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Abstract We review the role conformational ensembles

can play in the analysis of biomolecular dynamics,

molecular recognition, and allostery. We introduce cur-

rently available methods for generating ensembles of bio-

molecules and illustrate their application with relevant

examples from the literature. We show how, for binding,

conformational ensembles provide a way of distinguishing

the competing models of induced fit and conformational

selection. For allostery we review the classic models and

show how conformational ensembles can play a role in

unravelling the intricate pathways of communication that

enable allostery to occur. Finally, we discuss the limita-

tions of conformational ensembles and highlight some

potential applications for the future.

Keywords Dynamic ensembles � NMR �
Conformational selection � Induced fit � Allostery

Molecular recognition is of paramount importance in

biology—without it life would not exist. Before the first 3D

structures of biomolecules were determined (Watson and

Crick 1953; Kendrew et al. 1958; Muirhead and Perutz

1963), the lock and key model of molecular recognition in

the binding events associated with enzymatic catalysis had

already been proposed (Fischer 1894). Over time, an

appreciation of the structural changes that can occur upon

binding led to the related induced fit (Koshland 1958) and

fluctuation fit (Straub and Szabolcsi 1964) models. At

about the same time two complementary models for

describing allostery, a key biological mechanism that is

responsible for information transfer, were also proposed,

the concerted model (Monod et al. 1965) and the sequential

model (Koshland et al. 1966). These models were proposed

before the development of molecular dynamics (MD)

simulations (McCammon et al. 1977), a method that

enables atomic-level understanding of the types, ampli-

tudes, and timescales of the motion of macromolecules and

has influenced current views of how both molecular rec-

ognition and allostery occur (Karplus 2003; van Gunsteren

and Dolenc 2008).

Molecular dynamics has provided significant insight

into the details of molecular motion, but the significant

contributions from experimental techniques cannot be

overlooked. Indeed experiments provide direct evidence

for dynamic processes, often at an atomic level, and can be

used to validate the predictions of MD. Nuclear magnetic

resonance (NMR) spectroscopy is a particularly powerful

tool in the experimental analysis of macromolecular

dynamics, because it furnishes information about both

structure and motion at atomic resolution. This can be

analysed by use of MD to generate conformational

ensembles that enumerate the conformations adopted by a

given macromolecule (Torda et al. 1989; Bonvin et al.

1994; Hess and Scheek 2003; Best and Vendruscolo 2004;

Clore and Schwieters 2004b, 2006; Lindorff-Larsen et al.

2005a). The methods used to determine such ensembles

have matured over the last 10 years to render ensemble

refinement a leading approach to the characterisation of
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biomolecular motion (Vogeli et al. 2008; De Simone et al.

2009). These methods have recently been used to study

molecular recognition and allostery and have provided new

insights into their underlying mechanisms that are,

importantly, supported by experimental results (Lange

et al. 2008; Fenwick et al. 2011). To illustrate the types of

representation of structural heterogeneity that can be

obtained by use of NMR in combination with MD, in

Fig. 1a we compare the results from these methods with

those obtained by use of conventional tools for structure

determination.

In addition to being important for fundamental reasons,

theoretical or hybrid theoretical–experimental methods for

characterisation of structural heterogeneity can be very

important in structure-based drug discovery. In the near

future, as recently demonstrated by the Al-Hashimi labo-

ratory (Stelzer et al. 2011), it will indeed be possible to

improve in-silico drug screening by use of conformational

ensembles, because these contain the inherent functional

motion of the therapeutic target. Here we review the

advances that have been made in the understanding of the

motion, molecular recognition, and allostery of biomole-

cules by use of conformational ensembles and discuss how

these powerful techniques will continue to guide our

understanding of these and related important biological

phenomena.

Biomolecular dynamics

Given that molecular motion undoubtedly occurs under

physiological conditions it is perhaps not surprising that

functional roles have been attributed to it. Henzler-Wild-

man and Kern (2007) have recently reviewed this subject,

emphasising the importance of motion for protein function.

Examples include cytoskeletal function, antibody–antigen

recognition, small molecule signalling, and information

storage. Coarse-grained MD simulations have, for example,

shown that the motion of actin filaments is important in

dictating the structural and functional properties of the

cytoskeleton (Chu and Voth 2005) and, similarly, two-

dimensional correlation Fourier Transform Infrared (FTIR)

spectroscopy has shown that structural flexibility is an

inherent property of immunoglobulins (Kamerzell and

Middaugh 2007); such flexibility is required for function

because monoclonal IgG molecules must recognize anti-

gens of various shapes and sizes. In the binding of a sig-

nalling molecule, GTP, by signal recognition particle (SRP)

GTPase domains (Ramirez et al. 2008) it was hypothesized

that flexibility enabled the regulation of GTPase activity by

the cognate SRP receptor. Finally, a role of motion in the

function of DNA has also been proposed (Blagoev et al.

2006) from MD simulations. In Fig. 2, we detail the time-

scales of motion for biomolecules and some experimental

techniques that can, in principle, be used to study them.

Motion of biological interest is often challenging to study

because it occurs on timescales (ps to ms) that are accessible

to a limited number of techniques such as NMR and

dielectric relaxation spectroscopy (Fig. 2).

Although it is well-established, both from theoretical

predictions and experimental observations, that macro-

molecules are highly dynamic at physiological tempera-

tures, characterization of the motion is very challenging.

The earliest MD simulation of a protein was of the small

protein bovine pancreatic trypsin inhibitor (BPTI)

(McCammon et al. 1977). McCammon et al. observed that

atom displacements were substantial but that the resulting

motion was correlated to conserve the structure of the

protein. Increases in computer power have enabled study of

the motion of systems of much larger size (Jensen et al.

2010) and on much longer timescales by use of these

methods (Shaw et al. 2010). In Fig. 3, we highlight the

work of D. E. Shaw Research, which observed slow

motion, occurring on timescales longer than the rotational

diffusion correlation time, of the backbone of a globular

protein. This work shows that the motion of the backbone

of BPTI occurs on longer timescales than that of the side

chains, and suggests this is a general property of proteins.

Fig. 1 Structures and ensembles of ubiquitin showing the ability of

ensemble approaches to capture structural heterogeneity. 1UBQ and

1D3Z are the X-ray crystallography structure and the NMR average

solution structure (purple and red), respectively. In green are two

ensembles of motion on the sub-sc timescale (\*4 ns for ubiquitin)

and in blue are two ensembles that capture supra-sc timescales up to ms.

