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Abstract: The fast-growing food industry is bringing significant number of new products to the
market. To protect consumers’ health and rights, it is crucial that food control laboratories are able to
ensure reliable quality testing, including product authentication and detection of adulterations. In
our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry
for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL)
and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was
possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers
characteristic ofthe oils were also identified, which can be used as targets and expedite development
of new multiplexed testing methods.
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1. Introduction

Edible oils have been used since antiquity for health purposes; however, people did not
realize what was responsible for this effect. Current analytical tools allow oils to be broken
down into their individual components; thus, we can identify exact constituents affecting
various medical conditions. Plant oils comprise mainly triacylglycerols and diacylglycerols
(TAGs and DAGs), free fatty acids (FFA), phospholipids, glycolipids, carotenols, polyphe-
nols, tocochromanols, phytosterols, carotenoids, and squalene, as well as antibacterial and
anti-inflammatory ingredients [1]. They are characterized by their content of fat-soluble
vitamins (A, D, E, K), n-9 monounsaturated fatty acids (MUFAs), and polyunsaturated fatty
acids (PUFAs). These essential fatty acids must be obtained from the diet and are especially
important for human health for the prevention of hypertension, coronary artery disease,
diabetes, cancer, and many autoimmune inflammatory diseases (e.g., psoriasis, rheumatoid
arthritis, Crohn disease, chronic obstructive pulmonary disease) [2]. Society is increasingly
aware of the important health effects of vegetable oils. Moreover, the governments of highly
developed countries are implementing circular economy models to reduce the amount of
food waste by focusing on increasing consumption of plant seeds and pips [3], and the
global production and consumption of plant oils are increasing. Unfortunately, along with
the growing worldwide interest in vegetable oils, the risk of their adulteration also increases.
This practice has been known for many years and, to date, has focused on extra-virgin olive
oil due to its high price and consumption [4–7]. Many papers have focused on detecting
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the adulteration of edible fats and oils [5,8–11] using a wide range of analytical techniques,
including infrared spectroscopy [12], nuclear magnetic resonance [13], differential scanning
calorimetry [14], and chromatographic separation techniques (liquid or gas chromatogra-
phy) coupled with various detectors (flame-ionization detectors, UV-Vis detectors, diodes,
and mass detectors) [15–18]. The detection and determination of adulteration are generally
based on measuring the amounts and ratio of TAGs and FAs coupled with chemometrics.
However, profiling TAGs in edible oils and blends is challenging due to their very similar
physicochemical properties and enormous variety, given the large number of FAs that
constitute TAGs.

Triacylglycerols differ in the length and numbers of carbon chains, cis/trans configura-
tion, the number and localization of unsaturated bonds, and the positions of substitutions
on the glycerol backbone [19]. TAGs are often analyzed using high-performance liquid
chromatography (HPLC) rather than gas chromatography (GC) because the derivatiza-
tion step and high temperatures in GC analysis can degrade unsaturated TAGs. The
main HPLC techniques used for separating TAGs are non-aqueous reverse-phase HPLC
(NARP–HPLC) [20], silver-ion HPLC (Ag-HPLC) [21], and chiral liquid chromatography
(chiral LC) [22]. Unfortunately, none of these techniques are perfect: NARP–HPLC has
low selectivity towards compounds with identical ECN parameters, Ag-HPLC has low
selectivity towards TAGs differing only in the length of the alkyl chain, and chiral LC re-
quires partial hydrolysis of the acyl TAGs, precolumn derivatization, and ultrapure internal
standards [23,24]. In contrast, DNA hybridization and polymerase chain reaction (PCR)
are widely used in food analysis, especially in identifying counterfeit meat products [25].
However, although DNA markers are more specific than metabolic markers (they are
unaffected by the cultivation region and conditions), highly processed matrices such as
edible oils may undergo treatments that remove or damage DNA (e.g., degumming) during
the oil refining process [26]. Alternative methods are thus required for the authentication
of cooking and edible oils. Mass-detection analyzers are the gold standard for meticulous
food authentication [27,28]. HPLC combined with mass detectors (HPLC–MS) provides a
powerful analytical tool suitable for challenging and complicated biological matrices such
as food. Mass-spectrometric methods provide a linear response and high sensitivity with
both saturated and unsaturated TAGs [29]. Moreover, atmospheric-pressure chemical ion-
ization (APCI) is frequently used for TAG analysis due to the large amount of information
provided regarding the structure and position of fatty acids, its applicability to non-aqueous
mobile phases, and most importantly, its ability to efficiently ionize non-polar particles [30].
Recently, the Gowda group [31] have used ultra-high-resolution liquid chromatography
(UHPLC)–linear trap quadrupole (LTQ)–Orbitrap mass spectrometry analysis to identify
FAs and profile FFAs in seafood. The advantages of the employed LC-MS method involve
simple sample preparation and direct detection of FAs without any derivatization or chem-
ical treatments. The method enabled the identification of FAs at trace levels. The main
limitation of the method is that the evaluation of mass spectral fragmentation mechanism
requires isotope-labeled experiments. Moreover, the quantification results are relative, not
absolute, due to a lack of appropriate internal standards.

