitive performance is related to the dynamics of EEG activity in
a normative young adult population.

Keywords: electroencephalograph, PSD, cognition, attention, memory, NIH-Toolbox

INTRODUCTION

The monitoring of brain activity during cognition may help to reveal the dynamics of the working
human brain, with versatile non-invasive surface electroencephalography (EEG) being one of
the tools in doing so. A comprehensive and validated set of cognitive measurements that can
quickly assess brain function across the lifespan, the NIH-Toolbox, is currently available for both
research and clinical applications (Gershon et al., 2010). In this study, our goal was to identify
specific EEG waveform characteristics occurring during cognition by using this standardized
battery of core executive function tasks that included measures of inhibitory control, attention and
episodic memory.
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Since its discovery by Hans Berger in the 1920’s (Jasper
and Carmichael, 1935) in which direct electrical brain activity
was recorded from electrodes placed on the scalp, technological
advancements in computer systems and brain electrical recording
techniques have vastly expanded the ability to examine and
understand EEG oscillations related to behavior (see Buzsáki and
Draguhn, 2004; Niedermeyer, 2010; Tivadar and Murray, 2019).
EEG activity, presumably generated by dendrites of neurons
adjacent to the cortical surface of recording electrodes, has been
classified into several well-defined neural oscillatory patterns,
or frequency bands. The specific EEG frequencies we studied
occurred during an eyes-open resting state (baseline), and during
a series of cognitive tasks that included the continuous recording
of: theta activity (3–7 Hz), alpha activity (8–12 Hz), beta activity
(13–29 Hz), and gamma activity (30–40 Hz). Delta activity (1–
3 Hz) was not examined, given its primary association with sleep
(Steriade et al., 1993; Knyazev, 2007). Changes in EEG frequency
bands indicate shifts in firing rate and/or synchronization within
cell populations reliably associated with aspects of cognitive
processing (Başar et al., 1999; Klimesch, 1999; Ward, 2003;
Makeig et al., 2004), and also implicated in various neurological
and neuropsychiatric disorders (Engel, 1996; Klimesch, 1999;
Griesmayr et al., 2014; Mazzon et al., 2018; Djonlagic et al., 2019).
Current platforms to study real-world or simulated environments
include those that incorporate relatively simple, inexpensive,
rapid setup, wearable, and portable wireless EEG systems whose
precision is comparable to laboratory-based wired EEG systems
(Debener et al., 2012; De Vos et al., 2014; Cruz-Garza et al., 2017;
Ratti et al., 2017). While many benefits of using a portable wireless
EEG system include the ability to study cognitive functioning in
naturalistic settings and the capability of measuring differences
in brain activity in freely moving subjects (Rupp et al., 2018;
Blanco et al., 2019; Park and Donaldson, 2019), one limitation
to this system compared to large multi-channel traditional EEG
systems is that recordings confined to electrode positions covered
by the few channels in portable systems precludes extensive
multi-channel networks evaluation (Ratti et al., 2017).

The National Institutes of Health Toolbox Cognitive Battery
(NIH-TCB) consists of a series of standardized and challenging
performance-based cognitive measures specifically developed
to “accelerate the pace of discovery in neuroscience research”
(National Institutes of Health and Northwestern University,
2006–2017, p. 4). The NIH-TCB has been normed for children,
young adults, older adults and the elderly (Gershon et al., 2013).
This instrument is a reliable and valuable tool to standardize
evaluations in specific populations on cognition, including
individuals with intellectual disabilities (Hessl et al., 2016),
traumatic brain injury (Tulsky et al., 2017), aging (O’Shea et al.,
2016), social anxiety (Troller-Renfree et al., 2015), cognitive
impairment in cancer survivors (Apple et al., 2017), and pain
(Cruz-Almeida et al., 2019). The cognitive domain battery of
this assessment tool includes the evaluation of higher-level brain
functions such as thinking, judging and remembering. While the
above studies focused on clinical populations, an examination
of EEG activity both during baseline (resting state: a period of
time when participants are assigned no cognitive task) and while
healthy participants perform these standardized cognitive tasks

has yet to be reported. Here, we used three independent measures
of cognitive function in healthy, young adults: inhibition control
and attention (Flanker Inhibitory Control and Attention Test),
cognitive flexibility (Dimensional Change Card Sort Test), and
episodic memory (Picture Sequence Memory Test) (Weintraub
et al., 2014). Several recent studies have examined whether
performance on the NIH-TCB can be predicted by EEG activity
during baseline measure only (Brucar et al., 2019; Požar et al.,
2020). An understanding of normative EEG patterns is needed
given the potential research and clinical applications of EEG
during human cognition.