Below the structures is the agreement, in Hz, with experimental

hydrogen bond scalar couplings that are sensitive to a molecule’s

motion (small numbers are better), hrmsdiji; a measure of structural

heterogeneity, and the RMSD from the X-ray crystal structure
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Normal mode analysis, a theoretical tool that is comple-

mentary to MD, and its coarse-grained equivalents, the

Gaussian network model (Bahar et al. 2010) and the aniso-

tropic network model (Zheng 2010), have been useful to

determine the motion that occurs on potentially slower time

scales (low-frequency modes). Normal mode analysis pro-

duces projections of the modes rather than conformational

ensembles but can, in principle, probe longer timescales.

Although relating the frequencies of motion of biomolecules

to biological function has remained contentious (Kamerlin

and Warshel 2010; Karplus 2010) the motion of biomole-

cules is likely to be related to their function.

The experimental evidence for protein motion comes

from a wide range of techniques covering different time-

scales. Faure et al. (1994) were able to directly model the

motion of lysozyme in the crystalline form by using atomic

fluctuations around the mean atomic positions that give rise

to diffuse scattering of the beam in diffraction experiments.

Neutron scattering has also been used, in a similar manner,

to detect motion in myoglobin (Kneller and Smith 1994;

Frauenfelder and Mezei 2010), as has Mossbauer spec-

troscopy, by use of which it was observed that fluctuations

of the solvent cause internal protein motion (Frauenfelder

et al. 2009). Further evidence of motion from X-ray crys-

tallography data comes in the form of the multiple con-

formations of proteins and nucleic acids that are obtained

when the crystallization process is carried out several

times. These conventional experiments can be comple-

mented by single-molecule techniques that enable the

observation of single states of a given molecule. Single

molecule fluorescence energy transfer (FRET) spectros-

copy, for example, enables, in principle, observation of

distance distributions rather than average distances. These

methods have provided very solid evidence that, because of

macromolecular dynamics, inter-atomic distances are not

fixed, either in proteins (Deniz et al. 2000) or in nucleic

acids (Deniz et al. 1999).

The most detailed and exhaustive experimental studies

of protein motion have been conducted with NMR spec-

troscopy. This technique has the ability to probe structural

motion with atomic detail over the entire range of time-

scales from picoseconds to seconds (Fig. 2). Since the first

comprehensive study of fast protein motion by NMR (Al-

lerhand et al. 1971) it is has become routine to characterize

the motion of proteins (Kay et al. 1989) that is faster than

rotational diffusion by use of heteronuclear relaxation

rates. For a recent review of the application of NMR to the

study of the rapid motion of biomolecules and their com-

plexes, the reader is directed to Jarymowycz and Stone

(2006). In addition, Kay et al. have shown that it is possible

to use the Carr–Purcell–Meiboom–Gill (CPMG) NMR

measurements developed by Palmer et al. (2001) and Loria

et al. (1999) to identify and characterize conformations that

are present with a very low population (Korzhnev et al.

2010) when they are in relatively slow (ls–ms) exchange

with the most stable conformation of the macromolecule

(Mittermaier and Kay 2006). Structural fluctuations

occurring on the nanosecond to microsecond timescale can

be probed by measurement of residual dipolar coupling

(RDC) (Salmon et al. 2011).

Biomolecular dynamics from ensembles

Because the ability to visualize motion in macromolecules

can provide details on how this contributes to biological

function, a number of techniques have been developed for

this purpose. Below are presented three methods that

Fig. 2 Timescales of biological motion (above) and experimental and

theoretical methods (below). Protein and nucleic acid dynamic time-

scales are shown in green and red, respectively. Timescales common to

all biomolecules are shown in black. Experimental methods like small-

angle X-ray scattering (SAXS) and wide-angle X-ray scattering

(WAXS) are shown over the range they can detect fluctuations. Motion

on faster timescales averages during the experiments

Fig. 3 Dynamic content of BPTI from a 1 ms simulation run by

D. E. Shaw Research, showing that motion of side chains is

pronounced on the sub-sc timescale and that backbone motion is

significant on the supra-sc timescale. Taken from Shaw et al. (2010)

Eur Biophys J (2011) 40:1339–1355 1341

123



combine molecular simulation methods with the informa-

tion provided by experimental techniques such as NMR;

namely MD, MD selection methods, and restrained MD

(Fig. 4). We concentrate mainly on the application of such

methods and the insights they have provided rather than

addressing the underlying principles.

Since the first simulations of biomolecules MD has

become the most common method for studying the

motion of proteins and nucleic acids (Karplus 2003).

Simulations are started from a known configuration of the

molecule derived from experimental (X-ray or NMR) data

or determined by homology modelling. Use of the

ensembles generated from MD to analyse the function of

motion for proteins and nucleic acids is too extensive to

discuss in detail here; we therefore highlight some of the

newer applications. In conventional MD, the starting

configuration evolves in discrete time steps to produce a

trajectory that simulates the fate of the molecule under a

force field that models the internal energy of the system

as the sum of simple potentials (Fig. 4a). In selection

methods the agreement of such trajectories with experi-

ment is improved by reassigning the statistical weights of

the snapshots of the trajectory (Fig. 4b). Structure calcu-

lations using experimental data often restrain the structure

at each step, as is shown in Fig. 4c, and do not report on

the structural heterogeneity caused by dynamics. Time

and ensemble restraining schemes in Fig. 4d, e can,

instead, lead to ensembles that accurately capture the

structural heterogeneity of the system as reflected by the

experimental data.

The motion of bacteriophage T4 lysozyme (B4L) and

adenylate kinase (AdK) has been studied by MD for a

number of years. B4L is a hydrolytic enzyme composed of

two domains and its dominant motion changes the orien-

tation between them. In the crystal the protein is in a closed

conformation but MD studies indicate that in solution it is

likely to be more open than the crystal structures suggest

(de Groot et al. 1998). This open state of the molecule has

also been observed experimentally (Goto et al. 2001) and it

is likely that this protein passes between the open and

closed states via collective opening of the active site (Hub

and de Groot 2009). One question that remains unan-

swered, however, is what the populations of the open and

closed states are for this molecule. For AdK, it is well

known that motion is highly important in biological func-

tion (Olsson and Wolf-Watz 2010). This protein is known

to undergo large conformational changes in both the

presence and absence of substrates in solution (Beckstein

et al. 2009). It seems that the binding and release of sub-

strate, which are rate-limiting for this enzyme, are related

to these conformational changes. The link between catal-

ysis and the structural changes that this protein undergoes

is however hotly debated.

