
M‑State and N‑Color (M−N = 1−1, 2−1, and 1−2) Turing Algorithms
Demonstrated via DNA Self-Assembly
Muhammad Tayyab Raza and Sung Ha Park*

Cite This: ACS Omega 2023, 8, 15041−15051 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The fast and extensive generation of patterns using specific algorithms is a major
challenge in the field of DNA algorithmic self-assembly. Turing machines (TMs) are simple
computable machines that execute certain algorithms using carefully designed logic gates. We
investigate Turing algorithms for the generation of patterns on algorithmic lattices using specific
logic gates. Logic gates can be implemented into Turing building blocks. We discuss
comprehensive methods for designing Turing building blocks to demonstrate an M-state and
N-color Turing machine (M−N TM). The M-state and N-color (M−N = 1−1, 2−1, and 1−2)
TMs generate Turing patterns that can be fabricated via DNA algorithmic self-assembly. The M−
N TMs require two-input and three-output logic gates. We designed the head, tape, and transition
rule tiles to demonstrate TMs for the 1−1, 2−1, and 1−2 Turing algorithms. By analyzing the
characteristics of the Turing patterns, we classified them into two classes (DL and DR for states
grown diagonally to the left and right, respectively) for the 1−1 TM, three for the 2−1 TM, and
nine for the 1−2 TM. Among these, six representative Turing patterns generated using rules R11-0
and R11-1 for 1−1 TM, R21-01 and R21-09 for 2−1 TM, and R12-02 and R12-08 for 1−2 TM were constructed with DNA
building blocks. Turing patterns on the DNA lattices were visualized by atomic force microscopy. The Turing patterns on the DNA
lattices were similar to those simulated patterns. Implementing the Turing algorithms into DNA building blocks, as demonstrated via
DNA algorithmic self-assembly, can be extended to a higher order of state and color to generate more complicated patterns,
compute arithmetic operations, and solve mathematical functions.

■ INTRODUCTION
Implementing algorithms at the nanoscale level using proper
chemistry requires an efficient computational model and a
favorable environment to execute these computations.1−3

Researchers have begun to analyze these computations based
on the efficient programmability of materials in relatively
shorter running times.4−6 Various organic materials and
biomaterials have been used for computations; however,
among these materials, DNA is a prime candidate owing to
the predictable and programmable Watson and Crick base
pairing rule and relatively stable molecules.6 Programmable
DNA base sequences are used for computations, and the bit
information implemented in a specific base sequence is
transferred to the next DNA building block using base pair
complementarity.7,8

Recently, researchers have started using DNA molecules to
execute more efficient computations at the molecular level.9,10

Using massive parallel computation, DNA can solve various
types of mathematical, physical, and biological problems within
a relatively short period of time, such as elementary functions,
M-input and N-output logic circuits, arithmetic calculations,
iterated Boolean circuits, neural networks, and random
walks.11−19 Algorithmic logic circuits that can be applied in
the aforementioned models use a certain number of rules to
generate specific patterns.20,21 The outputs generated using
these models can be visualized in the form of specific patterns

and fluorescence by scanning probe microscopy and
fluorescence spectroscopy, respectively.

In 1936, Turing proposed a computable machine that can
execute simple logic circuits (known as a Turing machine
(TM)).22−25 A TM comprises a head and tape to generate
certain patterns (Turing patterns). Turing machines provide
the output information for the given input information of the
head and tape. The information can be stored on the tape and
executed by moving the head based on the instructions given
by the TM. These instructions (Turing algorithms) provide an
appropriate set of given rule algorithms with information on
the state of the head [up (U) or down (D)], color of the tape
[black (B) and white (W)], and position of the head [left (L)
and right (R)]. A TM adopts a two-input, three-output logic
gate to compute the Turing algorithm. A Turing algorithm
consists of proper instructions of the head state and tape color
(as a two-input set) and generates the head state, tape color,
and head position (as a three-output set) in the next layer. A

Received: December 17, 2022
Accepted: April 3, 2023
Published: April 18, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

15041
https://doi.org/10.1021/acsomega.2c08017

ACS Omega 2023, 8, 15041−15051

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Tayyab+Raza"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sung+Ha+Park"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c08017&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/17?ref=pdf
https://pubs.acs.org/toc/acsodf/8/17?ref=pdf
https://pubs.acs.org/toc/acsodf/8/17?ref=pdf
https://pubs.acs.org/toc/acsodf/8/17?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


Turing algorithm with M states and N colors (M-state, N-
color) can generate various Turing patterns operated by the
Turing rules. The total number of available rules for a given M-

state, N-color TM (M−N TM), is obtained by (2 × M ×
N)M·N. For instance, a 1−2 TM generates 16 different patterns
by using 16 = (2 × 1 × 2)1·2 available rules.

Figure 1. M-State and N-color Turing machine. (a) Schematic of a TM. A TM comprises a head and tape. (b) 1−1, 2−1, and 1−2 Turing
algorithms in anM × N table. (c) Description ofM-state and N-color TMs for 1−1, 2−1, and 1−2 Turing algorithms. (d) Components of 1−1, 2−
1, and 1−2 Turing algorithms in a two-input (blue), three-output (yellow) logic implementation. (e) Two-input, three-output in a 1−1 Turing
algorithm. Two rules (R11-0 and R11-1) are available. R11-0 (R11-1) provides the outputs of the UWL (UWR) with an input of UW. (f) Two-
input, three-output in a 2−1 Turing algorithm. Sixteen rules are available. For instance, R21-09, which is highlighted in orange, provides the outputs
of DWL (UWR) with the inputs of UW (DW). (g) Two-input, three-output in a 1−2 Turing algorithm. Sixteen rules are available. For instance,
R12-08, which is highlighted in orange, provides the outputs of UBL (UWL) with the inputs of UB (UW).