Han and Cheng (2005) developed a lipid analysis method based on direct infusion
to the ion source sample delivery, namely “shotgun lipidomics” [32]. This feature allows
maximum utilization of the unique chemical and physical properties of lipid classes, sub-
classes, and individual molecular species to facilitate the identification and quantification
of lipids [32]. In addition, it ensures that the interactions between lipid species remain
unchanged, which results in a constant amount of compound reaching the source, thereby
leading to a constant ratio of ion peak intensities between classes of lipid species as well as
constant suppression between compounds within a lipid class or between classes [33]. An-
other significant feature of shotgun lipidomics is the possibility of obtaining the entire mass
spectrum of the sample with all molecular ions of a given class of lipids. This significantly
facilitates the visualization and division of lipid species by mapping using fragmentation
techniques (precursor ion scanning (PIS) and neutral loss scanning (NLS)), thereby assign-
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ing compounds to a specific lipid group or subgroup [34]. Shotgun lipidomics also enables
the quantification of groups of compounds or individual chemical compounds present in
the analyte by comparing the peak intensities with an internal standard [35]. Nowadays,
shotgun lipidomics is successfully applied to determine lipids in various biological systems,
including sentinel, mammalian, fish, plant species, blood plasma, tissues, food samples and
yeast cells, for analytical, medical biological, food quality assessment purposes [36–41].

In recent years, niche oils, the oils pressed from non-traditional oil plants, have
been gaining rapidly popularity due to the high content of various bioactive compounds,
beneficial nutrition properties, pleasant taste and flavor. Clearly, there is a need to develop
cost-effective, fast and reliable methods for distinguishing and authenticating niche edible
oils, which are frequently adulterated, and at the same time, they have been beyond the
focus of research till recently. Here, we present a mass spectrometry–shotgun analytical
method of lipidomic profiling, originally designed for blood plasma analysis. In our
experiment, we successfully applied this approach to characterize the lipid profiles (DAGs
and TAGs) of three edible cold-pressed oils: camelina seed (CA), flaxseed (FL), and hemp
seed (HP) oil. Several chemometric models for distinguishing oils based on the content of
the molecular groups DAG and TAG, as well as molecular individual compounds, were
created and described, and their applicability for oil identifications and authenticity testing
were discussed. Finally, we identified DAG and TAG lipid markers, which can be used as
detection targets in the process of the development of new methods for the identification
and differentiation of these niche oils.

2. Materials and Methods
2.1. Samples

Brown flaxseeds of three different varieties were purchased from the Polish Institute
of Natural Fibers and Medicinal Plants (Poznań, Poland), HodowlaRoślin STRZELCE Sp.
z o.o. (Strzelce, Poland), Semco Sp. z o.o. manufactory (Śmiłowo, Poland), and Vitacorn
Sp. z o.o. manufactory (Poznań, Poland). Camelina seeds of three different summer
varieties were obtained from Semco Sp. z o.o. manufactory (Śmiłowo, Poland) and Poznań
University of Life Sciences (Poznań, Poland). Hemp seeds were purchased from the Polish
Institute of Natural Fibers and Medicinal Plants (Poznań, Poland). Seeds were pressed for
oil at the Semco Sp. z o.o. manufactory (Śmiłowo, Poland)at a temperature under 50 ◦C.
The pressed oils were left under nitrogen for 24 h for decantation and kept in brown glass
bottles at −80 ◦C until analysis. In total, 5 camelina oils, 5 flaxseed oils and 5 hempseed
oils were investigated.

