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Abstract

Background: Degeneration of smooth muscles in sphincters can cause debilitating diseases such as fecal
incontinence. Skeletal muscle-derived cells have been effectively used in clinics for the regeneration of the skeletal
muscle sphincters, such as the external anal or urinary sphincter. However, little is known about the in vitro smooth
muscle differentiation potential and in vivo regenerative potential of skeletal muscle-derived cells.

Methods: Myogenic progenitor cells (MPC) were isolated from the skeletal muscle and analyzed by flow cytometry
and in vitro differentiation assays. The differentiation of MPC to smooth muscle cells (MPC-SMC) was evaluated by
immunofluorescence, flow cytometry, patch-clamp, collagen contraction, and microarray gene expression analysis.
In vivo engraftment of MPC-SMC was monitored by transplanting reporter protein-expressing cells into the pyloric
sphincter of immunodeficient mice.

Results: MPC derived from human skeletal muscle expressed mesenchymal surface markers and exhibit skeletal
myogenic differentiation potential in vitro. In contrast, they lack hematopoietic surface marker, as well as
adipogenic, osteogenic, and chondrogenic differentiation potential in vitro. Cultivation of MPC in smooth muscle
differentiation medium significantly increases the fraction of alpha smooth muscle actin (aSMA) and smoothelin-
positive cells, while leaving the number of desmin-positive cells unchanged. Smooth muscle-differentiated MPC
(MPC-SMC) exhibit increased expression of smooth muscle-related genes, significantly enhanced numbers of
CD146- and CD49a-positive cells, and in vitro contractility and express functional Ca, and K, channels. MPC to MPC-
SMC differentiation was also accompanied by a reduction in their skeletal muscle differentiation potential. Upon
removal of the smooth muscle differentiation medium, a major fraction of MPC-SMC remained positive for aSMA,
suggesting the definitive acquisition of their phenotype. Transplantation of murine MPC-SMC into the mouse
pyloric sphincter revealed engraftment of MPC-SMC based on aSMA protein expression within the host smooth
muscle tissue.
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smooth muscle regeneration of sphincters.

Conclusions: Our work confirms the ability of MPC to give rise to smooth muscle cells (MPC-SMC) with a well-
defined and stable phenotype. Moreover, the engraftment of in vitro-differentiated murine MPC-SMC into the
pyloric sphincter in vivo underscores the potential of this cell population as a novel cell therapeutic treatment for
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Background

Sphincters are circular muscles controlling the move-
ment of solids and/or liquids. They consist of either
skeletal muscles, such as the external anal sphincter or
smooth muscles, such as the internal anal and pyloric
sphincters [1, 2]. Malfunction of the sphincter muscles
of the anus and the pylorus is associated with fecal in-
continence and gastroparesis, respectively [3, 4]. Al-
though not life-threatening, fecal incontinence severely
affects patients’ quality of life [5]. The prevalence rate of
fecal incontinence is estimated to be up to 12% in men
and women [6, 7], and the main type, with approxi-
mately 78% of all cases [8], results from the degeneration
of the smooth muscle of the internal anal sphincter
which causes passive fecal incontinence [9]. Conservative
treatments such as the application of bulking agents
have limited success in patients with high incontinence
severity, and surgical approaches have high morbidity
and complication rates [10]. Thus, there is a strong need
for cell therapeutic approaches for the regeneration of
smooth muscle tissue building sphincters.

The functionality of smooth muscle relies on highly
differentiated smooth muscle cells expressing contractile
proteins, such as alpha smooth muscle actin (aSMA),
desmin, and smoothelin (SMTN) [11-13], as well as
functional voltage-gated calcium and potassium chan-
nels, enabling regulated cell contraction [14].

Treatment of multipotent mesenchymal stromal cells
(MSC) with transforming growth factor beta (TGFb) has
been shown to induce the expression of smooth muscle-
specific genes under the regulation of the CArG box via
the signaling through SMADs, serum response factor,
and myocardin [15-17]. Thus, using MSC of various ori-
gins, the application of TGFb1 during differentiation was
shown to upregulate the expression of smooth muscle-
specific contractile proteins [18] and functional calcium
and potassium channels [19].

Skeletal muscle tissue is a source of stem and progeni-
tor cells expected to be endowed with high regenerative
potential, such as MSC and satellite cell-derived myo-
genic progenitor cells (MPC) [20]. Skeletal muscle-
derived CD56" cells have been shown to improve pa-
tients’ external anal sphincter-associated fecal incontin-
ence in clinics [21-26]. Furthermore, skeletal muscle-

derived cells were found to engraft into the bladder de-
trusor muscle improving bladder function [27]. How-
ever, limited knowledge exists regarding the
differentiation potential and regenerative capacity of
skeletal muscle-derived cells for the treatment of smooth
muscle-related deficiencies [28], particularly for sphinc-
ter smooth muscle regeneration.

In the study presented here, we generated in vitro
smooth muscle cells from skeletal muscle-derived myo-
genic progenitor cells and evaluated their cell thera-
peutic potential for sphincter regeneration.

Methods

Isolation and culture of human skeletal muscle-derived
cells

Muscle samples of human origin were retrieved as a part
of a clinical trial (EudraCT Number: 2010-021463-32),
and residual material of patients agreeing to further
usage of their cells was used for research purposes fol-
lowing informed consent. Cells were isolated from
muscle biopsies (Musculus pectoralis major or Latissi-
mus dorsi) and expanded under cGMP environment as
described before [29, 30]. Cells were maintained by
standard cell culture methods. Briefly, cells were cul-
tured in a growth medium containing Ham’s F-10 basal
medium supplemented with 10% FCS (inactivated at
57 °C, 40 min, Life Technologies, UK), bFGF (CellGenix,
Freiburg, Germany), and gentamicin (Sandoz GmbH,
Austria) and incubated at 37 °C, 5% CO,. Counting of
cells was performed on Nucleocounter™ (ChemoMetec,
Allerod, Denmark) according to the manufacturer’s
instructions.