Figure 2. Design of binding domains in abstract building blocks for a 1−1 Turing algorithm. (a) Two-input, three-output with a base 2
representation in a 1−1 Turing algorithm. One set (UW) of a two-input and two sets (UWL and UWR) of a three-output are highlighted in blue
and yellow, respectively. (b) Binding domains of the state alignment (a and u denote alignment and up, respectively), position specification (p, l,
and r denote position, left, and right, respectively), and color allocation (c and w denote color and white, respectively) with the corresponding
geometrical representations. (c) Schematics of the designs of the head, tape, and transition rule tiles. Based on the given input-binding domains,
one type of head, one type of tape, and two types of transition rule tiles were designed. (d) Two head, one tape, and three transition rule tiles with
specific binding domains. (e) Two possible combinations of transition rule tiles. (f) Table of binding domains for head, tape, and transition rule
tiles. Two input-binding domains (cw′ and pr′) in a transition rule tile marked with a dotted red box are complementary to the outputs of the head
rule tile marked with red boxes. Similarly, three output-binding domains (cw′, cw′, and au′) in a transition rule tile marked with a dotted cyan line
are complementarity to the inputs of the head and tape rule tiles marked with cyan boxes. (g) Units for R11-0 and R11-1. (h) Simulated patterns
(SP) for R11-0 (states grown diagonally to the left (DL)) and R11-1 (states grown diagonally to the right (DR)).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15042

https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Here, we discuss the 1−1, 2−1, and 1−2 TMs demonstrated
by the two-input, three-output algorithmic self-assembly of
DNA. Three different rule tiles, head, tape, and transition rule
tiles, were conceived to generate simulated (abstract
rectangular building blocks containing proper binding
domains) and experimentally obtained (DNA tiles with sticky
ends) Turing patterns. By analyzing the characteristics of the
simulated Turing patterns, the 1−1, 2−1, and 1−2 TMs are
classified into two (DL and DR for states grown diagonally to
the left and to the right, respectively), three, and nine classes,
respectively (as discussed in the Results and Discussion
section). Turing patterns on the DNA lattices were visualized
by atomic force microscopy (AFM).

■ RESULTS AND DISCUSSION
Description of an M-State N-Color Turing Machine.

The 1−1, 2−1, and 1−2 TMs were implemented into two-
input and three-output logic gates (Figure 1). Figure 1a shows
a Turing machine comprising a head and rolling tape with the
symbols of the head state. Figure 1b shows an M × N table
with the 1−1, 2−1, and 1−2 Turing algorithms. The elements
of an M−N TM are the head states (U and D) and tape colors
(B and W) (Figure 1c). The 1−1 TM consists of head state U
and tape color W, the 2−1 TM consists of head state U or D
and tape color W, and the 1−2 TM consists of head state U
and tape color W or B.

Figure 1d−g shows the components of the 1−1, 2−1, and
1−2 Turing algorithms in two-input (indicated by blue), three-
output (yellow) logic implementations. The number of
available rules can be determined by arranging the components
of each Turing algorithm. For instance, the 1−1 TM
containing one two-input set with two three-output sets yields
two distinct Turing patterns (i.e., R11-0 and R11-1). For the
2−1 and 1−2 TMs, 16 rules (R21-00−R21-15 for the 2−1 TM
and R12-00−R12-15 for the 1−2 TM) are available in each
two-input set.

The total number of available rules for each two-input set is
obtained by (2 × M × N)M·N. For instance, the 1−1, 2−1, and
1−2 TMs generate 2 (=(2 × 1 × 1)1·1), 16 (=(2 × 2 × 1)2·1),
and 16 (=(2 × 1 × 2)1·2) different rules per two-input set.
Notably, two different Turing patterns are available at a given
rule for the 2−1 and 1−2 TMs because of the two two-input
sets. For example, R21-09 revealed a three-output set of DWL
(UWR) with a two-input set of UW [DW]. We named this
rule R21-09(1st) [R21-09(2nd)]. Similarly, R12-08(1st) and
R12-08(2nd) show two three-output sets of UBL and UWL
generated using the two two-input sets of UB and UW,
respectively.

1−1 Turing Algorithm in Base 2 Demonstrated Using
Abstract Rule Tiles. Figure 2a,b shows the 1−1 Turing
algorithm in the base 2 representation and binding domains
with geometrical shapes. For a given single-input UW (in
blue), two available output sets are labeled, i.e., UWL and
UWR (in yellow). Here, the base 2 representation of the 1−1
TM exhibits (U, W) → (U, W, L) and (U, W) → (U, W, R)
for 0 (i.e., 02) and 1 (i.e., 12), respectively. These correspond to
rules R11-0 and R11-1, respectively (Figure 2a). Figure 2b and
Table S1 in the Supporting Information show geometrical
representations of the binding domains for the rule tiles. The
information delivery of the state and color in the 1−1 TM
requires specific rule tiles that have binding domains
containing specific input and output characteristics, such as
state alignment up (au), state position specification (pl and pr

for left and right positions, respectively), and tape color
allocation (cw for white). For the alignment up (↑) state, two
specific bindings (a1 and a2) were conceived with the
corresponding complementary binding domains (a1′ and
a2′). For state position specification, two specific bindings
(p1 and p4 for the left position and p2 and p3 for the right
position) were introduced with the corresponding comple-
mentary binding domains (p1′ and p4′ for the left position and
p2′ and p3′ for the right position). Finally, four binding
domains (c2, c3, c5, and c6) were introduced to allocate white
color with the corresponding complementary binding domains
(c2′, c3′, c5′, and c6′).