2.2. Lipids Analysis

Lipids were determined by shotgun lipidomics analysis at Lipotype GmbH (Dres-
den, Germany). The applied assay allows the quantitation of lipids from twenty four
classes: TAG, DAG, ceramides (CE), hexosylceramides (HexCer), phosphatidates (PA),
phosphatidylcholines (PC), ether-linked PC (PC O-), phosphatidylethanolamines (PE),
ether-linked PE (PE O-), phosphatidylglycerols (PG), phosphatidylinositols (PI), phos-
phatidylserines (PS), sphingomyelins (SM), cholesteryl esters (CE), cardiolipins (CA), lyso-
phosphatidates (LPA), lyso-phosphatidylcholine (LPC), ether-linked LPC (LPC O-), lyso-
phosphatidylethanolamine (LPE), ether-linked LPE (LPE O-), lyso-phosphatidylglycerols
(LPG), lyso-phosphatidylinositols (LPI), and lyso-phosphatidylserines (LPS). Lipid class-
specific internal standards arepresented in List S1 (Supplementary Materials).

Oils were diluted at 1:10,000 in two steps with a chloroform:methanol 1:1 (vol:vol)
solution. Then, 100 µL of this dilution was used for the extraction. Lipids were extracted
using one-step lipid extraction with methyl tert-butyl ether and methanol [36]. The samples
were spiked with lipid class-specific internal standards prior to extraction. After drying
and re-suspending in 7.5 mM ammonium acetate in chloroform/methanol/propanol (1:2:4
vol:vol:vol), the lipid extracts were subjected to mass spectrometric analysis.
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Mass spectra were acquired on a hybrid quadrupole/Orbitrap mass spectrome-
ter (Thermo Fisher Scientific) equipped with an automated nano-flow electrospray ion
source (Advion Biosciences) in both positive and negative ion modes, with a resolution of
Rm/z=200 = 280.000 for MS and Rm/z=200 = 17.500 for MS/MS experiments. Five microliters of
extracts were infused with gas pressure and voltage set to 1.25 psi and 0.95 kV, respectively.
The delivery time was set to 4min and 55 s, with a contact closure delay of 20 s to avoid
initial spray instability. Polarity switch from positive to negative mode was set at 135 s
after contact closure. The samples were analyzed in both polarities in a single acquisition.