Isolation, culture, and transplantation of murine skeletal
muscle-derived cells

Murine skeletal muscle-derived cells were obtained from
skeletal muscle biopsies of Gt (ROSA)26Sortm4(ACTB-
tdTomato,-EGFP)Luo/J, in short, TdTomato mice (Jack-
son Laboratory, ME, USA). Adult mice were sacrificed
by cervical dislocation. Next, samples were obtained
from the longissimus dorsi, gastrocnemius, and tibialis
anterior muscles using scissors and scalpel. The muscles
were transferred into a sterile petri dish and covered
with 1x PBS. Then, using tweezers and a scalpel, the
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remaining connective tissue was removed from the skel-
etal muscle and discarded. Afterwards, the muscle tissue
was digested using the skeletal muscle dissociation kit
(MiltenyiBiotec GmbH, Bergisch Gladbach, Germany)
following the manufacturer’s instructions. In order to
separate myogenic progenitor cells (mMPC) from non-
myogenic cells, a satellite cell isolation kit (Miltenyi Bio-
tec, Bergisch Gladbach, Germany) was used according to
the manufacturer’s instructions. Collected mMPC and
non-myogenic cells were centrifuged for 10min at
400xg and resuspended in mouse growth medium, con-
sisting of DMEM/Ham’s F12 supplemented with 20%
FCS and bFGF. Murine cells were cultivated on
collagen-coated culture flasks, prepared by covering the
surface of the culture flasks with collagen I from the rat
tail (Sigma-Aldrich Co. LLC, MO, USA) diluted 1:10 1x
PBS for 1h at 37°C. Subcultivation, cryopreservation,
cell count, and immunostainings were performed like for
human skeletal muscle-derived cells.

Separation of MPC and MSC by MACS

MSC (CD56~ skeletal muscle-derived cells) were sepa-
rated from MPC (CD56" skeletal muscle-derived cells)
by magnetic-activated cell sorting (MACS). The human
CD56 MicroBeads kit (MiltenyiBiotec GmbH, Bergisch
Gladbach, Germany) was used for the separation of
CD56" and CD56™ cells according to the manufacturer’s
instructions.

Human bladder smooth muscle cells

Primary human bladder smooth muscle cells (HBASMC-
¢) were obtained from PromoCell® (Cat. No.: C-12571)
and cultivated in growth medium (Ham’s F10, 10% FCS,
bFGF, gentamicin) for expansion to reach synthetic
smooth muscle cells (s-hBd-SMC). Phenotype switch to
contractile smooth muscle cells (hBd-SMC) was induced
by switching to smooth muscle differentiation medium
and cultivating cells therein for 6 days.

Flow cytometry

Flow cytometry analysis was performed on a Guava easy-
Cyte 6HT 2L flow cytometer (Merck Millipore, Darm-
stadt, Germany) as described before [29]. Before
measurement, 40,000 cells were resuspended in 195 pl
1x PBS and incubated after addition of 5pul CD34-PE,
CD56-PE, CD146-PE, IgG1-PE, IgG1-FITC, CD90-PE,
CD105-PE, HLA-DR-PE, CD45-PE (all from Beckman
Coulter, CA, USA), CD49a-FITC (MiltenyiBiotec GmbH,
Bergisch Gladbach, Germany), CD14-PE (Thermo Scien-
tificc, MA, USA), CD19-PE (BioLegend, CA, USA), or
CD73-PE (Becton Dickinson, NJ, USA) for 30 min at
4°C in the dark following a washing step with 1x PBS.
Histograms and dot plots were generated with a mini-
mum of 5000 events at a sample flow rate of 1.8 pl/ml.
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Positive staining was obtained by comparison with iso-
type control set as 99% negative or comparison to con-
trol (negative) cells.

Immunofluorescence staining on cell cultures
Immunofluorescence staining was performed directly on
gelatine-coated 24-well plates or glass coverslips placed
in 6-well plates as described before [29]. For fluorescent
immunolabeling of alpha smooth muscle actin (aSMA),
smoothelin, smooth muscle myosin heavy chain (SM-
MHC), or desmin, cells were incubated with a mouse
anti-actin alpha smooth muscle (Sigma-Aldrich Co.
LLC, MO, USA), mouse anti-smoothelin (Merck Milli-
pore, MA, USA), anti-smooth muscle myosin heavy
chain (Merck Millipore, MA, USA), or rabbit anti-
desmin (Thermo Scientific, MA, USA) antibody, respect-
ively, each diluted 1:100 in blocking medium. Secondary
goat anti-mouse Alexa488 or donkey anti-rabbit
Alexa547-conjugated antibodies (Thermo Scientific, MA,
USA), diluted 1:200 in blocking medium, were used.
Counterstaining of the nuclei was performed by incubat-
ing the cells with Hoechst33342 (Sigma-Aldrich Co.
LLC, MO, USA) diluted to a final concentration of 2 pg/
ml in PBST (0.1% Triton X-100). Cells were mounted
with Entellan® (Merck Millipore, MA, USA) and sealed
with glass coverslips. Stainings were compared to proce-
dures without primary antibodies and cells negative for
tested antibodies. Double staining procedures were per-
formed by simultaneous incubation with mouse anti-
aSMA or mouse anti-smoothelin and rabbit anti-desmin
primary antibodies. This was followed by incubation
with combinations of secondary antibodies: goat anti-
mouse Alexa488 and goat anti-rabbit Alexa547. Double
stain procedures were controlled for unspecific binding
of secondary antibodies by omitting one first antibody
demonstrating the absence of cross staining with the re-
spective other secondary antibodies.

Skeletal muscle differentiation

Skeletal muscle-derived cells were differentiated in 24-
well Nunclon™ Delta Surface plastic plates (Thermo Sci-
entific, MA, USA) by replacing the growth medium with
Skeletal Muscle Cell Differentiation Medium (500 ml,
PromoCell GmbH, Germany), supplemented with 10 ml
of Skeletal Muscle Cell Differentiation Medium Supple-
ment Pack (PromoCell GmbH, Germany) and 240 pl
gentamicin (8 mg/ml, Sandoz GmbH, Austria) as de-
scribed before [29].

Adipogenic, chondrogenic, and osteogenic differentiation
For adipogenic, chondrogenic, and osteogenic differenti-
ation in vitro, each 500,000 cells were seeded onto 6-
well plates (NUNC, Thermo Scientificc MA, USA) and
cultivated in a growth medium for 24h at 37°C, 5%
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CO,. Next, cells were washed once with 5 ml DMEM/
Ham’s F12 and covered with each 5ml adipogenic,
chondrogenic, or osteogenic differentiation medium.
Adipogenic, chondrogenic, and osteogenic differentiation
medium consisted of StemXVivo™ Osteogenic/Adipo-
genic Base Medium (R&D Systems Inc., MN, USA), sup-
plemented  with  StemXVivo  Human/Mouse/Rat
Adipogenic (R&D Systems Inc., MN, USA), StemXVivo
Human Osteogenic Supplement (R&D Systems Inc.,
MN, USA), or STEMPro® Chondrogenesis Supplement
(Gibco®, Thermo Scientific, MA, USA), respectively, ac-
cording to the manufacturer’s instructions. Differenti-
ation media were further supplemented with gentamicin
(Sandoz GmbH, Austria) to reach a final concentration
of 3.83 ug/ml. Cells were cultivated each for 14 days in
respective differentiation media, which were changed
every 2-3days. After 14 days of cultivation, successful
differentiation was assessed by the presence of adipo-
cytes, chondrocytes, and osteocytes visualized by oil red
o, alcian blue, and alizarin red s staining, respectively.
Quantification of oil red o, alcian blue, and alizarin red s
staining was performed on microscopic images of mul-
tiple individual experiments by Image] software package.
Therefore, images were loaded and color channels split.
Red channels were used for oil red o and alizarin red s
stainings, while blue channel was used for alcian blue
stainings. The background was eliminated by setting a
common threshold, and the average pixel intensity per
field was acquired for quantification by Image].