Wireless EEG systems are powerful tools for studying everyday
cognition in normal and clinical populations and to investigate
the effects of various interventions on behavior. The current
study is the first to examine neural activity in normal young
adults during a powerful, commonly used standardized cognitive
assessment tool, the NIH-TCB. As a first step, this brief report
examines single-trial power spectral density (PSD) EEG activity
in four frequency bands (theta, alpha, beta, gamma) measured
during baseline and during three cognitive tests. We hypothesize
that alpha PSD will decrease, whereas beta, theta, and gamma
PSD will increase in the cognitive tasks relative to baseline.
This study also describes links between these EEG measures
and performance on these cognitive tests. We hypothesize that
alpha PSD will be inversely correlated whereas beta, theta and
gamma PSD will be positively correlated with performance in
these cognitive tasks.

MATERIALS AND METHODS

Participants
The final sample consisted of 29 undergraduate subject pool
volunteers (19 female, 28 right-handed), aged 18–22 years
(M = 19.0, SD = 1.1 years) who were native English speakers.
Selected volunteers were recruited from a pool of approximately
300 students, and none of the volunteers were current or
former students of the faculty members conducting the study
at the time of their participation. The data from three
participants were corrupted with excessive artifacts during
data collection, and were not used. Participants who earned
partial course credit were treated in accordance with the APA
Code of Ethics (American Psychological Association, 2017).
All subjects had normal or corrected-to-normal vision, and
through a survey conducted prior to the study, self-reported
no neurological, anxiety, depressive, sleep or cardiovascular
disorders, and no prior experience with the cognitive measures
used in this study. Participants abstained from alcoholic
beverages 24 h, caffeinated beverages 12 h, and nicotine 1 h
prior to the study.

Cognitive Measures
An iPad app version of the NIH-TCB that normalizes scores
for age, sex, education and ethnicity was used during three
separate cognitive measures: the Flanker Test, the Dimensional
Change Card Sort (DCCS) Test, and the Picture Sequence
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Memory (PSM) Test (Weintraub et al., 2013). For all NIH-
TCB measures, instructions were provided visually and orally
through the iPad; participants made their selections on the
iPad with their dominant hand. Practice and test phases (4
min for the Flanker and DCCS tests; 8 min for the PSM
test) were given to each participant. A scoring algorithm for
each test integrates accuracy and reaction time (RT) yielding
computed age-adjusted scores, reflecting relative performance
based on a nationally representative normative sample (M = 100,
SD = 15) within the same age band yield. For the young
adults in this study, the age band used in the norming
studies for the NIHTB is 18–29 years (Slotkin et al., 2012).
Accuracy per item type was calculated as the mean number
of items answered correctly. All RTs for correct items are
reported in seconds from a home base position to making
the item response.

Flanker Test
The NIH-TCB version of the Eriksen flanker test is derived
from the Attention Network Test (Rueda et al., 2004), an
executive function measure of inhibitory control and attention
(Weintraub et al., 2013). The Flanker test requires participants
to focus on a visual target while ignoring stimuli on either
side (i.e., flanking) the target and to choose one of two
buttons on the screen that corresponds to the direction in
which the middle arrow was pointing. On 12 congruent trials,
all arrows point in the same direction. On 8 incongruent
trials, the flanking arrows point in the opposite direction
of the middle arrow. Congruent and incongruent trials are
mixed and standardized for each participant. Congruent and
incongruent scores and RT for the behavioral assessment were
calculated as the mean accuracy and RT on each of the
congruent and incongruent trials, respectively. Validation of the
computerized version of this test has a test-retest reliability of
0.85, and intra-class correlations of 0.83 (95% CI: 0.74–0.89)
(Zelazo et al., 2014).