The MS acquisition method starts with positive ion mode by acquiring the m/z 402–412
in MS positive mode for 12 s. All individual scans in every segment are the average of
2 microscans. Automatic gain control (AGC) was set to 5 × 105 and maximum ion injection
time (IT) was set to 200 ms. Then, the scan of the m/z 550–1000 in MS positive mode with
lock mass activated at a common background (m/z = 680.48022) followed for 18 s. AGC
was set to 1 × 106 and IT was set to 50 ms. This was followed by a MS/MS positive mode
data-independent analysis triggered by an inclusion list for 105 s. The inclusion list contains
all the masses from 500.5 to 999.75, with 1 Da intervals. AGC was set to 105 and IT was
set to 64 ms. The isolation width was set to 1Da, the first mass of MS/MS acquisition was
250 Da and normalized collision energy was set to 20%. Both MS and MS/MS positive
mode data are combined to monitor SE, DAG, and TAG ions as ammonium adducts. After
the polarity switch to negative ion mode, a lag of 15 s before acquisition was inserted to
allow spray stabilization. Then, the scan for the m/z 400–650 in FTMS was executed for
15 s with lock mass activated at a common background (m/z = 529.46262) to monitor LPG,
LPA, LPI, LPS, and LPE as deprotonated anions and LPC and LPC O– as acetate adducts.
AGC was set to 106, and IT was set to 50 ms. Then, the scan of the m/z 520–940 in FTMS
followed for 15 s, with lock mass activated at a common background (m/z = 529.46262).
AGC was set to 106, and IT was set to 50 ms. Finally, the scan MS/MS in negative mode
was acquired by data-independent analysis triggered by an inclusion list for 90 s. This
inclusion list contains all the masses from 590.5 to 939.5, with 1 Da intervals. AGC was
set to 105, and IT was set to 64 ms. Isolation width was set to 1 Da, the first mass of
MS/MS acquisition was 150 Da, and normalized collision energy was set to 35%. Both
MS, and MS/MS data were combined in order to monitor PC, PC O–, HexCer, Cer and
SM as acetate adducts and PS, PG, PA, PE, PE O– and PI as deprotonated anions. Lipid
identification was performed on unprocessed raw mass spectra using LipotypeXplorer [42].
For the MS-only mode, lipid identification was based on the molecular masses of the
intact molecules. The MS/MS mode included the collision-induced fragmentation of lipid
molecules, and lipid identification was based on the parent and daughter ions. Lipids
were filtered according to accurate mass, ion abundance threshold, noise, and background
before normalization and further data processing. Lipids with an intensity 5-fold greater
than noise in mass spectrum and 5-fold greater than the intensity of blank samples were
subjected to identification. Lists of identified lipids and their intensities were stored in
a database optimized for the particular structure inherent to lipidomic datasets. The
intensity of lipid class-specific internal standards was used for lipid quantification. Without
fragmentation, high-resolution MS allowed us to assign the sum composition of a lipid
molecule to a peak in the spectrum. Fragmentation of the molecule revealed the fatty
acid composition. Lipids were annotated at confidence level 2, putative identification [43].
The identified lipid molecules were quantified by normalization to a lipid class-specific
internal standard. The internal standard signal-to-noise ratio was in a range of hundreds
and more, indicating high quality of spectra. The technical reproducibility, as assessed by
triplicates of one oil sample as reference samples included in the same analytical run, was
very good, with the median coefficient of variation across all lipid classes being 9.1% (5.8%
and 12.4% for TAG and DAG, respectively). The recovery of each internal standard was in
the acceptance range of 80–120%.



Molecules 2022, 27, 1848 5 of 12

Detailed information on the Lipotype shotgun lipidomics method, including data
acquisition, data processing, and lipid quantification procedure is presented in the paper
by Surma et al. [36].

The amounts of individual lipid molecules and lipid molecular groups are reported in
µmol/mL.

2.3. Multivariate Data Analysis

Principal component analysis (PCA) and orthogonal partial least square discriminant
analysis (OPLS-DA) were carried out using SIMCA software version 16.1 (Sartorius Stedim
Data Analytics AB, Umea, Sweeden). PCA and OPLS-DA modeling were performed on
following datasets: DAG molecular groups, TAG molecular groups, DAG subspecies,
combined DAG and TAG molecular species, and fatty acid content in DAG and TAG;
the average values and standard deviations for these data are reported in Tables S1–S3
(Supplementary Materials). Data preprocessing involved Pareto scaling and centering.
The models were cross-validated (PCA, OPLS-DA) and validated by permutation testing
(OPLS-DA). The quality of models was assessed based on model statistics R2X, R2Y, S2Y,
Q2 and SEE from cross-validation;model performance was evaluated by considering the
explained variation R2—goodness of fit for X- and Y-variables, respectively, the predictive
variation Q2—goodness of prediction, the fit for predicted variables, the variance of Y-
matrix (S2Y), i.e., the residual (not modelled) variance of Y and the standard error of
estimate (S.E.E.)—a root-mean-square error of estimates.