Smooth muscle differentiation

To induce smooth muscle differentiation of MPC, mur-
ine MPC and MSC to MPC-SMC, and murine MPC-
SMC and MSC-SMC, cells cultivated with growth
medium to a confluency of about 70% were washed once
with DMEM/F12 (Thermo Scientific, MA, USA). Next,
cells were covered with smooth muscle differentiation
medium, consisting of DMEM/F12 supplemented with
recombinant human TGFbl (Thermo Scientific, MA,
USA), heparin sodium salt from the porcine intestinal
mucosa (Sigma-Aldrich Co. LLC, MO, USA), fetal calf
serum (Gibco, Thermo Scientific, MA, USA), and genta-
micin (Sandoz GmbH, Tirol, Austria) to a final concen-
tration of 10ng/ml, 5% (v/v), and 3.84 pg/ml,
respectively. Finally, cells were cultivated in smooth
muscle differentiation medium for 3-6 days at 37 °C, 5%
CO,. The medium was changed every 3—4 days.

Fusion index calculation

Fusion index (FI) calculation was performed as described
before [29]. Fusion index was calculated for each cap-
tured field of view by dividing the number of nuclei
within the tubes with the total number of nuclei per
field, followed by the calculation of the mean for all
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analyzed fields. Only cells that have at least 3 nuclei
were considered as myotubes. For statistical analysis, at
least 3 populations derived from different patients were
analyzed for each group.

Acetylcholinesterase activity measurement
Acetylcholinesterase (AChE) activity measurement was
performed as described before [29]. In short, the
medium was carefully removed from cells grown on a
24-well plate with the immediate addition of 300 ul 0.5
mM DTNB solution (prepared in phosphate buffer, pH
7.2 with 0.1% Triton X-100). After 2 min of incubation
at room temperature in the dark, 50 ul of 576 mM ATI
(prepared in distilled water) was added. The reaction
contents were incubated for 60 min at 30 °C in the dark
followed by the OD measurement at 412mM on an
Anthos Zenyth 340rt microplate reader (Biochrom Ltd.,
Cambridge, UK). AChE activity (mUrel) was normalized
per gram protein of lysed cells.

Creatine kinase activity measurement

The medium from adherent cells grown on a 24-well
plate was gently removed, and cells were washed with 1
ml of Tyrode’s salt solution (Sigma-Aldrich Co. LLC,
MO, USA). Immediately afterwards, 70 pl lysis buffer
was added directly onto the cells. Lysis buffer was pre-
pared by adding 10 pl of Triton X-100 to 10 ml of dH,O
(LC-MS-Ultrachromasol, Fluka). After 5 min incubation
at 4°C in the dark, 400 ul of CK-NAC (Thermo Scien-
tificc, MA, USA), previously dissolved by adding 10 ml
dH20, was added. The reaction was analyzed in an
Anthos Zenith 340rt microplate reader (Biochrom Ltd.,
Cambridge, UK) set to 30°C, by OD absorbance meas-
urement at 340 nm. If not otherwise mentioned, OD340
nm values taken 21 min after the addition of CK-NAC
were used for subsequent analysis. CK activity in mUTrel
was calculated according to the manufacturer’s instruc-
tions and if not otherwise mentioned normalized per
gram protein of lysed cells.

Protein quantification

Protein content of cell lysates for AChE and CK activity
measurement was determined using the Pierce BCA Pro-
tein Assay Kit (Thermo Scientific, MA, USA) according
to the manufacturer’s instructions by measuring the OD
at 540nm with an Anthos Zenyth 340rt microplate
reader (Biochrom Ltd., Cambridge, UK).

Standard light/fluorescence microscopy

Phase-contrast and fluorescence microscopy at x 200—
600 magnification was carried out on cells cultivated on
plastic cell culture vessels or glass coverslips using a
Nikon Eclipse TE 2000-U microscope (Nikon Corpor-
ation, Tokyo, Japan). Representative fields were
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photographed with Digital Sight DS-L1 system (Nikon
Corporation, Tokyo, Japan).

Animal surgery

For both, injection of murine MPC-SMC into the pyloric
sphincter as well as injection of murine MPC into the
tibialis anterior muscle, adult female SHO-Prkdc*“‘Hr™
mice were anesthetized by applying ketamine, xylazin,
and acepromazin intraperitoneally. Cryopreserved mur-
ine MPC-SMC were freshly thawed, washed once with
1x PBS, and resuspended in 1x PBS to reach a final con-
centration of 40,000 000 cells/ml. Twenty-five microli-
ters of the cell suspension (containing 1,000,000 cells)
was then mixed with 5 pl FluoSpheres® polystyrene, 15-
pum yellow-green beads (Life Technologies, Thermo Sci-
entific, MA, USA). For MPC-SMC injection into the pyl-
oric sphincter, a median laparotomy was performed
followed by localization of the pyloric sphincter region
and application of 30 pl cell-fluosphere mixture using a
30-G needle attached to a 1-ml syringe. The peritoneum
muscle and skin layers were closed separately by running
sutures with 6-0 Ethicon PDS plus absorbable monofila-
ments (Johnson & Jonson, NJ, USA). For MPC injection
into the tibialis anterior muscle, anesthetized mice were
injected with 30 pl cell-fluosphere mixture using a 28-G
needle attached to a 1-ml syringe through the skin into
the skeletal muscle.

Pyloric sphincter imaging

Imaging of fresh isolated pyloric sphincter regions 12
weeks after MPC-SMC injection was performed with an
IVIS Spectrum (PerkinElmer, MA, USA) using the Liv-
ing Image® software version 4.5.2 (PerkinElmer, MA,
USA) according to the manufacturer’s instructions. In
short, pyloric sphincters of injected and control SHO
mice were placed on a glass petri dish and placed within
the IVIS system. Fluorescence pictures at a height of 2
cm with automated exposure times for the correspond-
ing absorption and emission wavelengths of TdTomato
and yellow Fluosphere beads were taken. Post hoc, signal
intensities were adjusted in order to get rid of back-
ground signals by comparing with sphincter explants
from control mice.