Shaw et al. (2010) have recently shown the power of

MD simulations by developing specific hardware and

software for this purpose. By running microsecond-long

MD simulations of the Kc1.2 pore domain they were able

to show that potassium channel gating is a result of solvent

expulsion from the active site, and confirmed the previ-

ously predicted model of ion transport (Hodgkin and

Keynes 1955). Simulations of DNA and RNA are more

limited, because of the relatively lower quality of the force

Fig. 4 Atomistic MD unrestrained and restrained schemes. For the

restrained simulations, averaging of the experimental data is

indicated as dashed lines. For unrestrained simulations, no restraints

are present and the final ensemble is the sum of all frames (a). In MD

selection no restraints are applied during the simulation, the final

ensemble is selected on the basis of experimental data, eliminating

structures that reduce the fit with experimental data (b). Restrained

MD enforces the experimental data at each time point and, as a result,

each structure is considered a different model of the average structure

(c). During time-averaged restrained MD (d) a memory function

biases the simulation to fulfil the restrained data over a given time

period, the final ensemble samples the timescale up to the length of

the memory function. Ensemble-averaged restrained MD restrains

the experimental data at each step as in restrained MD, however the

average runs over multiple parallel molecules that react to fulfil the

experimental data at each time point over the ensemble (e). The final

ensemble is a single snapshot of the parallel trajectories, and

the timescale of the average is limited only by the timescale of the

experimental data
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fields, but are now maturing (Perez et al. 2007b), making it

possible to explore the functional motion of nucleic acids.

Comparison of the motion of double-stranded DNA and

RNA, for example, has recently shown that RNA duplexes

are more rigid than their DNA counterparts (Perez et al.

2007a; Faustino et al. 2010). It is well-established that MD

suffers from limitations (van Gunsteren and Dolenc 2008)

but, despite this, MD descriptions of macromolecular

motion are quickly increasing in quality and this technique

will continue to be a useful approach to determining

ensembles.

As previously mentioned, when experimental data are

available it is possible to use this information to prune the

structures from an MD trajectory. This approach, which re-

weights the frames of an MD trajectory so that the trajec-

tory is collectively consistent with experimental data

(Fig. 4b), was used in an analysis of the motion of five

globular proteins (Chen et al. 2007) by use of an NMR

order parameter (S2) that reports on motion that is faster

than the rotational diffusion of the macromolecule. This

variable takes values between zero and unity, where zero

represents unrestricted motion of the bond vector in the

molecular frame and a value of unity indicates the vector is

rigid. In Table 1, we show results from a selection method

applied to five different proteins. The selection method was

used to generate ensembles in good agreement with the

experimental data, even when the underlying MD trajec-

tories were not. The selection method was also used to

great effect by Frank et al. (2009) to produce ensembles

reporting on RNA motion; the structures of the confor-

mational ensemble showed twisting of the individual RNA

helices relative to one another in solution (Frank et al.

2009). A trajectory reweighing method has recently been

proposed to improve MD force fields, but the approach can

also be used to generate an ensemble from which func-

tional motion can be extracted (Li and Brüschweiler 2010;

Long and Brüschweiler 2011a).

Time-averaged and ensemble-averaged ensembles can

be seen as equivalent although they are generated using

MD by using different approaches. In restrained time-

averaged MD, which has been used to great effect and is

reviewed elsewhere (Scott et al. 1998), the simulated

molecule experiences a potential that biases the trajectory

to be consistent with the time-averaged experimental

observable (Fig. 4d); its key variable is the averaging

time. Recent examples of its use include analysis of

information about structural heterogeneity encoded in

NMR data, for example NOEs and 3J couplings (Tonelli

et al. 2003; Allison and van Gunsteren 2009; Missimer

et al. 2010), and RDCs (Hess and Scheek 2003). Tonelli

et al. (2003), for example, used restrained time-averaged

MD to determine an ensemble of structures for an RNA/

DNA hybrid duplex which enabled them to characterise

the helix flexibility required for the binding of the duplex

to ribonuclease A.

An alternative to time-averaging is restrained ensemble-

averaged MD, in which multiple configurations are

simulated in parallel using a potential that biases the

ensemble-averaged NMR parameters to agree with the

experimental observable at each step of the simulation

(Fig. 4e). The characterisation of structural heterogeneity

from ensemble restrained MD was initially hampered by

the inability of NOE to correctly identify the correct dis-

tribution of inter-proton distances (Bonvin and Brunger

1996) because of the non-linear averaging of this NMR

parameter. This problem has now been overcome to a

significant extent by using more appropriate NMR data,

enabling this approach to generate quite realistic repre-

sentations of the structural heterogeneity of proteins and

nucleic acids (Clore and Schwieters 2004a; Lindorff-Larsen

et al. 2005a; Richter et al. 2007). Initially these methods

used S2 and NOE data, however observables such as scalar

couplings (Lindorff-Larsen et al. 2005b), trans hydrogen

bond scalar couplings (Gsponer et al. 2006), and RDCs

(Clore and Schwieters 2004a; De Simone et al. 2009;

Fenwick et al. 2010, 2011) can also be used.

Ensemble restrained MD has been recently used to

determine the structural heterogeneity of proteins of

nucleic acids on the picosecond to millisecond timescale by

exploiting the information contained in RDCs. Work by

Lange et al. (2008) has shown that the motion in proteins

on this timescale is mainly observed in loops, although

slow motion is thought to be present in the backbone of

ubiquitin (Lange et al. 2008). In a different but closely

related study, a large amount of motion of the loop of the

E2 enzyme Ube2g2 was observed, suggesting that the E2

enzyme may be regulated by the motion of this loop (Ju

et al. 2010). A conformational ensemble of GB3 and an

ensemble produced by us have both shown that the motion

of residues can be correlated (see below). For the B3 IgG

binding domain of streptococcal protein G it was shown

that the fluctuations of the backbone dihedral of neigh-

bouring residues are correlated (Clore and Schwieters

2004a; Bouvignies et al. 2005). As we will show, we have

Table 1 Correlation with the experimental backbone order parame-

ters (S2) for unrestrained MD and for the selection method (SAS)