2.4. Results
2.4.1. Characteristics of DAG and TAG Profiles of Oils

The analysis of three cold-pressed edible oils CA, FL and HP using shotgun mass spec-
trometry provided their comprehensive quantitative DAG and TAG profiles (Tables S1 and S2,
Supplementary Data), as well as the distribution of FAs in DAG and TAG (Table S3, Sup-
plementary Data). DAGs were identified to subspecies level (individual molecules), TAG to
species level (molecular groups), i.e., lipid species were annotated according to their molecular
composition as name (DAG or TAG) sum of the carbon atoms in the hydrocarbon moiety: sum
of the double bonds in the hydrocarbon moiety (e.g., TAG 50:1, DAG 36:0). Lipid subspecies an-
notation contains additional information on the exact identity of their acyl moieties (e.g., DAG
18:1/16:0). Thus, for DAGs, two sets of data were available: individual molecules (e.g., DAG
14:0/18:3) and molecular groups (e.g., DAG 32:3). In the case of TAGs, only molecular groups
were obtained (e.g., TAG 50:1). Table 1 presents the number of molecular groups of DAG and
TAG, and DAG individual molecules detected in camelina, flax and hemp seed oils.

Table 1. Number of molecular lipid groups and individual lipid molecules.

Lipid Class
Number of Groups/Individuals

Camelina Flax Hemp Total

Molecular groups
(species)

DAG 11 10 11 13

TAG 65 52 48 67

Individual molecules
(subspecies) DAG 12 13 15 18

Analyzed oils were characterized by their DAG and TAG profiles, making it possible
to distinguish them on several levels. Figure 1 shows differences in the number of double
bonds and the total number of carbons in the FA chains of DAGs and TAGs.
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CA oil had a lower content of MUFAs and PUFAs in DAGs compared to FL and HP
oils. The MUFA content of DAGs was estimated at 0.1 µmol/mL, and the PUFA content
(number of double bonds 2–6) in DAGs was similar for each group of double bonds and
reached a maximum (1.2 µmol/mL) for three double bonds in two fatty-acid chains. FL and
HP oils were characterized by a much higher PUFA content in DAGs (number of double
bonds 2–6), with the concentration being 3–7 times higher. HP oil had the highest DAG
content with four double bonds (11.3 µmol/mL), and FL oil had the highest DAG content
(4.3 µmol/mL), with six double bonds in the FAs (Figure 1).

Content of MUFAs in TAGs was negligible compared to PUFAs in each of analyzed
oil (CA, 2.2 µmol/mL; FL, 1.8 µmol/mL; HP, <0.1 µmol/mL). CA oil had the highest TAG
content with group of two, three and five double bonds in three fatty-acid chains. The
concentration of PUFAs in FL oil increased with the number of double bonds, reaching
a maximum for nine double bonds in the FAs (423.6 µmol/mL), which is much higher
compared to CA (60.3 µmol/mL) and HP oils (42.5 µmol/mL) (Figure 1a). DAGs with 34
and 36 carbons were present at higher concentrations in HP and FL oils than in CA oil,
whereas CA oil had the highest content of DAGs containing 38 carbons (0.7 µmol/mL),
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and only FL oil contained DAGs with 32 carbons (0.3 µmol/mL) (Figure 1b). TAGs with
54 carbons were the highest in all three oils, and FL and HP had twice the content of
CA oil. The FL and HP oils contained TAGs with 52 and 54 carbons, and only CA oil
contained TAGs with 50 to 61 carbons. Simultaneously, CA oil revealed significantly higher
concentrations of TAGs with 56, 58, and 60 carbons compared to FL and HP oils, showing
that this oil is the richest source of TAG lipid species of the studied oils.

2.4.2. Multivariate Data Analysis to Differentiate CA, FL, and HP Oils

The complexity of the lipidomic data does not allow direct comparison of DAG
and TAG concentrations for the classification and differentiation of the analyzed oils. To
assess the DAG and TAG profile discriminating potential, and to determine how deep
characterization—to species or subspecies level, combining the two or using only one,
i.e., DAG or TAG profile—is required for the successful classification and discrimination of
the oils, first, the PCA models were build using lipid features from both levels (individual
molecule datasets and molecular group datasets) as well as FA profile in DAG and TAG.
Principal component analysis (PCA) is the most commonly applied multivariate projection
method designed for extracting and displaying the systematic variation in a data matrix,
which helps to identify the correlation structure in a datasets.