Histology

For histological analysis, animals were deeply anesthe-
tized with isoflurane and sacrificed by cervical disloca-
tion. The tissue of interest was immediately dissected
and cryo-fixed by plunging into liquid nitrogen-cooled
2-methylbutane. Tissue was cut at 15um on a Leica
1950 Cryostat, and slices were collected on SuperFrost
plus slides and kept at — 20 °C until further processing.
For immunohistological analysis, sections were fixed
with 4% PFA and washed with PBS containing 0.1%
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Tween-20 (Sigma-Aldrich). Blocking and antibody dilu-
tion were performed using a PBS solution containing 1%
bovine serum albumin fraction (Sigma-Aldrich), 0.2%
fish skin gelatine (Sigma-Aldrich), and 0.1% Tween-20
(Sigma-Aldrich). Primary antibodies against tdTomato
(Sicgen) or aSMA (Thermo Scientific,c, MA, USA) were
diluted 1:100 in blocking media, and incubation was per-
formed overnight at 4 °C. Secondary antibodies (Thermo
scientific) were diluted 1:500 and applied at room
temperature for 4 h. The nuclei were stained with DAPI
diluted to 0.5 pg/ml working concentration (Sigma-Al-
drich). Slices were subsequently mounted using Prolong
Gold Antifade (Life Technologies). Fluorescence images
were acquired using a LSM 710 confocal microscope
and ZEN 2011 Black Software (Carl Zeiss).

Patch-clamp analysis

Patch-clamp analysis was performed according to a pre-
viously published protocol [19], with slight experiment-
specific adaptions. Procedures were conducted as fol-
lows. Electrophysiological recording was performed in a
whole-cell configuration using an Axopatch 200A patch
clamp amplifier (Axon Instruments, Foster City). Patch
pipettes with resistances of 1 to 4 MQ were made from
borosilicate glass (GC150F-7.5, Clark Electromedical In-
struments, UK) and filled with pipette solution. All data
were digitized using a DIGIDATA 1200 interface (Axon
Instruments, Foster City), smoothed by means of a four-
pole Bessel filter, and saved to disc. Current traces were
sampled at 10kHz and filtered at 2 kHz. The pClamp
software package (version 10.0 Axon Instruments, Inc.)
was used for data acquisition. Microcal Origin 7.0 was
used for analysis. If not otherwise mentioned, reagents
were obtained from Sigma-Aldrich. Inward current of
voltage-dependent Ca, channels was evoked by applying
500-ms depolarizing pulses from a holding potential of
- 50 to 50 mV. Superimposed current traces of K, chan-
nels were evoked by step depolarizing pulses between -
80 and 60 mV in steps of 20 mV from a holding poten-
tial of - 80 mV in MPC, MPC-SMC, and hBd-SMC.

GeneChip microarray

Total RNA of 1 x 10° MPC or MSC, each cultured either
in growth medium or 6 days in differentiation medium,
was isolated by the RNEasy Kit (QIAGEN, Hilden,
Germany) according to the manufacturers’ instructions.
Sample preparation for microarray hybridization was
carried out as described in the NuGEN Ovation PicoSL
WTA System V2 and NUGEN Encore Biotin Module
manuals (NuGEN Technologies, Inc., San Carlos, CA,
USA). Hybridized arrays were washed and stained in an
Affymetrix Fluidics Station FS450, and the fluorescent
signals were measured with an Affymetrix GeneChip
Scanner 3000 7G. The Affymetrix GeneChip Command
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Console v4.1.3 software controlled fluidics and scan
functions. The Affymetrix Service Provider and Core Fa-
cility, “KEB - Center of Excellence for Fluorescent Bioa-
nalytics” (Regensburg, Germany) performed the sample
processing.

Microarray data analysis

Summarized probe set signals in log2 scale were calcu-
lated by using the RMA algorithm with the Affymetrix
GeneChip Expression Console v1.4 Probeset IDs with
the highest log2 fold change between MPC and MPC-
SMC were used for subsequent analysis and comparison
to log2 fold changes between MSC and MSC-SMC. Heat
maps were generated with the Multiple Expression
Viewer (MeV 3.1.0) software in order to visualize log2
fold changes and perform hierarchical clustering as well
as k-means clustering according to Euclidean distance.
Genes with Log2 FC of 1 or more were considered up-
regulated and genes with a log2 FC of -1 or less as
downregulation.

Quantitative data analysis

Data analysis for descriptive and inferential statistics was
performed by using the GraphPad Prism software ver-
sion 5.0. If not otherwise mentioned, data is presented
as mean + SD. For inferential statistics, p values below
0.05 were considered as statistically significant differ-
ences. p values below 0.05, 0.01, and 0.001 are visualized
as *, ** and ***, respectively.

Results
MPC isolation and characterization
Human skeletal muscle-derived cells were isolated from
adult human skeletal muscle tissue. Both CD56" and
CD56™ cells were enriched by MACS as described before
[29]. CD56" cells, known to be committed to the myo-
genic lineage [31], are referred to as myogenic progeni-
tor cells (MPC) hereafter, while CD56  cells,
hypothesized to be utmost multipotent mesenchymal
stromal cells, are termed MSC. We characterized MPC
and MSC following isolation to confirm the efficiency of
their separations (Fig. 1a). They were tested for the pres-
ence of mesenchymal lineage markers (CD105, CD90,
CD?73) and hematopoietic markers (CD14, CD19, CD45,
CD34, MHCII), constituting the consensus minimal
panel for the characterization of MSC by flow cytometry
[32]. CD56" MPC highly expressed all mesenchymal
lineage markers tested and were negative for tested
hematopoietic markers. Thus, our marker panel con-
firmed the mesenchymal character of CD56" MPC
(Fig. 1a).

Next, MPC and MSC were tested in vitro for their dif-
ferentiation potential into the adipogenic, chondrogenic,
osteogenic, and skeletal myogenic lineages using the
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appropriate culture conditions. The absence of oil red o-
and alizarin red s-positive cells revealed the incapacity of
MPC to differentiate into adipocytes and osteocytes, re-
spectively (Fig. 1b, c). Furthermore, only low levels of
chondrogenic differentiation occurred according to the
scarce cells with alcian blue staining detected (Fig. 1b,
¢). In contrast, differentiation of the CD56~ MSC led to
numerous cells positive for oil red o, alcian blue, and ali-
zarin red s following cultivation in adipogenic, chondro-
genic, and osteogenic  differentiation  medium,
respectively (Fig. 1b, c). Quantification of staining inten-
sities of MSC compared to MPC following differenti-
ation in vitro revealed a significantly higher intensity in
oil red o (p=0.0117), alcian blue (p =0.0020), and ali-
zarin red s (p = 0.0012) staining. These observations con-
firmed the multipotent mesenchymal stromal character
of CD56° MSC as defined by the International Society
for Cellular Therapy [32]. However, desmin-positive
multinucleated myotubes were detected in MPC but not
MSC cultures (Fig. 1b), and a significantly higher fusion
index (p =0.0007) was found within MPC compared to
MSC (Fig. 1c). Hence, these results confirmed that MPC
were cells of mesenchymal origin and committed to the
myogenic lineage. In contrast, muscle-derived CD56~
MSC were capable of adipogenic, chondrogenic, and
osteogenic differentiation but were not able to undergo
myogenic differentiation in vitro.