Dimensional Change Card Sort (DCCS) Test
The DCCS test (Zelazo et al., 2014), similar to the Wisconsin
Card Sorting Task (Milner and Petrides, 1984), is an executive
function measure of cognitive flexibility (Weintraub et al.,
2013). In the NIH-TCB version, following instructions and a
practice phase, participants match a series of two test pictures
located at the bottom of the screen (e.g., a yellow ball and
a blue truck) depending on a word cue (e.g., “color”) located
in the top half of the screen according to one dimension (in
this test, shape). Twenty-three trials are designated as “repeat”
trials. Seven “switch” trials are also employed, in which the
participant must change the dimension being matched from
preceding trials (to “color”).1 In a validation of the computerized
version of this study, Zelazo and colleagues reported test-
retest reliability of 0.85 and intra-class correlations of 0.81
(95% CI: 72–87).

1NIH-TCB designation of “repeat” trials includes trials immediately following
“switch” trials, possibly confounding this measure. For the behavior assessment
(3.1.1) we used only the 7 items immediately preceding switch items and following
the same item as “repeat” trials.

Picture Sequence Memory Test
The PSM test is a measure of episodic memory, and involves
recalling two series of illustrated objects and activities that are
presented in a standardized order arrayed in a large square on the
iPad screen, with corresponding audio-recorded phrases played
through the iPad. Participants are asked to recall the sequence
of pictures by moving the images with the forefinger on their
dominant hand of the touchscreen iPad to the locations of small
blank squares positioned around the central box in the order in
which they recalled them. The practice phase consists of four
items. The first learning trial during the test phase consists of
15 pictures, whereas the second trial consists of 18 pictures.
The accuracy score for this test consists of credit given for each
adjacent pair of pictures correctly placed in the large square in
the center of the screen up to the maximum value for each trial
(14 for trial 1, 17 for trial 2). RT for each trial is calculated
from the time that the participant has been shown all pictures
in that trial to the participant indicating that all the pictures
have been placed into the squares along the side of the screen.
Test-retest reliability of 0.84 and intra-class correlations of 0.77
of the computerized version of this test have been reported
(Dikmen et al., 2014).

Electroencephalograph (EEG) Measures
Electrophysiological signals were recorded from a B-Alert Live
X10 wireless Bluetooth (Advanced Brain Monitoring (ABM),
Inc., Carlsberg, CA, United States) wireless EEG sensor headset.
Nine light-weight electrodes on a sensor strip, referenced to
linked mastoids, were used to collect EEGs from participants
at a sampling rate of 256 Hz, along with an additional channel
that recorded electrocardiogram activity. The sensors were placed
over frontal, central, and parietal regions according to the
International 10–20 system coordinates (sensor sites: Fz, F3, F4,
Cz, C3, C4, POz, P3, P4). Amplification, digitization and radio-
frequency transmission of the signals was accomplished with
miniaturized electronics in the portable unit worn on the head.

ABM algorithms identified and decontaminated 3 or more
data point spikes with amplitudes greater than 40 mV associated
with excessive muscle activity, eye blinks (fast and slow),
excursions due to movement artifacts, amplifier saturations, and
spikes. Following filtering and artifact removal, Power Spectral
Densities (PSD) were computed by performing Fast Fourier
Transform for theta (3–7 Hz), alpha (8–12 Hz), beta (13–29 Hz),
and gamma (30–40 Hz) frequency bands.

Baseline EEG Measurement
Immediately prior to administration of the 3 NIH-TCB tests,
participants were instructed to remain still and relaxed for 2 min
eyes closed, and 2 min eyes open rest-periods. The latter was
chosen as the baseline period in this study.