The 1−1 Turing algorithm with four binding domain-
embedded rectangular building blocks is demonstrated by
designing three rule tiles with the specific characteristics of the
head state and tape color (Figure 2c). A head rule tile with
head state alignment up information comprises two input-
binding domains (which carry information of the head state
alignment up marked with U and tape color white marked with
0 in green) and two output-binding domains (which carry
information of the head state position and tape color in red).
Two input-binding domains, i.e., au and cw, can exchange their
locations (indicated by a reversible solid arrow). Similarly, two
output-binding domains, i.e., pl and cw (cw and pr), can
exchange their locations in Y and X (Figure 2c). The tape rule
tiles contain information about the tape color white, which
corresponds to the 0-bit information. The tape rule tile was
designed based on the color specification of the binding
domains. Two input-binding domains, both containing the 0-
bit information (white tape rule tiles), copy the same bit
information to the corresponding output-binding domains, i.e.,
(cw, cw → cw, cw). The binding domains of the transition rule
tiles in the input sets contain information on the tape color and
head state position obtained from the head rule tile placed in
the previous tape. The output sets in the binding domains
contain information on the head alignment and tape color,
which is delivered to the head and tape rule tiles in the next
layer. Two types of transition rule tiles were designed: one
copies the tape color, e.g., cw′, cw′ → cw′, cw′, and the other
delivers the head state position to the head alignment (pl′ →
au′ and pr′ → au′).

Figure 2d shows two head, one tape, and three transition
rule tiles with specific input- and output-binding domains with
geometrical shapes. Input (output)-binding domains in each
head rule tile carry the head state alignment (position) and
tape color. For instance, the inputs (outputs) of a1 and c2 (c5
and p2) indicate the head state alignment U and tape color W
(head state position R and tape color W), respectively. Hence,
each head rule tile can be formulated using two output
combinations. Figure 2d also shows the tape rule tile, with
detailed information on the binding domains. Inputs (c3 and
c2) both with W (possessing the 0-bit information) in tape
rule tile TW1 deliver the same bit information to the
corresponding output-binding domains (c5 and c6). Figure
2d,e shows three individual and two possible combinations of
the transition rule tiles, respectively. Transition rule tiles have
two types: one copies the tape color, such as TW1′, and the
other delivers the state position to the head alignment, such as
TT1 and TT2. For instance, TT1 delivers the state position
left (p1′) in the input to the state alignment (a1′) in the
output. Two combinations (i.e., cases 0 and 1) comprising two
transition rule tiles were designed to deliver information
acquired from the head rule tile to the head and tape rule tiles.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15043

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c08017/suppl_file/ao2c08017_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 3. Design of binding domains in abstract building blocks for a 2−1 Turing algorithm. (a) Two-input, three-output with a base 4
representation in a 2−1 Turing algorithm. Two sets (UW and DW) of a two-input and four sets (UWL, UWR, DWL, and DWR) of a three-output
are highlighted in blue and yellow, respectively. (b) Binding domains of the state alignment (au and ad), position specification (pl and pr), and
color allocation (cw) with the corresponding geometrical representations. (c) Schematics of the design of head, tape, and transition rule tiles. Based
on the given input-binding domains, two types of head, one type of tape, and two types of transition rule tiles were designed. (d) Sixteen head, one
tape, and five transition rule tiles with specific binding domains. (e) Four possible combinations of transition rule tiles. (f) Table of binding

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15044

https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Case 0 (consisting of TT1 and TW1′) delivers two sets of
information: (i) head state position left to head state alignment
up and (ii) tape color white to tape color white. Similarly, case
1 (consisting of TW1′ and TT2) delivers information on (i)
tape color white to tape color white and (ii) head state position
right to head state alignment up. The dashed rectangular red
box (cyan) on each combination of transition rule tiles
indicates the binding sites of a head rule tile (head and tape)
through the complementary binding between unprimed and
primed binding domains.

Figure 2f shows the rule tile bindings for constructing the
units for all rules (R11-0 and R11-1) available in the 1−1
Turing algorithm. Two input-binding domains, (pl′, cw′) and
(cw′, pr′), in a set of transition rule tiles marked with a dotted
red box are complementary to the outputs of the head rule tile
marked with solid red. Similarly, three output-binding
domains, (au′, cw′, cw′) and (cw′, cw′, au′), in a set of
transition rule tiles marked with a dotted cyan box are
complementary to the inputs of the head and tape rule tiles
marked with cyan solid boxes. Figure 2g shows two unit sets
comprising the head, tape, and transition rule tiles for R11-0:
(U, W) → (U, W, L) and R11-1: (U, W) → (U, W, R).

Figure 2h shows the simulated patterns (SP) (which are
generated by Mathematica 11) for R11-0 and R11-1. Based on
the pattern characteristics, we classify SPs into two classes: (i)
head states grown diagonally to the left (DL) and (ii) head
states grown diagonally to the right (DR).

2−1 Turing Algorithm in Base 4 Demonstrated Using
Abstract Rule Tiles. Figure 3a shows the two-input and
three-output of the 2−1 Turing algorithm in the base 4
representation. For the two given sets of two-input, UW and
DW (in blue), four available output sets are labeled, i.e., UWL,
UWR, DWL, and DWR (in yellow). Using these, 16 (=42)
distinct rules (R21-00−R21-15) can be specified. Here, the
rule number in the rule name corresponds to the number in
base 4. For instance, 09 (=2 × 41 + 1 × 40) in R21-09
corresponds to 214 (marked in red in Table), which provides
the three-outputs of the DWL for the two-inputs of the UW
(1st input) and UWR for the DW (2nd input). The 2−1
Turing algorithm requires specific rule tiles to deliver the
information of two states and one color using binding domains
(Figure 3b). The rule tiles contain specific input and output
characteristics, such as state alignment (au and ad), state
position (pl and pr), and tape color (cw).

Figure 3c shows the schematics of the binding domain
design of the head, tape, and transition rule tiles. Two types of
head rule tiles are required for the two states. A head rule tile
with the head state up information comprises two input-
binding domains, which contain the information on the state
alignment up (u) and tape color white (0) in green, and two
output-binding domains, which contain the information on the
state position and tape color in red. For the head state down,
the head rule tile has two input-binding domains, which
contain information on the state alignment down (d) and tape
color white (0). The two input-binding domains in both head

rule tiles, i.e., au/ad and cw, can exchange their locations
(indicated by the reversible solid arrows). Similarly, two
output-binding domains, i.e., pl and cw (cw and pr), can
exchange their locations in Y and X. One type of tape rule tile
is required. A tape rule tile delivers the tape color white from
the input to the output-binding domains. Two types of
transition rule tiles were designed: one copies the tape color
(such as cw′, cw′ → cw′, cw′) and another delivers the state
position to the head alignment (pl′ → au′/ad′ and pr′ → au′/
ad′).