Protein name Correlation for

unrestrained MD

Correlation for SAS

Eglin c 0.3–0.5 0.96–0.98

Ubiquitin 0.6–0.8 0.99

TNfn3 0.2–0.5 0.98–0.99

bARK1 PH domain 0.6–0.8 0.97–0.98

Lysozyme 0.6–0.7 0.99

Taken from Chen et al. (2007)
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used a conceptually similar approach to reveal the presence

of weak but statistically significant long-range correlated

motion in an ensemble for the protein ubiquitin (Fenwick

et al. 2011). Schwieters and Clore used ensemble simula-

tions restrained by RDCs to study the motion of a Dick-

erson DNA dodecamer and showed that DNA is a

relatively rigid molecule in terms of its overall macro-

scopic persistence length. They found, however, that the

motion of the bases was of larger amplitude than that of the

phosphate backbone. In Fig. 5, we show representations of

Dickerson DNA from restrained MD (N = 1) and ensem-

ble restrained MD (N = 4). It can be seen that the motion

of the DNA is more complex than simple fluctuations

around the mean structure. These observations are consis-

tent with the hypothesis that the flexibility of DNA has a

functional role, enabling it to recognise a wide range of

binding proteins (Schwieters and Clore 2007).

The function of biomolecules is intimately linked to

molecular recognition and, as a result, the purpose of much

current research is to describe kinetically and structurally

the interactions of biomolecules. As ensemble approaches

encode information that is not present in a single structural

snapshot (Chaudhury and Gray 2008) they offer clear

advantages over conventional methods of structure

determination.

Biomolecular recognition

The study of molecular recognition is important not only

to gain an appreciation of the underlying mechanisms

of essential biological function, but also to aid the

development and generation of new drugs (Lane 2001;

Aleksandrov and Simonson 2010). Four mechanistic

models have been proposed for molecular recognition;

these are the lock and key, induced fit, fluctuation fit, and

conformational selection models. Recent reviews of the

models themselves are already available in the literature

(Ma et al. 1999; Kumar et al. 2000; Grunberg et al. 2004;

Hammes et al. 2009; Zhou 2010; Vertessy and Orosz

2011). Here we will describe how conformational ensem-

bles can be used to determine the extent to which the

different models are appropriate for understanding the

mechanism of molecular recognition for a given system.

The first of the models was proposed under the

assumption that molecules were mainly static. In the model

proposed by Fisher—the lock and key model—two mole-

cules fit together because of their complementary shapes

(Fischer 1894). The second model—the inducted fit

model—proposed instead that one or both of the molecules

changed conformation concomitantly with formation of the

complex (Koshland 1958). These definitions distinguish

the two possible mechanisms of binding for static mole-

cules but they are not immediately applicable to most

biomolecules because, as discussed above, these are

appreciably dynamic.

Straub and Szabolcsi (1964) recast the lock and key

model to accommodate the dynamic properties of bio-

molecules. In their new model, the fluctuation fit model,

dynamic molecules pass through different conformational

states and form a complex in a lock and key fashion when

two complementary configurations occur (Straub and

Szabolcsi 1964; Vertessy and Orosz 2011).

The induced fit mechanism can be rendered consistent

with the presence of dynamics by refining its definition in

order to distinguish it from fluctuation fit. Induced fit, when

motion is present, implies that the formation of the com-

plex generates a new configuration, one that is not sampled

in the free state, for one or both molecules. Recently the

fluctuation fit model has also been referred to as confor-

mational selection. The idea of conformational selection,

and that of population shift, were first proposed by the

Nussinov group in a series of papers and this concept is

now considered to be the leading model for molecular

recognition (Ma et al. 1999; Tsai et al. 1999a, b; Kumar

et al. 2000). We consider fluctuation fit and conformational

selection to be equivalent and refer below to them both as

conformational selection. In Fig. 6, we show how the two

binding models are distinguished.

A unified model for molecular recognition has been

proposed in which recognition proceeds via a three-step

process (Grunberg et al. 2004), though in some cases

some of the steps can be negligible. The first step is

diffusion, followed by conformational selection, and the

last step is induced fit. The authors argue that this

mechanism fits the energetics and kinetics of complex

Fig. 5 Dickerson DNA restrained MD simulations (N = 1) and

ensemble restrained MD simulations (N = 4). The four N = 1

ensembles show that the average structure of the DNA is well

defined by the experimental data, whereas the ensemble of N = 4

shows that the data are consistent with motion to some extent. The

average representations of the two ensembles, shown on the right,
indicate that the two ensembles lead to noticeably different average

structures. Taken from Schwieters and Clore (2007)
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formation better than conformational selection or induced

fit alone. Recently the relative weights of conformational

selection and induced fit were analysed for ubiquitin

binding (Wlodarski and Zagrovic 2009; Long and

Brüschweiler 2011a); in agreement with this unified

model of molecular recognition both conformational

selection and induced fit were observed to be involved in

the binding mechanism.

In the literature, the induced fit model is more prevalent

than the conformational selection mechanism, because of

the common observation that the crystal structure of the

bound protein is different to that of the free molecule.

Others have noted, and we stress here again, that a con-

clusion of induced fit because of different snapshots of the

free and bound proteins is not warranted (Boehr et al.

2009). Similarly, the inability to detect low populated

states does not mean that they do not exist. Recent

advances enable the detection and characterisation of near-

invisible, low populated stable states in the native ensem-

ble (Korzhnev et al. 2010). It will be seen below that

structural heterogeneity can sometimes account for the

observed differences without the need to invoke an induced

fit mechanism. Discrimination of recognition mechanisms

purely on the basis of static structures is not possible and

the use of methods that provide information on structural

heterogeneity can indeed be of great use.

Various mechanisms have been proposed to describe the

binding behaviour of the three-domain protein AdK. In this

protein, the two side domains need to close over the central

domain for catalysis to occur. Early X-ray structures

indicated that in the free form the molecule exists in an

open state whereas binding to substrates or substrate ana-

logues results in a closed state (Pai et al. 1977). This ori-

ginal report described the binding as induced fit but in a

later NMR study it was observed that the side domains

of AdK undergo substantial microsecond to millisecond

conformational exchange in the absence of substrate

(Shapiro et al. 2002) and that the substrate-bound form of

the protein is compact. However, these results neither

prove nor disprove the hypothesis that free AdK visits the

closed state with any appreciable frequency. To determine

whether conformational selection or induced fit best rep-

resent the mechanism by which AdK binds its substrates, a

conformational ensemble is potentially a very powerful

tool. If induced fit is the dominant mechanism for this

protein the conformational ensemble would not contain

closed configurations; if, instead, closed configurations can

be found in the ensemble of the free protein it is then

possible that AdK assumes the bound configuration by

conformational selection.