In vitro differentiation of MPC to myogenic progenitor
cell-derived smooth muscle cells

In order to assess the smooth muscle differentiation po-
tential of MPC, that were cultivated in a smooth muscle
differentiation medium, which has been previously
employed on multipotent mesenchymal stromal cells de-
rived from induced pluripotent stem cells [18]. MPC-
derived smooth muscle cells (MPC-SMC) were analyzed
for the expression of intracellular contractile smooth
muscle proteins (aSMA, smoothelin) [13, 33] as well as
the general myogenic marker desmin [34] by fluorescent
immunostaining. Whereas aSMA and smoothelin were
hardly detectable in MPC, MPC-SMC showed detectable
amounts of both proteins (Fig. 2a). The proportion of
aSMA- and smoothelin-positive cells was significantly
higher in MPC-SMC (84.77 +13.02% aSMA- and
86.70 + 12.45% smoothelin-positive cells) compared to
MPC (1.37 £2.11% aSMA- and 0.78 + 0.85% smoothelin-
positive cells) at a p value of p <0.001 (aSMA) and p <
0.001 (smoothelin) (Fig. 2b). In contrast, no significant
difference was observed in a number of desmin® cells
between MPC (62.68 + 4.33%) and MPC-SMC (65.93 +
8.58%) at a p value of p=0.5897, suggesting smooth
muscle lineage commitment of MPC-SMC without los-
ing general myogenic fate. In addition, the proliferation
of MPC was addressed following 6 days of culture in
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Fig. 1 Characterization of skeletal muscle-derived MPC and MSC by cell surface marker expression and differentiation potential. a Surface
expression of mesenchymal (CD105, CD90, CD73), myogenic (CD56), and hematopoietic (CD14, CD19, CD45, CD34, MHCII) lineage markers on
both skeletal muscle-derived MPC and MSC assessed by flow cytometry. Data presented as mean + SD of MPC and MSC from at least three
individual muscle biopsies. Statistical comparison was performed by multiple unpaired ¢ tests corrected for multiple testing by Holm-Sidak not
assuming consistent SD (corrected p < 0.05 considered significant). b Differentiation potential of MPC and MSC assessed after in vitro
differentiation to adipogenic, chondrogenic, osteogenic, and skeletal myogenic lineages by cultivation in respective differentiation media and
detected by oil red o, alcian blue, alizarin red s, and anti-desmin/Hoechst staining, respectively. Representative images of at least three individual
preparations are shown (scale bar= 100 um). ¢ Quantification of adipogenic, chondrogenic, osteogenic, and skeletal myogenic differentiation
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MPC-SMC positive for myogenic markers aSMA, smoothelin, and desmin. ¢ Fold change in cell number calculated from an initially seeded
number of 500,000 cells in T175 flasks after 6 days in either growth (MPC) or smooth muscle differentiation medium (MPC-SMC). Flow cytometric
quantification of d CD146 and e CD49a in populations of MPC cultivated in growth (MPC) or smooth muscle differentiation medium (MPC-SMC)
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growth or smooth muscle differentiation medium. The
increase in the number of cells in smooth muscle differ-
entiation medium (MPC-SMC) was significantly lower

(p=0.0179) during the 6-day cultivation period com-
pared to MPC in growth medium (Fig. 2c), which is con-
sistent with the observed switch to differentiation
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towards a post-mitotic phenotype. Finally, the expression
of CD146 and CD49a, associated with the vascular
smooth muscle commitment of MSC [35] and expressed
during smooth muscle development [36], greatly in-
creased in MPC when differentiated to MPC-SMC by
cultivation for 6days in smooth muscle differentiation
medium. Percentage of both CD146 and CD49a surface
marker-positive cells were significantly higher at a p
value of p =0.0033 (CD146) and p =0.0031 (CD49a) in
MPC-SMC (76.53+9.56% CD146- and 39.49 +7.40%
CD49a-positive cells) than in MPC (32.78 + 15.46%
CD146- and 7.59 + 5.51% CD49a-positive cells) (Fig. 2d,
e and S1 Fig.).

A microarray analysis of differentiating MPC was car-
ried out to monitor the changes in gene expression asso-
ciated with SMC differentiation [35, 37, 38], myogenic
commitment [12], and smooth muscle contraction [39].
Changes in the gene expression occurring when MPC
were differentiated to MPC-SMC were compared to
those when MSC were differentiated to MSC-SMC, both
by cultivation in smooth muscle differentiation medium.
We observed that 25 genes (20.33%) of the 123 tested
genes were up- and 4 genes (3.25%) downregulated dur-
ing MPC to MPC-SMC differentiation. Among the genes
upregulated in MPC-SMC, we confirmed our observa-
tion of an increase in CD49a (ITGA1) and smoothelin
(SMTN) expression. Further, genes upregulated belong
to the KEGG cluster and other known smooth muscle
marker genes: PPP1R14A, KCNMBI1, PLCB4, ACTG2,
ITPR1, ADCY6, CALCRL, KCNMA1, GNA13, CNN1,
ADCY2, KCNMB4, GUCY1A3, ARAF, PPPIRI12A,
MAPK1, CALD1, KCNMB2, PRKACB, ARHGEF1],
PPP1R12C, ITPR2, and PLCB1 (Fig. 3a). Although
CD146 (MCAM) surface protein expression was found
to be upregulated in MPC-SMC, MCAM gene expres-
sion was not upregulated in the microarray experiments,
suggesting a post-transcriptional regulation. Further,
analysis of log2 FC changed gene expressions in MPC
and MSC during differentiation to MPC-SMC and
MSC-SMC led to the identification of up- and downreg-
ulated genes that were shared with differentiating MPC
and MSC (Fig. 3b, c). Whereas PP1R14A, ACTG2,
PLCB4, ITPR1, MAPK1, CNN1, ITGA1, and KCNMA1
were upregulated in MPC and MSC, PLA2G2A was
downregulated in both cell types. Overall, 75.61% of
genes analyzed were regulated similarly (i.e., up-, down-,
stably regulated) in MPC and MSC upon differentiation
using smooth muscle differentiation medium. More up-
regulated genes and less downregulated genes were
found in differentiating MPC (20.33% up- and 3.25%
downregulated) than differentiating MSC (12.20% up-
and 5.69% downregulated). However, no significant dif-
ference in percent up- or downregulated genes was
found between MPC and MSC. Taken together, these
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results suggest a differentiation efficiency of MPC to
MPC-SMC being at least as good as MSC to MSC-SMC
differentiation efficiency.