Figure 3d shows 16 head, one tape, and five transition rule
tiles with specific input and output-binding domains with
geometrical shapes. A head rule tile contains the head state
(either HU or HD), the input-binding domains of the head
alignment (↑ or ↓), the tape color (0), the output-binding
domains of the tape color (0), and the head position/state
alignment (l↑, l↓, r↑, r↓). The input (output)-binding domains
with the state alignment and tape color (state position with the
information on the state alignment and tape color) for each
head state are specified; in particular, for inputs a1 and a2 (a3
and a4) for u (d) and c2 and c3 for 0, and for outputs p1 and
p4 (p2 and p4) for l↑ [r↑] and c5 and c6 for 0. Hence, each
head rule tile can be formulated using two output
combinations. For instance, HU↑0r↓0 contains the input
information on the state alignment up (↑) in a1 and the color
white (0) in c3, as well as the output information on the head
position right/state alignment down (r↓) in p3 and the tape
color white (0) in c5. Similarly, HD0↓r↓0 contains the input
information of the tape color white (0) in c2 and the state
alignment down (↓) in a3, as well as the output information of
the head position right/state alignment down/(r↓) in p3 and
the tape color white (0) in c5.

Because of the 1-color TM, a single tape rule tile TW1 is
required (which is the same as the tape rule tile for the 1−1
TM). Figure 3d,e shows five individual transition rule tiles and
four possible cases (formed with two transition rule tiles),
respectively. For the head state up (down) in the following
layer, two cases are required, such as (TW1′, TT1) and (TT2,
TW1′) ((TW1′, TT4) and (TT3, TW1′)), labeled as cases 0
and 1 (cases 2 and 3), respectively. For instance, case 3, which
comprises TT3 and TW1,′ delivers the following information:
(i) state position right to state alignment down (indicated by
the solid arrow) and (ii) tape color white to tape color white
(dotted arrow). Input information received from the head rule
tiles and output information delivered to the head/tape rule
tiles are indicated by the dotted red and cyan lines,
respectively.

Figure 3f shows a list of the rule tile-binding domains for
constructing the units for all rules (R21-00 to R21-15)
available in the 2−1 Turing algorithm. Two input-binding
domains, such as (pl′, cw′) and (cw′, pr′), in the four sets of
transition rule tiles are complementary to the outputs of the
head rule tile (indicated by two red boxes). Similarly, three
output-binding domains, such as (au′/ad′, cw′, cw′) and (cw′,
cw′, au′/ad′), in a set of transition rule tiles, marked with

Figure 3. continued

domains for the head, tape, and transition rule tiles. (g) Units for R21-01 with the two-input of DW (R21-01(2nd)) and R21-09 with the two-input
of UW (R21-09(1st)). Each rule has two sets (1st UW and 2nd DW) of the two-input. (h) Simulated patterns (SP) with classification for a 2−1
Turing algorithm. Sixteen rules (each rule produces two Turing patterns) and three pattern classes (DL, DR, and VZ, which indicate states grown
diagonally to the left, diagonally to the right, and vertically in a zigzag manner, respectively) are available. The simulated patterns in the red boxes
were obtained experimentally.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15045

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 4. Design of binding domains in abstract building blocks for a 1−2 Turing algorithm. (a) Two-input, three-output with a base 4
representation in a 1−2 Turing algorithm. Two sets (UB and UW) of a two-input and four sets (UWL, UWR, UBL, and UBR) of a three-output
are highlighted in blue and yellow, respectively. (b) Binding domains of the state alignment (au), position specification (pl and pr), and color
allocation (cb and cw) with the corresponding geometrical representations. (c) Schematics of the design of head, tape, and transition rule tiles.
Based on given input-binding domains, two types of head, tape, and transition rule tiles were designed. (d) Sixteen head, three tape, and five
transition rule tiles with specific binding domains. (e) Four possible combinations of transition rule tiles. (f) Table of binding domains for head,

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15046

https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


dotted cyan boxes, are complementary to the inputs of the
head and tape rule tiles (marked with cyan solid boxes). The
units for R21-01(2nd) and R21-09(1st) comprised the head,
tape, and transition rule tiles. Every rule in the 2−1 TM has
two input sets: UW and DW. For instance, R21-01(2nd)
represents the unit initiated by the second input set of DW,
and R21-09(1st) shows the unit initiated by the first input set
of UW (Figure 3g).

Simulated patterns generated from 16 rules (from R21-00 to
R21-15) with two different input sets (i.e., UW and DW) are
classified into three different classes (Figure 3h). Classes DL
and DR indicate the diagonal left and right movements of the
head rule tiles in the simulated patterns, respectively. In
contrast, class VZ indicates vertical and zigzag movements of
the head rule tiles in a simulated pattern. Although all patterns
(except R21-06) generated with the same rules with different
input sets show the same type of classes, R21-06 reveals two
classes: DR for R21-06(1st) and DL for R21-06(2nd).

1−2 Turing Algorithm in Base 4 Demonstrated Using
Abstract Rule Tiles. Figure 4a shows the 1−2 Turing
algorithm in a base 4 representation. For the two given input
sets UB (1st input) and UW (2nd input) (in blue), four
available output sets are labeled, i.e., UWL, UWR, UBL, and
UBR (in yellow). Using these, 16 distinct rules (=42; R12-00−
R12-15) can be generated. Here, the rule number in the rule
name corresponds to the number in base 4. For instance, 08
(=2 × 41 + 0 × 40) in R21-08 corresponds to 204 (marked in
red in Table), which provides the three-outputs of the UBL for
the two-inputs of the UB (1st input) and UWL for the UW
(2nd input). The 1−2 Turing algorithm requires specific rule
tiles to deliver information on one state and two colors
through carefully designed binding domains (Figure 4b). The
rule tiles contain specific input and output characteristics, such
as the state alignment (such as au), state position (pl and pr),
and tape color (cw and cb).