Power Spectral Density (PSD)
For each participant, continuous EEG activity was recorded until
the completion of the entire testing session. Electronic markers
were placed in the EEG record to indicate the beginning and
end of the rest periods, practice and test phases. Data were
segmented offline into discrete, individualized periods for each
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subject consisting of baseline, instructions and practice, and
cognitive tests associated with each cognitive task. Only the
baseline and test data are included in the current analyses. For
PSD computation, each window size was one epoch containing
one second of data (i.e., 256 decontaminated EEG samples).
A 50% overlapping Kaiser window was applied to smooth the
PSD data over 3 windows. For the current analyses, PSD was
averaged across electrode sites.

RESULTS

All statistical analyses were conducted using the Statistical
Package of Social Sciences 24 (SPSS). Prior to performing
inferential statistics, the data were examined for normality by
two methods: skewness and kurtosis were within acceptable limits
(±2) according to George and Mallery (2010) and the Q-Q
plots were consistent with normal distributions (Thode, 2002,
p. 21). The repeated measures Analyses of Variance (ANOVAs)
included Mauchly’s test of sphericity. Where significant violations
of the assumption of homogeneity of variance were found,
Greenhouse-Geisser adjustments were made to the df in the
analyses (where χ2 was significant, all p ≤ 0.0001). Follow-
up analyses after significant main and interaction effects for
both between- and within ANOVAs always used Bonferroni-
corrections to counteract the problem of multiple comparisons.

Cognitive Measures (NIH Toolbox:
NIH-TCB)
Within each cognitive test, two categories of trials were compared
with paired samples t-tests. During the Flanker test, participants
performed significantly faster on the congruent than incongruent
trials, t(28) = 2.67, p = 0.013. During the DCCS test, participants
had faster RTs to repeat than to switch trials, t(28) = 3.01,
p = 0.005. For the PSM test, scores for the first trial were higher
than for the second trial which had more items, t(28) = 5.88,
p = 0.0001, and the RT was longer for the second trial than for the
first trial, though the result did not reach statistical significance,
t(28) = 1.85, p > 0.05 (Figure 1A). In order to investigate the
possibility of a speed-accuracy tradeoff (Zimmerman, 2011), RTs
and raw scores were correlated. In only the DCCS was there
evidence of a speed-accuracy tradeoff, r(29) = 0.44, p = 0.01
(Flanker: p > 0.05; PSM: r = −0.62, p = 0.001). The scores
and RTs used in the remainder of the analyses are shown in
Supplementary Table S1.

EEG Power Spectral Density (PSD)
A 4 (phase: baseline, flanker, DCCS, PSM) × 4 (frequency band:
alpha, beta, theta, gamma) repeated measures ANOVA revealed
a main effect of phase, F(2.85, 79.87) = 15.38, MSE = 0.02,
p = 0.0001, ηp

2 = 0.35 (Figure 1B). There was also a main effect of
frequency band, F(1.70, 47.65) = 160.54, MSE = 0.26, p = 0.0001,
ηp

2 = 0.85. For EEG frequency band PSD magnitudes, theta was
largest, followed by alpha, then beta and gamma PSD showing
the smallest amplitudes. All comparisons were significant at
p = 0.0001. Average EEG PSD values for each frequency band
during baseline and the cognitive tests are shown in Table 1.

A significant interaction between phase and frequency band,
F(3.22, 90.10) = 16.27, MSE = 0.024, p = 0.0001, ηp

2 = 0.37, was
followed up with separate one-way repeated measures ANOVAs
for each phase and frequency band, described below.

During baseline, there was a significant effect of frequency
band activity, F(1.67, 46.85) = 111.07, MSE = 0.11, p = 0.0001,
ηp

2 = 51. As shown in Figure 1B (Table 1), the highest PSD
magnitude during baseline was in the theta frequency band.
Theta and alpha band activity was significantly larger than
gamma PSD. Beta was significantly smaller than theta and
significantly larger than gamma PSD (all p = 0.0001). Alpha and
theta PSD magnitudes were not significantly different from each
other (p = 0.059).

EEG Measures During Cognitive Tests
A one-way ANOVA revealed a significant effect of phase on
alpha PSD, F(1.58, 44.32) = 13.58, MSE = 0.018, p = 0.0001,
ηp

2 = 0.33. Alpha PSD was largest during baseline compared to
alpha during the Flanker (p = 0.003), DCCS (p = 0.001), and PSM
tests (p = 0.002), but there were no differences between alpha
during the cognitive tests Figure 1B (Table 1).