The smooth muscle phenotype of MPC-SMC and
MSC-SMC was further compared to human bladder
smooth muscle cells (hBd-SMC), following cultivation in
smooth muscle differentiation medium for 6 days, by im-
munostaining. Immunodetection was performed against
the smooth muscle marker proteins aSMA and smooth
muscle myosin heavy chain (SM-MHC), as well as for
desmin, a general myogenic marker, and vimentin, a
contraction associated protein [40]. MPC-SMC, MSC-
SMC, and hBd-SMC expressed aSMA, SM-MHC, and
vimentin. Additionally, MPC-SMC and hBd-SMC
expressed desmin, which was not found in MSC-SMC
(S2 Fig.). This observation substantiates that MPC-SMC
differentiate to a smooth muscle phenotype resembling
the one of hBd-SMC.

Stability of the MPC-SMC phenotype

To assess whether the phenotype of MPC-SMC is irre-
versible, aSMA protein expression was evaluated in
MPC maintained in the growth medium, MPC cultivated
in smooth muscle differentiation medium for 6 days
(MPC-SMC) and in MPC-SMC that were cultured 3
additional days back in growth medium (De-diff MPC-
SMC). As shown in Fig. 4a, MPC-SMC and De-diff
MPC-SMC prominently expressed aSMA, in contrast to
MPC. Significantly fewer aSMA-positive cells were
found however in De-diff MPC-SMC (61.87 +11.84)
compared to MPC-SMC (81.92% + 16.50, p =0.0196),
thus demonstrating either a partial reversion of the
smooth muscle phenotype or proliferation of MPC that
did not differentiate to MPC-SMC in the first place and
remained aSMA negative (Fig. 4d). Nevertheless, a sub-
stantial amount (>60%) of the cells maintain their
smooth muscle lineage commitment.

In order to address the skeletal muscle differentiation
potential of MPC-SMC, as compared to MPC and De-
diff MPC-SMC, their fusion competence based on the
formation of multinucleated myotubes was assessed. Fol-
lowing the cultivation of all three cell types in skeletal
muscle differentiation medium for 6 days, calculation of
fusion index (FI) and quantification of the number of
nuclei per tube were performed. Our results showed that
MPC formed numerous multinucleated myotubes,
whereas MPC-SMC and De-diff MPC-SMC formed only
few myotubes (Fig. 4b, red arrows). Quantification of the
FI demonstrated that significantly more MPC underwent
skeletal myogenesis compared to MPC-SMC, revealing a
decrease in the skeletal myogenic potential of MPC
upon differentiation to MPC-SMC (Fig. 4c). Further,
tubes formed by MPC-SMC contained significantly
fewer nuclei than tubes formed by MPC (Fig. 4c).
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Additionally, no significant difference in terms of FI was  creatine kinase (CK), two enzymes upregulated during
detected between MPC-SMC and De-diff MPC-SMC  skeletal myogenesis [41, 42], were analyzed. Low AChE
(Fig. 4c). Moreover, acetylcholinesterase (AChE) and and CK activities were detectable in MPC and MPC-
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Fig. 4 Stability of smooth muscle differentiation program of MPC-SMC. a Smooth muscle lineage marker (aSMA) expression stained by
fluorescent immunostaining was compared between MPC, MPC-SMC, and MPC-SMC de-differentiated by cultivation for 3 days in growth medium
following cultivation in smooth muscle differentiation medium (De-diff MPC-SMC). Representative images of MPC, MPC-SMC, and De-diff MPC-
SMC derived from at least three different skeletal muscle biopsies are shown. Scale bar= 100 um. b Formation of myotubes (red arrows) observed
by fluorescence microscopy following Hoechst33342 staining for visualization of the nuclei as well as ¢ quantification of fusion index (Fl) and the
number of nuclei was compared between MPC, MPC-SMC, and De-diff MPC-SMC each cultivated in skeletal muscle differentiation medium for 6
days. Scale bar =200 um. d Quantification of percent aSMA-positive cells in MPC-SMC and De-diff MPC-SMC was performed. e Comparison of
AChE and CK enzyme activity between MPC, MPC-SMC, and MPC in skeletal muscle differentiation medium (MPC in SKDiff) and MPC-SMC in
skeletal muscle differentiation medium (MPC-SMC in SKDiff). All data presented as mean + SD of cells derived from at least three individual
human muscle biopsies. Statistical analysis performed by paired t test considering p < 0.05 as significant
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SMC. Upon induction of skeletal muscle differentiation,
however, a significantly lower AChE and CK activity
were found in MPC-SMC compared to MPC, suggesting
a lower skeletal muscle differentiation potential of MPC-
SMC (Fig. 4e).

Functional analysis of MPC-derived SMC in vitro

Since MPC were showing profound changes in gene and
protein expression upon smooth muscle differentiation,
we hypothesized that smooth muscle differentiation of
MPC in vitro will also lead to functional maturation. It
has been shown that TGFbl-induced differentiation of
adipose tissue-derived multipotent mesenchymal stromal
cells leads to the expression of functional voltage-
sensitive calcium and potassium channels [19]. There-
fore, the presence of functional voltage-sensitive Ca, and
K, channels was explored by patch-clamp analysis on
MPC maintained in growth medium or differentiated to
MPC-SMC by cultivation in smooth muscle differenti-
ation medium for 6 days. As a control, hBd-SMC culti-
vated in smooth muscle differentiation medium for 6
days were analyzed in terms of their functional voltage-
sensitive channels by patch-clamp analysis as well. MPC
lacked both inward and outward currents from voltage-
dependent calcium and voltage-dependent potassium
channels. In contrast, MPC-SMC and hBd-SMC showed
voltage-sensitive inward and outward currents for both
cations (Fig. 5a, b).

Park et al. showed [19] that together with the expres-
sion of functional ion channels, in vitro contractility in-
creased during smooth muscle differentiation of
adipose-derived MSC. Therefore, both MPC and MPC-
SMC were tested for contractility in a collagen gel lattice
contraction assays. We also included in this analysis
MSC, MSC-SMC, and hBd-SMCs. When MPC were dif-
ferentiated to MPC-SMC, contractility increased from
22.11+12.77% (MPC) to 46.57 £6.75% (MPC-SMC)
(p=0.0118). MSC-SMC were found to contract similarly
(53.54+22.53% gel contraction) compared to MPC-
SMC (adjusted p = 0.5534). hBd-SMC were found to ex-
hibit the highest contractility (85.84 +2.57%) and signifi-
cantly more than MPC-SMC (p value adjusted for
multiple testing, p = 0.0006) (S3 Fig.).