Arora and Brooks (2007) performed MD simulations of

AdK and observed that the protein does, indeed, assume

the closed state, with only minor structural rearrangement

required to obtain the bound configuration. Moreover,

experimental evidence for AdK visiting the closed state in

the absence of substrate comes from three configurations of

a thermophilic AdK that were crystallised and are inter-

mediate structural snapshots between the open and closed

states (Henzler-Wildman et al. 2007). It would therefore

seem that the dominant mechanism whereby AdK reaches

the bound state, in terms of gross structural rearrangement,

is conformational selection. It is clear from this example of

AdK that conformational ensembles of the free state pro-

vide a simple way to determine which mechanism is

dominant for a given system. Despite the clarity of the

models above, the number of cases in which a given

mechanism has been clearly demonstrated is limited. In the

next section, we highlight some representative examples

and discuss how they can be interpreted.

Biomolecular recognition from ensembles

The first examples of conformational selection mechanisms

are starting to appear in the literature. MD simulations

were used by Salsas-Escat and Stultz (2010) to generate

ensembles of type III collagen that describe its conforma-

tional heterogeneity. They observed that collagen could

adopt in the free state the configuration that it adopts in the

Fig. 6 Conformational selection and induced fit models of binding.

The two different models are distinguished by the conformation of the

binding site when the ligand binds. During conformational selection

the ligand binds to the bound configuration of the binding site

whereas during induced fit the bound form of the complex is formed

after binding of the ligand
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active site of proteolytic enzyme CMMP8 that cleaves

disordered peptides. Collagen contains additional cleavage

sites for the proteolytic enzyme CMMP8 but these sites

do not sample the bound configuration. These experi-

ments suggest that proteolytic degradation of collagen

is controlled by the formation of the correct collagen

conformation, and the results are consistent with the

experimentally observed cleavage pattern (Fields 1991).

Conformational selection has also been shown to be a

viable molecular recognition model for nucleic acids. TAR

RNA, for example, selects its ligands by conformational

selection (Zhang et al. 2006). This RNA contains a bulge,

which is a source of structural heterogeneity in the mole-

cule. The motion of the bulge was analysed by use of RDCs

with the help of MD simulations to generate a conforma-

tional ensemble that captures the dynamic sub-states of the

system. Analysis of the ensemble revealed that the internal

motion of TAR RNA was equivalent to the structural

changes observed in X-ray structures of TAR RNA in

complexes with its ligands.

Examples of induced fit are less abundant, although a

disorder to order transition upon binding provides a good

example of this mechanism. An MD approach was used to

study the RNA binding protein TIS11d. This protein folds

upon binding to its cognate RNA to regulate RNA degra-

dation (Qin et al. 2009) as shown by NMR experiments

(Hudson et al. 2004). Using MD simulations to study the

unfolded state the authors observed that the distribution of

configurations assumed by the bound state did not overlap

with that corresponding to the unbound state. This exam-

ple, where the induced fit mechanism seems to dominate,

does not exclude the presence of the conformational

selection mechanism, which could be also contribute to

binding. As shown in Fig. 7, to be able to conclude which

mechanism dominates for a particular binding reaction is

key to determining the population of the bound confor-

mation in the unbound state by using MD or ensemble MD

restrained with appropriate NMR data.

A combination of conformational selection and induced

fit has been observed in ubiquitin binding. More than 40

structures of ubiquitin in complex with binding partners are

available and show that ubiquitin can adopt different con-

figurations upon binding. Lange et al. (2008) determined a

conformational ensemble of unbound ubiquitin from RDC

and NOE data and were able to identify an ensemble

member that was within *0.8 Å of each of the bound

structures of ubiquitin. This result showed that sampling

the free state was sufficient to reach the configuration of the

bound state in a conformational selection mechanism, with

only minor induced fit changes to the backbone and side

chain rotameric states. Wlodarski and Zagrovic (2009)

further studied ubiquitin using global multidimensional

scaling analysis to determine the relative weights of

induced fit and conformational sampling, and concluded

that the role of induced fit was only marginally lower than

that of conformational selection. We recently generated a

new conformational ensemble of ubiquitin using RDCs and

NOEs and identified ensemble members that are extremely

similar to the bound states of ubiquitin (*0.5 Å); this

result suggests that conformational selection is likely to

play a larger role than induced fit in the molecular recogni-

tion of ubiquitin (Fenwick et al. 2011). Recently Long and

Brüschweiler have used a reweighting method to study the

interplay between ubiquitin and UIM during complex for-

mation. Their innovate technique gives further evidence of

the role of conformational selection in the binding of ubiq-

uitin partners via a population redistribution i.e. population

shift mechanism (Long and Brüschweiler 2011a). We

highlight the differences between this example of confor-

mational selection with that of induced fit for TIS11d in

Fig. 7. It can be seen that in the case of conformational

selection the bound and free states have low and similar

RMSD profiles, whereas for the induced fit case sampling of

the bound and free states of TIS11d is quite different.

Gaspari et al. (2010) have shown that the canonical

serine protease inhibitor lock and key model can be

explained by conformational selection. They generated

conformational ensembles from S2 and NOE data for two

peptide proteases inhibitors (SGCI and SGTI) and found in

both cases that the conformational ensemble of the free

states contained configurations corresponding to the

structures of the inhibitors bound to the proteases (Gaspari

et al. 2010).

Fig. 7 Conformational selection and induced fit ensembles. Confor-

mational selection for ubiquitin where the bound and unbound

conformations share large overlap (yellow and red) and induced fit for

TIS11d where there is very little overlap of the distributions (green
and blue). Data for ubiquitin adapted from Qin et al. (2009). Ubiquitin

data taken from Fenwick et al. (2011) and MoDEL (Meyer et al.

2010). The distributions of pairwise RMSD to the average bound

structure are scaled to have the same volume
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For RNA–protein interactions, it has been proposed that

induced fit makes the largest contribution to molecular

recognition because in many cases the solution structure of

the RNA is markedly different from that observed in the

complexes with RNA-binding proteins (Williamson 2000).

Despite this, counter examples can be found for which the

dominant mechanism seems to be lock and key. Wright and

co-workers show that a lock and key mechanism can

explain the binding of finger 4 of the transcription factor

IIIA to 5S RNA. A second report of lock and key for RNA

has also become available in which one of the molecules is

static and does not change its conformation upon binding.