Figure 4c shows schematics of the binding domain design of
the head, tape, and transition rule tiles. One type of head rule
tile is required for one state. A head rule tile with the head state
up information comprises two input-binding domains, which
contain the information on the state alignment up (u) and tape
color, either white or black (0 or 1), in green, and two output-
binding domains, which contain the information on the state
position and tape color in red. Two input-binding domains in
both head rule tiles, i.e., au and cb/cw, can exchange their
locations (indicated by the reversible solid arrows). Similarly,
two output-binding domains, i.e., pl and cb/cw (cb/cw and
pr), can exchange their locations in Y and X. The two types of
tape rule tiles are required. Tape rule tiles deliver the tape color
white/black from the input to the output-binding domains.
Two types of transition rule tiles were designed: one copies the
tape color, such as (cb′/cw′, cw′ → cb′/cw′, cw′), and another
delivers the state position to the head alignment (pl′ → au′
and pr′ → au′).

Figure 4d shows the 16 head, three tape, and five transition
rule tiles with specific input- and output-binding domains with

geometrical shapes. A head rule tile name contains the head
state (HU), the input-binding domains of the head alignment
(↑), the tape color (either 0 or 1), the output-binding domains
of the tape color (0 or 1), and the head position/state
alignment (l↑ and r↑). The input (output)-binding domains
containing the state alignment and tape color (state position
with the information on the state alignment and tape color) are
specified for each head state; in particular, for inputs a1 and a2
for u, c2 and c3 for 0, and c1 and c4 for 1, and for outputs p1
for l↑ and p2 for r↑, c5 and c6 for 0, and c7 and c8 for 1.
Hence, each head rule tile can be formulated using two output
combinations. For instance, HU↑1r↑1 contains the input
information on the state alignment up (↑) in a1 and the color
black (1) in c1, as well as the output information on the head
position right/state alignment up (r↑) in p2 and the tape color
black (1) in c8. Similarly, HU0↑0l↑ contains the input
information on the tape color white (0) in c2 and the state
alignment up (↑) in a2, as well as the output information on
the head position left/state alignment up/(l↑) in p1 and the
tape color white (0) in c6.

Figure 4d shows schematics of the tape rule tiles with
detailed information on the binding domains. The tape rule tile
of TW1 containing two input-binding domains (c2 and c3)
with the 0-bit information (tape color white) copies the 0-bit
information to the output (c6 and c5). In contrast, TB2 and
TB3 containing one input-binding domain with the 1-bit
information (c4 and c1) copy the 1-bit information to the
output (c7 and c8) in each tile, as indicated by the arrows.
Figure 4d,e shows five individual transition rule tiles and four
possible cases (formed with two transition rule tiles),
respectively. Four combinations of two transition rule tiles
are needed: (TW1′, TT1), (TT2, TW1′), (TB2′, TT1), and
(TB3′, TT2) labeled as cases 0, 1, 2, and 3, respectively. For
instance, case 1, which comprises TT2 and TW1′, delivers the
following information: (i) state position right to state
alignment up (indicated by the solid arrow) and (ii) tape
color white to tape color white (dotted arrow). The input
information received from the head rule tiles and the output
information delivered to the head/tape rule tiles are indicated
by the dotted red and cyan lines, respectively.

Figure 4f shows a list of the rule tile-binding domains for
constructing the units for all rules (R12-00 to R12-15)
available in the 1−2 Turing algorithm. Two input-binding
domains, such as (pl′, cb′/cw′) and (cb′/cw′, pr′), in the four
sets of transition rule tiles are complementary to the outputs of
the head rule tile (indicated with two red boxes). Similarly,
three output-binding domains, such as (au′, cw′, cb′/cw′) and
(cb′/cw′, cw′, au′), in the set of transition rule tiles marked
with dotted cyan boxes are complementary to the inputs of the
head and tape rule tiles (marked with cyan solid boxes). The
units for R12-02(2nd) and R12-08(1st) comprise the head,
tape, and transition rule tiles. Every rule in the 1−2 TM has
two input sets: UB and UW. For instance, R12-02(2nd)
represents the unit initiated by the second input set of UW,

Figure 4. continued

tape, and transition rule tiles. (g) Units for R12-02 with the input of UW (R12-02(2nd)) and R12-08 with the two-input of UB (R12-08(1st)).
Each rule has two sets (1st UB and 2nd UW) of the two-input. (h) Simulated patterns (SP) with classification for a 1−2 Turing algorithm. Sixteen
rules (each rule produces two Turing patterns) and nine pattern classes (such as DL-B, which indicates states grown diagonally to the left and black
grown in a triangular shape, and DL-BC, which indicates states grown diagonally to the left and black grown in a line-like shape) are available. The
SP in the red boxes was obtained experimentally.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15047

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 5. Experimental demonstration of the 1−1 (i.e., R11-0, R11-1) and 2−1 (e.g., R21-01(2nd), R21-09(1st)) Turing patterns via the
algorithmic self-assembly of DNA implemented with two-input, three-output logic rules. (a) Head (green), tape (red), and transition (brown) rule
tiles represented by DNA DX tiles with corresponding abstract building blocks. (b) Unit with the two-input of UW and AFM images of Turing
patterns operated by rule R11-0. (c) Unit, the simulation pattern, and the represented AFM image of Turing patterns operated by rule R11-1. (d, e)
Simulation patterns with the two-inputs of DW (i.e., R21-01(2nd)) and UW (R21-09(1st)) with the corresponding AFM images. Magenta arrows
in simulation patterns and AFM images indicate the growth direction of the patterns.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15048

https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and R12-08(1st) shows the unit initiated by the first input set
of UB (Figure 4g).