These results together suggest that upon smooth
muscle differentiation, MPC functionally maturate to
MPC-SMC in vitro.

Engraftment of MPC-derived SMC into smooth muscle
tissue in vivo

We next addressed whether MPC-SMC are able to en-
graft into smooth muscle tissue in vivo. To this end, we
isolated murine myogenic progenitor cells (nMPC) from
transgenic TdTomato reporter mice and differentiated
those mMPC to mMPC-SMC in vitro as described
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above. mMPC were found to be desmin+ and capable of
fusing to multinucleated myotubes exhibiting AChE and
CK activity following skeletal muscle differentiation (S4
Fig. A-D). In addition, mMPC were able to fuse to and/
or with host myofibers following implantation into the
skeletal muscle tissue of immunodeficient mice (S4 Fig.
E, F). Following smooth muscle differentiation of
mMPC, resulting mMPC-SMC were highly positive for
desmin (77.60 +2.69%) and aSMA (80.00 + 14.48%)
(Fig. 6a), similar to human MPC-SMC, described above.
mMPC-SMC, together with fluorescent beads, were
transplanted into the pyloric sphincter of immunodefi-
cient SHO mice. mMPC-SMC expressing the reporter
TdTomato were detectable at the site of injection 12
weeks post-implantation, suggesting the engraftment of
mMPC-SMC in the pyloric sphincter (Fig. 6b). Immuno-
histological examination for TdTomato and aSMA pro-
teins revealed that TdTomato expressing cells were
found within the pyloric sphincter circular muscle as
well as muscularis mucosa (Fig. 6¢). In addition,
TdTomato-positive cells that are located within the
smooth muscle layer of the pyloric sphincter expressed
aSMA demonstrate the smooth muscle phenotype of
mMPC-SMC after engraftment (Fig. 6¢).

Discussion

The present study provides to our knowledge the first
evidence that skeletal muscle-derived MPC can be differ-
entiated into smooth muscle cells in vitro and thereby
express contractile proteins, surface markers, as well as
functional voltage-gated ion channels associated with
smooth muscle lineage commitment. Furthermore, we
report that this differentiation is stable even when MPC-
SMC are removed from smooth muscle differentiating
conditions. Importantly, we underscore the potential of
MPC-SMC for sphincter regeneration by demonstrating
the engraftment, survival, and contractile protein expres-
sion of MPC-SMC following transplantation into the
murine pyloric sphincter in vivo.

To date, different sources of human cells capable of
in vitro differentiation towards the smooth muscle
lineage have been described, whereby most studies in-
cluded induced pluripotent stem cells (iPSC) and MSC
[18, 19, 35]. Both iPSC and MSC can be isolated without
ethical concerns and harbor great differentiation poten-
tial; high proliferative capacities are easily accessible as
well as clinically suitable for autologous treatment ap-
proaches [43, 44]. iPSC especially are promising in their
smooth muscle differentiation potential and functionality
in vitro [18], and iPSC-derived smooth muscle progeni-
tor cells demonstrated urethral sphincter regenerative
potential in vivo [45]. However, concerns on safety, such
as genetic instability and teratoma formation, still
dampen their way into the clinics [43]. Adult MSC-
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derived cell products did not cause major health con- elucidated. Primary smooth muscle cells were success-
cerns in the majority of clinical trials [46]. They have fully used for smooth muscle regeneration in a passive
been shown effective for anal sphincter muscle regener-  fecal incontinence animal model [48]. However, these
ation in animal models [47], although their clinical effi- cells are hardly accessible for autologous treatment in
cacy remains elusive and the mode of action is yet to be  humans, and moreover, they are heterogeneous in



Thurner et al. Stem Cell Research & Therapy (2020) 11:233

Page 14 of 17

1004
80 - e
60

Lo
404 Pyloric

% positive cells

20

Intestine’,

DAPI aSMA

implantation. Representative images of n =8 injected mice

sphincter %

DAPI TdTomato

Fig. 6 Engraftment of mMPC-derived SMC into smooth muscle tissue in vivo. a Quantification of percent desmin- and aSMA-positive cells
performed by immunofluorescence staining of two preparations of mMMPC-SMC. b Fluorescence signal detection of co-injected fluorescent beads
and TdTomato transgene expressing cells localized in the intact pyloric sphincter muscle by IVIS imaging ex situ. ¢ Tissue engraftment and aSMA
protein expression of TdTomato-positive mMPC-SMC in pyloric sphincter histological sections of intramuscular-injected SMC 12 weeks after

High

TdTomato

Low

nature and may have limited in proliferative capacity
[49]. Therefore, primary smooth muscle cells do not
qualify as a promising cell therapeutic candidate for
smooth muscle regeneration in humans. In contrast,
skeletal muscle-derived cells are highly proliferative [50],
and CD56" cells have been shown to be safe and effect-
ive in clinical trials to treat external anal sphincter-
associated (skeletal muscle) fecal incontinence [21, 22,
24]. With this study, we demonstrate that CD56" skel-
etal muscle-derived cells (MPC) also possess the poten-
tial to differentiate into functional smooth muscle
in vitro, being able to engraft into the pyloric sphincter
smooth muscle, following intramuscular implantation.
Thus, skeletal muscle-derived CD56" MPC have both
skeletal and smooth muscle regenerative potential and
therefore constitute a unique and powerful cell source
for cell therapy in patients with defects in both skeletal
and/or smooth muscle sphincters.

A previous study reported the capacity of CD34"/
CD56" muscle-derived cells having smooth muscle dif-
ferentiation potential in vitro [28]. CD34 expression was
described in muscle-derived stem cells and quiescent
satellite cells [51], but its expression becomes heteroge-
neous during activation and proliferation [52]. Thus, it
became questionable if CD34~ muscle-derived cells
maintain their smooth muscle differentiation potential.
MPC isolated in the present study were found to be
CD347, and thus, our results for the first time

demonstrate that CD34 /CD56" MPC maintain smooth
muscle differentiation potential. Our results showed for
the first time to our knowledge that treatment of CD34~
/CD56" MPC in smooth muscle differentiation medium
containing TGFbl and heparin induced expression of
smooth muscle-associated proteins (aSMA and smooth-
elin) and maintained expression of the myogenic marker
desmin. Convincingly, CD146, a marker associated with
the vascular lineage commitment of MSC [35] and also
detected in synthetic human bladder-derived smooth
muscle cells (s-hBd-SMC), and CD49a (ITGA1l), a
marker dramatically increased in smooth muscle con-
taining tissue during development [36] and detected in
contractile human bladder-derived smooth muscle cells,
were found in MPC-SMC. This suggests that MPC-SMC
adopt surface marker profile of smooth muscle cells.
Furthermore, MPC to MPC-SMC differentiation was
shown herein to reduce cell proliferation consistent with
differentiation and findings of others that CD146"
smooth muscle lineage-committed cells proliferate sig-
nificantly slower than CD146™ cells [35].