In this case the lock and key hypothesis was based on the

solution structure of 7SK-SL RNA free and in complex

with argininamide (Dethoff and Al-Hashimi 2010; Durney

and D’Souza 2010), which showed no evidence of reor-

ganisation upon binding. Moreover, mutations that freeze

out motion of the related TAR RNA have been shown to

increase the binding affinity (Stelzer et al. 2010). These

examples highlight the possibility that the static lock and

key mechanism may apply in some cases, although

examples are limited.

Allostery and correlated motion

In the above examples, we have ignored the role of allostery

in molecular recognition. Allostery is the process by which

the affinity of a binding site for a ligand is affected by the

binding of a second ligand in a different, distant, site. This

process requires the transfer of structural and/or dynamic

information across the macromolecule through, potentially,

correlated conformational changes. Simple contact models

can characterize networks of this type for some biomole-

cules but others seem to operate via more complex coupling

mechanisms (Daily et al. 2008) that can include changes in

quaternary structure (Daily and Gray 2009).

The Nussinov group recently emphasised the impor-

tance of allostery in signal transduction and transcriptional

control (Ma et al. 2010). In their opinion, all interactions

can potentially have allosteric consequences, because of

the nature of population shift, and can result in highly

complex and redundant networks. Using these ideas, they

were able to rationalise the complexity of biomolecular

interaction networks that operate in transcriptional regu-

lation (Pan et al. 2009). This work has recently been

reviewed (Pan et al. 2010).

Three different idealised models for allostery—the

MWC model, the KNF model, and the more recently sug-

gested conformational spread model—have been proposed

to explain binding allostery (Kumar et al. 2000; Liu et al.

2006; Okazaki and Takada 2008; Tsai et al. 2008, 2009;

Whitley and Lee 2009). These models consider that only

two well-defined conformations for each binding site, cor-

responding to the free and bound states, can be adopted. The

MWC model assumes that these two conformations are in

equilibrium and that the motion of each of the binding sites

is fully correlated; it is conceptually related to the confor-

mational selection mechanism of molecular recognition as

the bound conformation at both binding sites is visited even

in the absence of ligand. Gunasekaran et al. (2004) first

proposed this idea, in which allostery proceeds via a pop-

ulation shift of the ensemble. The KNF model is instead

conceptually related to the induced fit mechanism of

molecular recognition; it does not require the presence of

motion in the free state and suggests that ligand binding

induces a change of structure in the first binding site that

causes the formation of one or more well-defined interme-

diate states in which affinity for the second ligand is altered

through the propagation of conformational changes across

the structure of the protein. The conformational spread

model and Eigen’s scheme (Eigen 1967) can be regarded as

the fully enumerated intermediate states between the MWC

and KNF models. These schemes are shown in Fig. 8.

It is interesting to consider the implications of these

models for the motion of allosteric biomolecules in the

absence of their ligands. The MWC model, which explic-

itly considers the dynamics of the free state, invokes strong

correlation of the motions at each binding site. The KNF

model, instead, only requires binding in the first site to

influence the affinity of the second binding site for its

ligand. These observations indicate that careful analysis of

the structural heterogeneity of the free state using confor-

mational ensembles, together with knowledge of the

structure of the bound state, potentially enables the

mechanism by which binding allostery operates for specific

systems to be determined. It can be seen from Fig. 9 that an

accurate characterization of the structural heterogeneity of

the free and bound states in terms of a conformational

ensemble can provide information on the model that

applies to a specific allosteric protein.

In the absence of experimentally validated conforma-

tional ensembles, double mutant cycles are one of the

strongest experimental validations of allosteric channels

and are routinely used in their investigation. These types of

data can be useful in that they can determine if cooperative

channels and mechanisms are present. In some cases they

can indicate which residues are involved in such channels.

Determination of the underlying mechanisms is more dif-

ficult, however, and requires atomic level descriptions of

biomolecular motion. Istomin et al. (2008) have used this

type of analysis and observed clear channels of commu-

nication between residues separated by non-sequential

residues in many different proteins. In an NMR approach

Mayer et al. (2003) combined NMR relaxation data for ten

mutants of the B1 IgG binding domain of streptococcal
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protein G and observed that the backbone order parameters

varied less than would be expected if the residues fluctu-

ated independently, suggesting widespread concerted

motion of pairs of residues. This claim is controversial and

could not be substantiated by MD simulations of this and

other proteins (Lange et al. 2005).

Biomolecular allostery from ensembles

Descriptions of allostery from ensembles can be indicative

of correlated motion. Because of the challenges in directly

determining time-resolved coordinates from experiments,

detection of correlations between the motion of residues

distant in sequence has remained elusive. As described

above, conformational ensembles are most often used for

this purpose. They combine experimental (NMR) data with

MD, and enable protein motion to be characterized at

atomic resolution.

Once the ensembles are generated, there are different

ways of determining whether they contain correlated

motion. One of the most important considerations is the

frame of reference for extracting the motion. If Cartesian

coordinates are chosen, the first difficulty is choosing the

correct alignment frame for the ensemble members,

because it has been shown that a poor choice of reference

frame can lead to artefactual results (Theobald and Wuttke

2008). In Cartesian space, the standard analysis is com-

putation of the distance correlation matrix; although this

method is sensitive to large displacements, it does not

report on the nature of the hinges that give rise to the

observed displacements. Thus, if one is interested in

obtaining mechanistic information on the channels of

communication an alternative coordinate system is more

appropriate. The choice of internal coordinates (dihedral

space) is natural for proteins because most of their motion

is due to fluctuations in dihedral angles. Correlated motion

can be analysed in dihedral space and can be used to

identify hinge regions. Thorough analysis of correlated

motion requires analysis in both reference frames, although

it is preferable to use internal coordinates when trying to

understand mechanistic details and to elucidate allosteric

channels (Clore and Schwieters 2004a; Showalter and

Brüschweiler 2007; Li et al. 2009). We compare these two

methods in Fig. 10 for an ensemble of ubiquitin that con-

tains both short and long-range correlated motion.