Using the characteristics of the simulated patterns, we
classified them into nine classes (Figure 4h). The class name
contains information on (i) the growth direction of the head
state (DL/DR, VZ, DZL/DZR) and (ii) the configuration of
the black tape (B, BC). Here, DL/DR indicates head states
grown diagonally to the left/right, VZ indicates head states
grown vertically in a zigzag manner, and DZL/DZR represents

head states grown diagonally in a zigzag manner to the left/
right. The configurations of black tapes B and BC indicate
black growing in a triangular and a line-like shape, respectively.
For instance, DL-B indicates states grown diagonally to the left
and black grown in a triangular shape, and DL-BC indicates
states grown diagonally to the left and black grown in a line-
like shape, respectively. Although the simulated patterns are
generated with the same rules, some of the rules show different

Figure 6. Experimental demonstration of the 1−2 Turing patterns via the algorithmic self-assembly of DNA implemented with two-input, three-
output logic rules (e.g., R12-02(2nd) and R12-08(1st)). (a) Head, tape, and transition rule tiles represented by abstract building blocks with the
corresponding DNA DX tiles. (b) Units with the two-inputs of UW and UB operated by R12-02(2nd) and R12-08(1st). (c) Simulation pattern and
represented AFM images of Turing patterns operated by rule R12-02(2nd). Triangular patterns formed by hairpin-embedded DX tiles are marked
with green triangles. (d) Simulation pattern and represented AFM images of Turing patterns operated by rule R12-08(1st).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15049

https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


pattern class patterns with different input sets (e.g., VZ-BC
obtained from UB and DR from UW for R12-09).

Experimental Demonstration of 1−1 and 2−1 Turing
Algorithms Using DNA DX Tiles. For the experimental
demonstration of the 1−1 and 2−1 TMs, rectangular DNA
double-crossover (DX) tiles were used (Figure 5a). A DNA
DX tile comprises two parallel duplexes connected with two
crossover junctions with dimensions of 12.6 nm × 4.0 nm
(length × width). To visualize Turing patterns on DNA
lattices, one-full-turn protruding DNA hairpins were decorated
on head rule tiles (which contain the information on head state
up for the 1−1 TM and head state up or down for the 2−1
TM). For instance, two hairpin structures were observed in the
DNA DX representation of head rule tiles (such as HU0↑r↑0
and HU↑00l↑ for the 1−1 TM). In addition, five-nucleotide-
length sticky-end domains with the corresponding binding
domains are indicated in the DNA DX representation (Table
S2 in the Supporting Information). In addition, Figure 5a
shows DNA DX representations with the corresponding
abstract building blocks of tape and transition rule tiles
(which do not possess DNA hairpin structures) (also see
Figures S1−S3, Tables S3, and S4 in the Supporting
Information).

Figure 5b shows a unit (with the two-input of the UW and
three-output of the UWL), a simulation pattern, and
represented AFM images of DNA lattices operated by rule
R11-0. The unit for all rules (such as R11-0 and R21-01)
consists of five rule tiles (comprising three layers: an input
head rule tile in the first layer, two transition rule tiles in the
second, and output head and tape rule tiles in the third). An
abstract representation of the unit indicates information on the
head alignment, tape color, and head state position, and a
DNA DX representation of the unit provides the type of rule
tile by color (i.e., head with green, tape with red, and transition
with brown). Head rule tiles with protruding hairpins in the
DNA lattices in the AFM images are marked with yellow
circles to visualize the Turing patterns. We noticed that the
experimentally observed Turing patterns for R11-0 (i.e., head
states grown diagonally to the left) are in good agreement with
the simulation patterns. The average distance between the
nearest hairpins in the AFM images was ∼25.9 nm (as
indicated by AFM). Figure 5c shows a unit (with the two-input
of the UW and three-output of UWR), a simulation pattern,
and represented AFM images of the DNA lattices operated by
rule R11-1. Similar to R11-0, the experimentally observed
Turing patterns for R11-1 (i.e., head states grown diagonally to
the right) are in good agreement with the simulation patterns.

For the 2−1 TM, two rules, R21-01(2nd) and R21-09(1st),
were demonstrated via DNA DX tiles (Figure 5d,e). The units
of R21-01 initiated with the second two-input of the DW, and
R21-09 initiated with the first two-input of the UW, as shown
in Figure 3g. The AFM images for R21-01(2nd) (head states
grown diagonally to the right) and R21-09(1st) (head states
grown vertically in a zigzag manner) were similar to the
simulation patterns.

Experimental Demonstration of the 1−2 Turing
Algorithm Using DNA DX Tiles. Figure 6a shows the 1−2
TM, the head, tape, and transition rule tiles represented by the
DNA DX tiles and abstract building blocks. To visualize the
Turing patterns on the DNA lattices, protruding one-full-turn
DNA hairpins were decorated on the head and tape rule tiles
with black tape. Consequently, hairpin-decorated DNA DX
tiles have input-binding domains in the head and tape rule

tiles, either c1 or c4. For instance, hairpin structures in the
DNA DX representation of the head rule tiles (such as HU↑
10l↑ and HU↑11l↑) and tape rule tiles (such as TB2 and TB3)
were determined. In addition, five-nucleotide-length sticky-end
domains with corresponding binding domains were indicated
by the DNA DX tiles. Units operated by two rules, R12-
02(2nd) and R12-08(1st), were designed to demonstrate
Turing patterns experimentally. Figure 6b shows the units of
R12-02 initiated with the second two-input of UW and R12-08
initiated with the first two-input of UB.

The simulation patterns in Figure 6c show head states grown
diagonally to the left and black grown in a triangle shape (DL-
B) for R12-02(2nd), and Figure 6d shows head states grown
diagonally to the left and black grown in a line-like shape (DL-
BC) for R12-08(1st). The DNA patterns exhibit black grown
in a triangular shape for R12-02(2nd) and black grown in a
line-like shape for R12-08(1st) because of hairpins placed in
the head and tape rule tiles containing information of black
tape not placed in the presence of the head states. We noticed
various sizes of triangles (marked with green triangles) in AFM
images for R12-02(2nd) and lines in AFM images for R12-
08(1st), which were similar to the simulation patterns.