In our study, we demonstrated that MPC-derived
MPC-SMC also express functional calcium and potas-
sium channels. Furthermore, a comparison of changes in
the pattern of gene expression between MPC and MSC
during smooth muscle differentiation revealed highly
similar differentiation efficiency. This suggests MPC are
at least as good as MSC to generate smooth muscle cells
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in vitro. Although an upregulated protein expression of
aSMA could be detected in MPC-SMC, we detected up-
regulation of ACTA2 gene expression encoding aSMA
only following the smooth muscle cell differentiation of
MSC, but not MPC. The higher amount of aSMA
protein-positive cells MPC-SMC compared to MPC
could result from (i) an increased polymerization of
globular actin (G-aSMA) into filamentous actin (F-
aSMA), of which only the latter is detectable by aSMA
antibodies [53], or (ii) post-transcriptional regulation of
aSMA protein expression during MPC to MPC-SMC
differentiation.

Contractility of smooth muscle cells is a prerequisite
for their functionality in vivo, and an increase in con-
tractility of in vitro generated smooth muscle cells was
already confirmed for adipose- and bone marrow MSC-
derived smooth muscle cells [19, 35]. Our results go
along with these findings as skeletal muscle-derived
MSC found herein increased in contractility upon
in vitro smooth muscle differentiation to MSC-SMC.
Strikingly, we could demonstrate for the first time in-
creased contractility of MPC following in vitro differenti-
ation to MPC-SMC, comparable to the contractility of
MSC-SMC. However, the contractility of SMC was not
yet as pronounced as of hBd-SMC, suggesting that
MPC-SMC are on their way to become fully mature
contractile smooth muscle cells.

Previous studies used muscle-derived cells for the
treatment of detrusor muscle dysfunction [27, 54]. Al-
though improvement of bladder function following
cryoinjury was reported, injected cells also formed skel-
etal muscle fibers within the smooth muscle tissue [27].
In this case, improvement of bladder function could be
explained by increasing the total amount of tissue and
thus compensate for lost tissue. However, this mere re-
placement of tissue by cells not having the same func-
tionality as lost cells might not be regenerative. In
contrast, we provide evidence that murine MPC-SMC
generated according to our protocol, survived within the
pyloric sphincter of immunodeficient mice, and express
aSMA. Importantly, we did not find skeletal myofibers
within the smooth muscle tissue of the pyloric sphincter
following transplantation, suggesting smooth muscle
lineage commitment stability. Moreover, our in vitro
data demonstrated that human MPC-SMC exhibit less
skeletal myogenic differentiation potential (fusion com-
petence, AChE, and CK activity) than MPC, which might
put them in favor as a therapy for smooth muscle
regeneration.

The smooth muscle differentiation potential of MPC
in vitro as well as the integration capacity of MPC-SMC
in the sphincter muscle makes them an auspicious can-
didate for regenerative therapy in conditions such as
passive fecal incontinence. Further studies addressing
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the safety and efficacy of MPC-SMC in smooth muscle
sphincter regeneration will be required. The establish-
ment of faithful small and large animal disease models
for sphincter regeneration will be pivotal for gathering
new insight into the functional regenerative potentials of
MPC-SMC and the establishment of effective smooth
muscle regeneration therapies.

Conclusions

Human skeletal muscle-derived myogenic progenitor
cells demonstrate smooth muscle differentiation poten-
tial in vitro. Smooth muscle differentiation of myogenic
progenitor cells was induced by cultivating them in
TGFbl and heparin-containing medium. Resulting
smooth muscle cells demonstrate increased expression
of smooth muscle marker genes and proteins, as well as
functional voltage-gated cation channels and in vitro
contractility. These in vitro-generated smooth muscle
cells engraft in sphincter smooth muscle tissue following
intramuscular implantation in vivo. Taken together,
myogenic progenitor cell-derived smooth muscle cells
could be a promising medicinal product for the treat-
ment of smooth muscle sphincter-related disorders such
as passive fecal incontinence.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513287-020-01749-w.

Additional file 1: S1 Fig. Surface marker expression in synthetic and
contractile hBd-SMC compared to MPC and MPC-SMC. Immunocyto-
chemistry against CD146 or CD49a combined each with hematoxylin
staining on MPC and SMCs cultivated in either growth medium (MPC
and s-hBd-SMC) or smooth muscle differentiation medium (MPC-SMC
and hBd-SMC) for 6 days. Representative images of MPC/MPC-SMC from
at least two individual muscle biopsies and of two individual experiments
(hBd-SMC and s-hBd-SMC). Scale bar =100 um.

Additional file 2: S2 Fig. Contractile protein expression in bladder
smooth muscle cells compared to MSC-SMC and MPC-SMC. Human skel-
etal muscle-derived MPC-SMC and MSC-SMC were compared to bladder
smooth muscle-derive hBd-SMC by immunostaining for aSMA (green),
SM-MHC (green), desmin (red) and vimentin (green), each combined by
nuclear staining with Hoechst dye (blue). Representative images from at
least three individual experiments are shown. Scale bars =100 um.

Additional file 3: S3 Fig. Contractility measurements in collagen gel
lattices. Contractility of MPC, MSC, MPC-SMC and MSC-SMC as well as
hBd-SMC was quantified by collagen gel lattice contraction. (A) Percent
gel contraction from original size within 48 h of cells is shown in bar
graphs. Data presented as mean + SEM of cell preparations from each at
least three individual human muscle biopsies (MSC, MPC) or three individ-
ual experiments (hBd-SMC). (B) Representative stereomicroscopic images
of the collagen gels with embedded MSC, MSC and SMC each derived
thereof as well as hBd-SMC in wells of a 24-well plate 48 h after gel
formation.

Additional file 4: S4 Fig. Characterization of murine MPC and MPC-
SMC. (A) AChE and (B) CK activity was measured by enzyme kinetics and
is represented by OD412nm and OD340nm at specific time points (AChE:
60 min, CK: 10 min). Enzyme activities were compared between skeletal
muscle-derived mMPC and non-myogenic cells after 6 days in skeletal
muscle differentiation medium. (C) Desmin expression of mMPC visual-
ized by immunofluorescence staining. (D) Formation of multinucleated
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myotubes by mMPC during differentiation in skeletal muscle differenti-
ation medium for six days in vitro was observed. TdTomato and nuclei
were stained on histological cross sections of tibialis anterior muscles of
(E) control untreated mice and (F) SHO mice 70 days after intramuscular
injection with TdTomato mMPC and fluorescent beads. Scale bar =

100 pm.

Additional file 5: Supporting methods.
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