There was a significant effect of phase on beta PSD, F(1.85,
51.75) = 16.68, MSE = 0.02, p = 0.0001, ηp

2 = 0.37. Beta
PSD was smaller during the baseline than during the Flanker
(p = 0.001), DCCS (p = 0.001), and PSM tests (p = 0.001). There
were no significant PSD differences between the tests for beta
Figure 1B (Table 1).

There was a significant effect of phase on theta PSD, F(2.53,
70.81) = 14.31, MSE = 0.006, p = 0.0001, ηp

2 = 0.34. Theta PSD
was larger during the Flanker (p = 0.035) and PSM (p = 0.001)
tests than during the baseline. Theta PSD during the DCCS
test was smaller than during the Flanker and PSM tests (both
p = 0.0001), but was not significantly different from the baseline
period Figure 1B (Table 1).

There was a significant effect of phase on gamma PSD, F(2.26,
63.40) = 7.76, MSE = 0.025, p = 0.001, ηp

2 = 0.22. Although the
increase in gamma from baseline to the cognitive tests did not
reach statistical significance, gamma PSD was larger during the
PSM test than during the two executive function tests Figure 1B
(Table 1): Flanker (p = 0.001) and DCCS tests (p = 0.002).

Correlations Between EEG and
Performance
PSM-alpha, r(29) = 0.52, p = 0.004, PSM-beta, r(29) = 0.47,
p = 0.01, and PSM-gamma, r(29) = 0.49, p = 0.007 were
significantly correlated with PSM-RT (Figure 2A). PSM-gamma
was also inversely correlated with the PSM-score, r(29) = -0.38,
p = 0.04 (Figure 2B). Thus, faster PSM-RTs were associated with
lower alpha, beta and gamma PSD during this memory test;
higher scores were linked with lower gamma PSD. Scatterplots
of significant correlations between EEG measures and cognitive
performance measures are displayed in Figures 3A–D. Baseline,
Flanker-EEG, and DCCS-EEG PSDs were not significantly
correlated with performance measures. See Supplementary
Table S2 for correlations between all baseline and cognitive
test-EEG measures.
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FIGURE 1 | Cognitive test reaction times and EEG activity recorded during baseline and cognitive test conditions. (A) Bar graphs illustrate reaction times (RT) during
the 3 cognitive tests (Flanker, DCCS and PSM). Each cognitive test had 2 conditions that were evaluated in paired-samples t-tests; for the Flanker test, congruent
reaction time (RT) vs. incongruent RT; for the DCCS test, repeat vs. switch; for the PSM test, trial 1 (15 items) vs. trial 2 (18 items). These comparisons were
significantly different in the Flanker (∗p < 0.05) and DCCS (∗∗p < 0.01). (B) bar graphs illustrate EEG power spectral density (PSD) for alpha, beta, theta and gamma
EEG frequency bands recorded during baseline (eyes open resting state), and the 3 cognitive tests (Flanker, DCCS, PSM). Alpha and theta PSD were higher
compared to beta and gamma during the cognitive tests and baseline (all comparisons p = 0.0001). For details of other significant differences (see Table 1).
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TABLE 1 | Descriptive statistics for EEG PSD and summary of ANOVA results and post hoc testing.

EEG measure Resting Flanker DCCS PSM F p ηp
2

Alpha 2.37 (0.05) 2.23 (0.03)a 2.24 (0.03)a 2.23 (0.03)a 13.58 0.0001 0.33

Beta 1.68 (0.04) 1.81 (0.03)a 1.82 (0.03)a 1.84 (0.04)a 16.68 0.0001 0.37

Theta 2.50 (0.05) 2.56 (0.05)a 2.50 (0.05)b 2.60 (0.05)a 14.31 0.0001 0.34

Gamma 1.53 (0.06) 1.48 (0.05) 1.49 (0.05) 1.63 (0.05)c 8.99 0.001 0.22

The standard error of the mean is in parentheses. Significance (p) reflects Greenhouse-Geisser corrections to degrees of freedom due to significant violations of Mauchly’s
test of sphericity. aSignificantly different from baseline. bSignificantly different from Flanker and from PSM. cSignificantly different from Flanker and DCCS.