■ CONCLUSIONS
In conclusion, we introduced the 1−1, 2−1, and 1−2 Turing
algorithms and demonstrated them using the two-input, three-
output algorithmic self-assembly of DNA. M−N TMs via the
algorithmic assembly of DNA were developed by designing
three types of rule tiles: head, tape, and transition. The 1−1,
2−1, and 1−2 TM algorithmic self-assemblies were demon-
strated by experiments on DNA lattices and simulations. We
discussed six representative Turing patterns that were
generated using rules R11-0 and R11-1 for the 1−1 TM,
R21-01 and R21-09 for the 2−1 TM, and R12-02 and R12-08
for the 1−2 TM. By analyzing the characteristics of the Turing
patterns, the 1−1, 2−1, and 1−2 TMs were classified into two
(DL and DR), three (DL, DR, and VZ), and nine classes,
respectively. We noticed that the experimentally obtained
Turing patterns in the AFM images were in good agreement
with the simulation data.

■ METHODS
DNA Lattice Annealing. High-performance liquid chro-

matography (HPLC)-purified synthetic oligonucleotides (In-
tegrated DNA Technologies, Iowa) were used. DNA lattices
containing the Turing patterns were constructed using a two-
step annealing method. In the first step, individual DX tiles
(i.e., head, tape, and transition rule tiles) were formed by
mixing a stoichiometric quantity of each strand in a 1× TAE/
Mg2+ buffer (Tris-acetate-EDTA: 40 mM Tris, 1 mM EDTA
(pH 8.0), 12.5 mM of magnesium acetate). Test tubes
containing DNA samples were placed in a Styrofoam box with
2 L of boiled water and gradually cooled from 95 to 25 °C to
facilitate the hybridization process. The final DX tile
concentration was 1 μM. For the second step, the annealed
head, tape, and transition tiles were added to a new test tube.
Test tubes containing rule tiles were maintained in a Styrofoam
box containing 2 L of water at 40 °C gradually cooled from 40
to 25 °C to further facilitate hybridization. A DX tile
concentration of 100 nM was achieved in the DNA lattice
(see Figures 5 and 6).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15050

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c08017/suppl_file/ao2c08017_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c08017/suppl_file/ao2c08017_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c08017/suppl_file/ao2c08017_si_001.pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


AFM Imaging. AFM imaging was performed in the fluid
ScanAsyst mode with a 1× TAE/Mg2+ buffer. Five microliters
of an annealed DNA sample were pipetted onto a mica
substrate (5 mm × 5 mm), followed by incubation for 30 s.
The buffer (40 μL) was then pipetted onto a mica substrate,
and another 20 μL of buffer was pipetted onto an oxide-
sharpened silicon nitride AFM tip (Veeco Inc., California).
AFM images were obtained using a Digital Instruments
Nanoscope V8 (Bruker, Massachusetts) (Figures 5 and 6).

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c08017.

Design of the rectangular Turing building blocks and
corresponding double-crossover (DX) DNA tiles for the
demonstration of the 1−1, 2−1, and 1−2 TMs; sticky-
end names; corresponding DNA base sequences used in
the six rules (1−1 TM (e.g., R11-0 and R11-1), 2−1 TM
(e.g., R21-01(2nd) and R21-09(1st)), and 1−2 TM (e.g.,
R12-02(2nd) and R12-08(1st))); list of rules and
corresponding head, tape, and transition rule tiles; and
DNA base sequences of strands (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Sung Ha Park − Department of Physics and Sungkyunkwan
Advanced Institute of Nanotechnology (SAINT),
Sungkyunkwan University, Suwon 16419, Republic of Korea;
orcid.org/0000-0002-0256-3363; Email: sunghapark@

skku.edu

Author
Muhammad Tayyab Raza − Department of Physics and
Sungkyunkwan Advanced Institute of Nanotechnology
(SAINT), Sungkyunkwan University, Suwon 16419,
Republic of Korea

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c08017

Funding
This study was supported by the National Research
Foundation (NRF) of Korea (2021R1A2C1005279).
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Benenson, Y.; Paz-Elizur, T.; Adar, R.; et al. Programmable and

autonomous computing machine made of biomolecules. Nature 2001,
414, 430−434.
(2) Draper, T. C.; Dueñas-Díez, M.; Pérez-Mercader, J. Exploring

the Symbol Processing “Time Interval” Parametric Constraint in a
Belousov−Zhabotinsky Operated Chemical Turing Machine. RSC
Adv. 2021, 11, 23151−23160.
(3) Dueñas-Díez, M.; Pérez-Mercader, J. How Chemistry Computes:

Language Recognition by Non-Biochemical Chemical Automata.
From Finite Automata to Turing Machines. iScience 2019, 19, 514−
526.
(4) Varghese, S.; Elemans, J. A. A. W.; et al. Molecular computing:

paths to chemical Turing machines. Chem. Sci 2015, 6, 6050−6058.
(5) Regev, A.; Shapiro, E. Cellular abstractions: Cells as

computation. Nature 2002, 419, No. 343.

(6) Watson, J. D.; Crick, F. H. C. Molecular Structure of Nucleic
Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171,
737−738.
(7) Acuna, G. P.; Möller, F.; Holzmeister, P.; Beater, S.; Lalkens, B.;

Tinnefeld, P. Fluorescence Enhancement at Docking Sites of DNA
Directed Self-Assembled Nanoantennas. Science 2012, 338, 506−510.
(8) Wang, P.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y.

Programming Self-Assembly of DNA Origami Honeycomb Two
Dimensional Lattices and Plasmonic Metamaterials. J. Am. Chem. Soc.
2016, 138, 7733−7740.
(9) Adleman, L. M. Molecular Computation of Solutions to

Combinatorial Problems. Science 1994, 266, 1021−1024.
(10) Braich, R. S.; Chelyapov, N.; Johnson, C.; Rothemund, P. W.