Analysis of MD simulations has become commonplace

in Cartesian space, with examples covering a large range of

proteins. Dihydrofolate reductase has non-additive behav-

iour in double mutant cycles and MD simulations (Agarwal

et al. 2002; Rajagopalan et al. 2002), in which the affect of

mutations can be rationalised in terms of the small struc-

tural changes and specific rearrangements of the hydrogen

bonds (Rod et al. 2003). Antibody conformations in the

Fig. 8 Models of allostery. The schemes represent the identity of the

conformations of a tetrameric (a) and heterodimer (b) allosteric

protein that are present in solution as the concentration of ligand is

increased from top to bottom. Ligand binding is represented as a

change in color in the subunit from white to black whereas

conformational change is represented by a change in shape; the

populations of the various conformations are not represented. In the

MWC model the species in solution do not change but their

populations shift as a consequence of ligand binding; as only two

possible states are possible there is a strong correlation between the

conformation of each subunit. In the KNF model, instead, ligand

binding causes a local conformational change in the subunit, that

influences the affinity of the other subunits for the ligand without the

need to invoke structural changes; as the conformational changes in

the various binding sites are not concerted this model requires a

weaker correlation between the conformations of each subunit. The

general scheme of Eigen, where a full permutation of the states is

considered, is also shown (right)
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free and bound forms are also significantly different. MD

simulations of the unbound antibody were analysed to

determine which motion is correlated between the various

regions. It was observed that intra-domain correlations

exist on timescales of 40 ps and above, and that inter-

domain correlations between the heavy and light chains

were not present below 60 ps (Viswanathan et al. 2000).

These results suggest that allostery exists between the

heavy and light chains of the antibody and may be

important in communicating the bound signal through the

antibody to the Fc region, which leads to the correct

immune response.

Recently an MD study on the ferredoxin protein motif

has revealed that mutations in a loop region distant

(*20 Å) from the active site have an appreciable affect on

the redox potential at the iron–sulphur cluster-binding

region (Nechushtai et al. 2011). The loop truncation was

observed to have limited effect on the structure of the

molecule as determined by X-ray crystallographic studies;

the authors propose that changes in motion, propagated via

a channel, are responsible for the change in redox potential.

MD simulations were used to characterise the motion of the

system and the ensembles generated were analysed to

uncover correlated motion. The simulations predicted the

propagation of motion between strands of the b-sheet,

consistent with the b-lever motion (Fenwick et al. 2011)

that has been observed to couple motion across b-strands.

The drug Hoechst 33258 binds to duplex DNA. NMR

experiments could not detect the presence of singly bound

Hoechst 33258 to DNA and, instead, showed that only the

doubly bound Hoechst 33258 to DNA species seems to

exist in solution (Searle and Embrey 1990). Extended MD

simulations of the 1:1 and 2:1 complex of the drug and

DNA showed that binding allostery is primarily a conse-

quence of the transfer of dynamic information rather than

of structural change (Harris et al. 2001). A similar example

comes from the ensembles of TAR-RNA determined by the

Al-Hashimi group (Zhang et al. 2007). Careful experi-

mental investigations combined with modelling enabled

the observation of correlated motion that biases transitions

along predetermined conformational pathways (Fig. 11). In

this case the pathways of motion could be directly deter-

mined from the experimental data, and by selecting frames

from ensembles determined using unbiased MD it was

possible to visualise correlated motion. It seems that the

bulge in TAR-RNA is responsible for the pathways of

motion, because the same pathway bias was not observed

for RNA without the bulge. Furthermore, it was possible to

place the X-ray structures of the RNA on the pathways

showing that they link biologically relevant states.

Illustration of correlations in dihedral space has pri-

marily been applied to understanding of the local motion in

the backbones of proteins. Indeed the first MD simulations

reported for BPTI showed backbone correlations from

analysis of the trajectory in dihedral space (McCammon

et al. 1977). These correlations were observed to minimise

the structural displacements that would otherwise be

caused by large-amplitude bond rotation in the backbone.

The crankshaft motion is caused by the rigidity of the

peptide plane and couples wi-1 with /i. The authors also

observed that the crankshaft motion also operates between

the v angles of aromatic residues to enable motion of the

side chain without flipping of the aromatic side chain

(McCammon et al. 1977). These correlations have also

been described by use of modern very long MD simula-

tions with state of the art force fields (Fitzgerald et al.

2007; Li et al. 2009).

Ensembles generated with experimental data are also

known to reproduce short and medium-range correlated

motion. Clore and Schwieters (2004a) were able to obtain

direct evidence of the existence of crankshaft motion from

ensemble MD simulations of the B3 IgG binding domain of

streptococcal protein G restrained by RDCs. A second study

showed that a description of the dynamics of the same

protein using the 3D Gaussian axial fluctuation model, that

was fit to RDCs, gave better agreement with experimental

Fig. 9 The scheme represents the conformational states that are

populated to a non-negligible extent in the free state, in the

intermediate state proposed by the KNF model and in the bound

state. It can be seen that an accurate characterization of the structural

heterogeneity of the free and bound states in terms of a conforma-

tional ensemble can provide information on the model that applies to

a specific allosteric protein. The size of the symbols indicates which

are the major and minor states
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NMR results when correlated motion between residues in

opposite strands was invoked (Bouvignies et al. 2005). This

study provided evidence that hydrogen bonds transfer

motion between strands, which presumably could also

operate to couple motion up and down helices.

Work in our own laboratory has led to a detailed

mechanistic description of the pathway that connects two

loops involved in molecular recognition of ubiquitin, as

shown in Fig. 12. Using the restrained MD approach with

the large amount of experimental data collected for ubiq-

uitin (Lakomek et al. 2006; Lange et al. 2008), we have

been able to identify weak long-range correlated motion in

ubiquitin that conserves the local structure and enables the

propagation of conformational change across the structure

of the protein. These observations can be rationalised in

terms of the local peptide geometry interacting with the

hydrogen-bonding network. Moreover, motion in the

b-strands is manifest in a specific sequence of structural

changes that lead to the weak coupling of the motion of the

two binding loops in ubiquitin.

Our analysis of the conformational ensemble of ubiq-

uitin revealed that correlated backbone motion both con-

serves the structure of ubiquitin and provides a pathway for

transfer of structural and dynamic information. The path-

way is very detailed in the sense that the combination of

experimental data with the MD force field gives rise to a

pathway of dihedral rotations that can be connected in a

linear sequence of events (Fenwick et al. 2011).