FIGURE 2 | Cognitive test-EEG correlations with reaction times and age-corrected standard scores on the cognitive tests. (A) horizontal bar graphs illustrate
correlations of PSD for 4 EEG frequency bands with reaction times (RT) during 3 cognitive tests. Here, alpha, beta and gamma EEG PSD activity are all significantly
positively correlated with Picture Sequence Memory (PSM) RT. (B) horizontal bar graphs illustrate correlations of 4 EEG frequency band PSD with age-corrected
standard scores (cognitive scores) during 3 cognitive tests. Here, gamma activity is significantly negatively correlated with PSM scores. (∗p < 0.05).
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FIGURE 3 | Picture Sequence Memory (PSM)-EEG activity correlations with
PSM reaction times and cognitive scores. (A) scatterplot displays all data
points for the PSM-alpha EEG PSD correlation with PSM-reaction time (RT).
(B) scatterplot displays all data points for the PSM-beta EEG PSD correlation
with PSM-RT. (C) scatterplot displays all data points for the PSM-gamma EEG
PSD correlation with PSM-RT. (D) scatterplot displays all data points for the
PSM-gamma EEG PSD correlation with PSM-cognitive score.

DISCUSSION

To contribute to the normative literature on the relationship
between EEG activity and cognition, we compared EEG data

collected from healthy young adults during NIH-TCB tasks to a
baseline (eyes open rest-period) condition. We also explored the
relationship between EEG PSD and performance.

Cognitive Performance
Our behavioral results replicated previous findings for each of the
cognitive measures. In the Flanker test, a measure of inhibitory
control (Zelazo et al., 2014), an executive function (Miyake et al.,
2000), we found longer RTs for incongruent than for congruent
trials indicating that the test successfully manipulated demands
on inhibitory control (Eriksen and Eriksen, 1974). Impaired
speed on incongruent trials is thought to reflect the additional
processing time needed to override motor plans and maintain
adequate accuracy (Eriksen, 1995). RT and accuracy data were
inversely related in the Flanker test indicating that there were no
speed-accuracy tradeoffs in our study.

The DCCS is a measure of cognitive flexibility (Weintraub
et al., 2013), also an executive function (Miyake et al., 2000). It
is similar, though simpler, to the Wisconsin Card Sorting Task
which activates various brain regions thought to involve working
memory (Berman et al., 1995). As expected, switch trials were
associated with significantly longer RTs in our study compared
to repeat trials reflecting attentional inertia for the first-learned
dimension (Diamond and Kirkham, 2005; Ezekiel et al., 2013).
Longer RTs during the DCCS are associated with greater accuracy
suggesting that participants adopted a strategy of maximizing
accuracy by slowing responses (Zimmerman, 2011).

The PSM test is a measure of episodic memory (Dikmen et al.,
2014). We found that reaction times were longest on this task
compared to the other cognitive tasks (more items per trial), and
for the second trial, which consisted of more items than for the
first trial. On this test, an inverse relationship between RT and
accuracy suggests that subjects did not adopt a strategy indicative
of a speed-accuracy tradeoff during this task.

Baseline EEG
During baseline, PSDs for the lower frequency bands (theta
and alpha) were greater relative to the higher frequency bands
(beta and gamma). Theta activity may reflect activity in the
default mode network (Scheeringa et al., 2008), while high alpha
activity is typical during low arousal resting states (Barry et al.,
2007). The high PSD values for theta and alpha relative to the
other frequency bands show that the participants in the current
study were relaxed but mentally alert (Lafrance and Dumont,
2000) during the baseline task. Our results add to the literature
suggesting the brain at rest is an active brain (Damoiseaux et al.,
2006; Bonnard et al., 2016). No RS-EEG measures predicted
cognitive performance. In a forthcoming study, we will explore
both baseline PSD and NIH-TCB cognitive test PSD patterns by
electrode position.