K.; Adleman, L. Solution of a 20-Variable 3-SAT Problem on a DNA
Computer. Science 2002, 296, 499−502.
(11) Mao, C.; LaBean, T. H.; Reif, J. H.; Seeman, N. C. Logical

Computation Using Algorithmic Self-Assembly of DNA Triple
Crossover Molecules. Nature 2000, 407, 493−496.
(12) Raza, M. T.; Tandon, A.; Park, S.; Lee, S.; Nguyen, T. B. N.;

Vu, T. H. N.; Jo, S.; Nam, Y.; Jeon, S.; Jeong, J. H.; Park, S. H.
Demonstration of elementary functions via DNA algorithmic self-
assembly. Nanoscale 2021, 13, 19376−19384.
(13) Cho, H.; Mitta, S. B.; Song, Y.; Son, J.; Park, S.; Ha, T. H.;

Park, S. H. 3-Input/1-Output Logic Implementation Demonstrated
by DNA Algorithmic Self-Assembly. ACS Nano 2018, 12, 4369−4377.
(14) Cheng, Z. Computation of Multiplicative Inversion and

Division in GF(2n) by Self-Assembly of DNA Tiles. J. Comput.
Theor. Nanosci. 2012, 9, 336−346.
(15) Tandon, A.; Song, Y.; Mitta, S. B.; Yoo, S.; Park, S.; Lee, S.;

Raza, M. T.; Ha, T. H.; Park, S. H. Demonstration of Arithmetic
Calculations by Tile-Based Algorithmic Self-Assembly. ACS Nano
2020, 14, 5260−5267.
(16) Margulies, D.; Melman, G.; Shanzer, A. A Molecular Full-Adder

and Full-Subtractor, an Additional Step toward a Moleculator. J. Am.
Chem. Soc. 2006, 128, 4865−4871.
(17) Woods, D.; Doty, D.; Myhrvold, C.; Hui, J.; Zhou, F.; Yin, P.;

Winfree, E. Diverse and Robust Molecular Algorithms Using
Reprogrammable DNA Self- Assembly. Nature 2019, 567, 366−372.
(18) Qian, L.; Winfree, E. Scaling Up Digital Circuit Computation

with DNA Strand Displacement Cascades. Science 2011, 332, 1196−
1201.
(19) Raza, M. T.; Tandon, A.; Son, J.; Park, S.; Lee, S.; Cho, H.; Ha,

T. H.; Park, S. H. Construction of One-Dimensional Random Walk
Lattices using DNA Algorithmic Self-Assembly. AIP Adv. 2020, 10,
No. 065229.
(20) Lin, C.-H.; Cheng, H.-P.; Yang, C.-B.; Yang, C.-N. Solving

Satisfiability Problems Using a Novel Microarray-Based DNA
Computer. Biosystems 2007, 90, 242−252.
(21) Cho, H.; Mitta, S. B.; Song, Y.; Son, J.; Park, S.; Ha, T. H.;

Park, S. H. 3-Input/1-Output Logic Implementation Demonstrated
by DNA Algorithmic Self-Assembly. ACS Nano 2018, 12, 4369−4377.
(22) Turing, A. M. On computable numbers, with an application to

the Entcheidungproblem. Proc. Lond. Math. Soc. II Ser. 1936, 42,
230−265.
(23) Turing, A. M. The chemical basis of morphogenesis. Philos.
Trans. R. Soc. London, Ser. B 1952, 237, 37−72.
(24) Wolfram, S. Statistical Mechanics of Cellular Automata. Rev.
Mod. Phys. 1983, 55, 601−644.
(25) Wolfram, S. Universality and Complexity in Cellular Automata.
Phys. D 1984, 10, 1−35.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08017
ACS Omega 2023, 8, 15041−15051

15051

https://pubs.acs.org/doi/10.1021/acsomega.2c08017?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c08017/suppl_file/ao2c08017_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sung+Ha+Park"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0256-3363
https://orcid.org/0000-0002-0256-3363
mailto:sunghapark@skku.edu
mailto:sunghapark@skku.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Tayyab+Raza"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08017?ref=pdf
https://doi.org/10.1038/35106533
https://doi.org/10.1038/35106533
https://doi.org/10.1039/D1RA03856G
https://doi.org/10.1039/D1RA03856G
https://doi.org/10.1039/D1RA03856G
https://doi.org/10.1016/j.isci.2019.08.007
https://doi.org/10.1016/j.isci.2019.08.007
https://doi.org/10.1016/j.isci.2019.08.007
https://doi.org/10.1039/C5SC02317C
https://doi.org/10.1039/C5SC02317C
https://doi.org/10.1038/419343a
https://doi.org/10.1038/419343a
https://doi.org/10.1038/171737a0
https://doi.org/10.1038/171737a0
https://doi.org/10.1126/science.1228638
https://doi.org/10.1126/science.1228638
https://doi.org/10.1021/jacs.6b03966?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b03966?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.7973651
https://doi.org/10.1126/science.7973651
https://doi.org/10.1126/science.1069528
https://doi.org/10.1126/science.1069528
https://doi.org/10.1038/35035038
https://doi.org/10.1038/35035038
https://doi.org/10.1038/35035038
https://doi.org/10.1039/D1NR05055A
https://doi.org/10.1039/D1NR05055A
https://doi.org/10.1021/acsnano.8b00068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b00068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1166/jctn.2012.2029
https://doi.org/10.1166/jctn.2012.2029
https://doi.org/10.1021/acsnano.0c01387?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c01387?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja058564w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja058564w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1126/science.1200520
https://doi.org/10.1126/science.1200520
https://doi.org/10.1063/1.5121827
https://doi.org/10.1063/1.5121827
https://doi.org/10.1016/j.biosystems.2006.08.009
https://doi.org/10.1016/j.biosystems.2006.08.009
https://doi.org/10.1016/j.biosystems.2006.08.009
https://doi.org/10.1021/acsnano.8b00068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b00068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1103/RevModPhys.55.601
https://doi.org/10.1016/0167-2789(84)90245-8
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