Fig. 10 Correlations in

dihedral and Cartesian space for

the ERNST ensemble (Fenwick

et al. 2011). Top left, the

structure of ubiquitin, indicating

the organisation of the b-strands

and the degree of long-range

structural correlation (red
indicates high correlation, green
no correlation). Top right, the

Ca distance matrix of ubiquitin

indicates which residues are

close in space. Results are

shown from correlation analysis

for a conformational ensemble

of ubiquitin in Cartesian space

(bottom left) and in dihedral

space (bottom right). Short-

range correlations are indicated

with green dashed lines, and

long-range correlations with

red dashed circles

Fig. 11 TAR RNA biased transitions. a The three TAR dynamic

conformers (green) and the TAR conformation (grey) bound to

peptide derivatives of Tat and different small molecules. Shown on

each 2D plane is the correlation coefficient (R) between angles for the

ligand-bound conformations. b Comparison of the three TAR

dynamic conformers (green) and ligand-bound TAR conformations

(grey). Sub-conformers along the linear pathway linking conformers

are shown in light green, and the direction of the trajectory is shown

with arrows. Left panel, horizontal view after superposition of HI;

middle and right panels, vertical view down and up the helix axis of

HI and HII after superposition of HI and HII, respectively. Taken

from Zhang et al. (2007)
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Challenges in characterizing molecular recognition

and allostery

In the preceding sections, we have detailed the use of

ensembles to elucidate mechanisms of binding and how the

use of ensembles can help to identify the model of molec-

ular recognition. We have also presented the current view of

allostery with relevant examples to show that ensembles can

play a pivotal role in dissecting the mechanisms that govern

signal transduction. The use of the ensembles is not limited

to globular folded proteins and nucleic acids but also finds

applications in disordered and highly flexible biomolecules.

Despite recent theoretical developments, limitations in

ensemble generation still limit the resolution and quality of

ensembles for these later systems. The current limit is not

with the methods of analysis, but rather relate to the diffi-

culty in determining ensemble representations.

One limitation is the sampling problem. In the applica-

tions above, which used unrestrained MD simulations to

generate the ensembles, the timescale of the simulation

required is generally 10 times longer than the process of

interest that one is trying to study. For small globular

proteins, with high-frequency motion only, MD simula-

tions are now able to capture the required motion (Show-

alter and Brüschweiler 2007; Li and Brüschweiler 2009;

Lange et al. 2010). However, for large or extended mole-

cules, i.e. molecules with multiple domains, for which

large amplitude motion is possible, conventional MD does

not sample enough space in the practical timescales of

these simulations. Advanced sampling techniques are now

being used to reduce this limitation and have been shown to

improve the agreement between simulations and experi-

mental data (Lange et al. 2006; Allison and van Gunsteren

2009; Markwick et al. 2009). Ensemble restrained methods

do not suffer from this problem as much as unrestrained

MD, because simulated annealing is often used to explore

conformational space, and the experimental restraints can

be seen as generating a system-specific force field.

NMR data are not the only data that can be used to

generate ensembles for study of molecular recognition.

Some recent ensembles have been generated by use of

small-angle X-ray scattering (SAXS) (Bernado et al. 2010).

Other experimental techniques are not so limited by size, or

improve in resolution as size increases. Thus, the use of

FRET distance distributions, SAXS, small-angle neutron

scattering (SANS), and other techniques may be of greater

benefit than NMR for these systems. Indeed SAXS and

NMR seem to give a consistent view for systems even as

challenging as unfolded proteins (Bernado and Blackledge

2009). These methods tend to be used when the sizes of the

complexes are too large to be studied by NMR. NMR is still

favoured in many cases because of the detailed site-specific

information that can be extracted by use of this technique.

Theoretical interpretation of the data can still be a

problem. One example that comes from our laboratory is

the use of RDCs in the presence of flexibility. We have

shown that conventional methods for determining motion

from RDCs cannot be used to interpret the motion of multi-

domain biomolecules. Until recently, only simple models

were available for domain motion (Ryabov and Fushman

2006). Current research is providing solutions to this

problem and will enable the motion of these systems to be

characterised at atomic resolution (Esteban-Martin et al.

2010; Huang and Grzesiek 2010).

The generation of ensembles for unfolded states is very

difficult. Statistical coil models, in which ensembles were

generated by randomly selecting dihedrals from loop libraries,

had some success (Bernado et al. 2005; Jha et al. 2005;

Bernado and Blackledge 2009). Despite the local properties

being approximately correct for these ensembles, there is

room for improvement (Nodet et al. 2009). Refining these

ensembles with RDCs enabled the local refinement of these

Fig. 12 Long-range correlations in a conformational ensemble of

ubiquitin that create a channel between the two loops involved in

molecular recognition. a Circular correlation coefficients (q) of u and

w of residues that are part of the surface patch of ubiquitin involved in

binding to ubiquitin binding domains. b Representation of the

corresponding b-strands showing the dihedral angles that sense the

channel. c Correlation between ui and wj of residues that are part of

the network. Long-range correlations involving distant residues are

indicated by red dashed circles (a, c). Taken from Fenwick et al.

(2011)
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structures for ubiquitin (Esteban-Martin et al. 2010) whereas

some corrections for longer-range contacts were still needed

to generate ensembles of a-synuclein, although progress is

being made (Bernado et al. 2005; Salmon et al. 2010).

Two remaining challenges are to accurately determine

the population weights of the ensemble members and the

timescale of their interconversion. It is very challenging to

determine relevant population weights with certainty from

experimental data but possibility of generating a free

energy landscape from distances measured using FRET

was recently demonstrated (Schuetz et al. 2010). Advances

of this type together with improvements in ensemble

methods will lead to determination of ensembles of larger

or elaborate biomolecules.

Perspective

How do biomolecules recognise their partners and lead to

biological responses? We have in this review provided an

account of how conformational ensembles determined by

combining NMR data with molecular simulations can be

used to determine the mechanism by which molecular rec-

ognition and its consequences occur in biological macro-

molecules. As we imply above, the field is still in its infancy

and there are many types of structural heterogeneity in

macromolecules that are challenging to experimentally

characterize, because of difficulties in interpretation of the

experimental data or because of the absence of algorithms for

efficient generation of conformational ensembles at high

resolution. There is no doubt, however, that as better

experimental and computational methods become available

the combination of experimental data with molecular simu-

lations will enable us to better understand the mechanism of

molecular recognition and binding allostery and to exploit

this new knowledge for discovery of better and less expen-

sive drugs by structure and dynamics-based drug design.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

Note added in proof During the proof stage of the review the

Brüschweiler group published a description of allostery for BPTI,

adding another important example of how weak correlations propagate

signals in remote regions of proteins (Long and Brüschweiler 2011b).
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