Cognitive Test EEG
The lower frequency bands, theta and alpha, were maximal
relative to the higher frequency bands during the baseline period
and during the cognitive tests, demonstrating the predominance
of these frequency bands and suggesting that our participants
were relaxed and mentally alert (Lafrance and Dumont, 2000;
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Barry et al., 2007; Scheeringa et al., 2008) throughout the study.
Alpha desynchronization was apparent in all three cognitive tests
relative to the baseline, consistent with a large body of literature
suggesting that alpha activity may be an attentional suppression
mechanism when dimensions of stimuli need to be ignored (for
reviews see Foxe and Snyder, 2011; Klimesch, 2012).

Theta, beta, and gamma PSD increased in at least one
cognitive test compared to baseline. Theta band activity
predominated in baseline, as well as during the cognitive tasks
relative to the other frequency bands, reflecting the attentional
(Ishii et al., 1999), control (Sauseng et al., 2010; Reinhart
et al., 2015) and memory demands (Klimesch, 1999; Gevins
and Smith, 2000; Jensen and Tesche, 2002; Hanslmayr et al.,
2008) of this study. Relative to baseline, theta PSD increased
in the Flanker and PSM tests, consistent with other studies
linking theta with focused attention, controlled processing, and
memory. An intriguing finding was that theta band activity
was not significantly different from baseline in the DCCS
test, reflecting theta band desynchronization relative to the
preceding Flanker test. Theta band desynchronization has been
associated with alertness increases (Lafrance and Dumont, 2000)
and to stress (Gärtner et al., 2015). The DCCS test may have
been more challenging for our participants compared to the
preceding Flanker test.

Synchronization in beta band activity occurred during each
of the cognitive tests relative to baseline. Given that participants
in the present study used the same response set throughout
the study (movements on an iPad touch-screen for target
stimuli), these results are consistent with the view that beta
band activity reflects maintenance of a sensori-motor set
(Engel and Fries, 2010).

In agreement with other studies reporting gamma band
activity linked with working memory (Roux et al., 2012; Roux
and Uhlhaas, 2014) and increased cognitive load (Whittier et al.,
2019), we found that gamma activity was larger during the PSM
test than during the other two executive function tests (Flanker
and DCCS). Applicable to the PSM test, gamma synchronization
is also associated with a change in the stimulus set and increased
proactive control (Engel and Fries, 2010; Boudewyn et al., 2019).

Correlation Between EEG Measures and
Cognitive Performance
Alpha, beta, and gamma (PSM) were significantly correlated with
performance. Neither baseline-EEG measures nor theta activity
during any cognitive tests was related to performance.

Alpha, beta and gamma desynchronization predicted better
performance on the PSM, a measure of episodic memory
(Dikmen et al., 2014). Lower PSD in the alpha and beta bands has
previously been linked to better memory performance (Zhu et al.,
2019). To our knowledge, we are the first to report that gamma
desynchronization is also linked to better memory performance:
this effect was robust in that lower gamma PSD was linked
with both scores and RT (faster), whereas lower alpha and beta
PSD were only linked with RT (also faster). These findings
of desynchronization in alpha, beta and gamma bands are
consistent with the neural efficiency hypothesis: better cognitive

performance is sometimes associated with lower cortical energy
consumption (Genç et al., 2018, 2019; Ramchandran et al., 2019).

In conclusion, to our knowledge, the present study is
the first to characterize EEG and cognitive data obtained
while healthy young adults completed tasks from the NIH-
TCB, as well as during rest, and linking the findings to
performance. This descriptive report provides a starting point
for future studies to examine task/test relevant EEG activity
in populations differing along important dimensions such as
age or clinical diagnosis, and the effect of drugs or behavioral
interventions. Just as RS-EEG measures are now well-recognized
as important associates of cognitive outcomes (Buzsáki and
Draguhn, 2004), systematic examination of EEG measures
during standardized NIH-TCB testing could help us to further
understand cognitive performance and EEG recording in a
variety of diverse populations.
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