Principal component analyses (Figure 2) based on TAG species composition dataset—
67 variables (Figure 2b) and DAG species composition dataset—13 variables (Figure 2a)
yielded the two-component (R2X = 0.845 and Q2 = 0.654) and the five-component model
(R2X = 0.996, Q2 = 0.967), respectively. The sum of the two first PCs accounted for 97.5% of
the variance in DAG content and for 84.4% of variance in TAG content in oils. In the case
of DAG subspecies—18 variables—the five-component model (R2X = 0.994; Q2 = 0.923)
was generated, where 97.6% of the variability was explained by the first two components.
For the combined DAG and TAG molecular group dataset (80 variables), the PCA gave
a two-component model (R2X = 0.846; Q2 = 0.661) (Figure 2c). The sum of the two first
principal components accounted for 84.6% of the total variance. When principal component
analysis was performed on the fatty acid profiles of DAG and TAG—396 variables (20 FA
in DAGs and 376 FA in TAGs)—a two-component model was obtained with R2X = 0.831
and Q2 = 0.715 (Figure 2d). The sum of the two first PCs accounted for 83.1% of the
total variance.

Samples of the same type of oil (CA, FL and HP) grouped together in different
parts of PCA t[1]–t[2] score plots in all models. Clear separation of CA, FL and HP
samples was observed indicating high potential of classification and discriminating power
of lipidomic profiles.

Next, OPLS-DA models were built on the same datasets. OPLS separates the systematic
variation in dataset into two parts, one part that is correlated (predictive) to Y (oil type),
and one part that is uncorrelated (orthogonal) to Y. In the single-Y case, there is only
one predictive component, and all components beyond the first one reflect orthogonal
variation. However, with multiple Y-variables, there can be more than one predictive
OPLS component. Each OPLS-DA modeling resulted in the model with two predictive
components (2+0+0), which is consistent with the PCA-based observations. Model R2X,
R2Y and Q2 were, respectively, equal to 0.844, 0.967 and 0.954 for a TAG species dataset;
0.974, 0.967 and 0.951 for a DAG species dataset; 0.976, 0.965 and 0.952 for a DAG subspecies
dataset; 0.845, 0.968 and 0.955 for a combined DAG and TAG species dataset; and 0.831,
0.976 and 0.964 for a FA in DAG and TAG dataset. Clear classification and discrimination of
the three examined oils (CA, FL and HP) were observed in the score plots. Models indicated
discriminating variables (lipidomic markers). Biplots of OPLS-DA models, which display
superimposed scores and loadings, are presented in Figure S1 (Supplementary Materials).
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Figure 2. PCA score plots of the oil lipid composition data: (a) DAG molecular groups (principal com-
ponent explained variance (PC %EV) = 97.5%; (b) TAG molecular groups (PC %EV = 84.4%; (c) TAG
and DAG molecular groups (PC %EV =84.6%; (d) FA content in DAG and TAGs (PC %EV = 83.1%).

3. Discussion

Our results demonstrate that rapid and straightforward analysis by mass spectrometry
shotgun lipidomics, followed by data processing using chemometric tools, can quickly
classify and distinguish CA, FL, and HP oils according to their specific lipid profiles. Shot-
gun lipidomics is a high-throughput approach enabling the qualitative and quantitative
detection of lipid molecular species in a single run, although this method cannot sepa-
rate compounds to the extent achieved by coupled techniques, e.g., LC/MS or GC/MS.
Moreover, it is incapable to determine regioisomers, or enantiomers, neither to provide
structural information on double bond and sn positions for TAGs and DAGs.

Initial analysis of group profiles for DAG and TAG contents based on the number of
double bonds in FAs and the lengths of FA chains indicated that they were significantly
different for the three oils, suggesting the possibility of differentiation of oils (Figure 1).
However, more reliable and unequivocal differentiation was achieved by chemometric
analysis of lipid profiles (DAG and TAG).

HP, CA and FL oils were clearly differentiated using multivariate analysis. Samples
of the same type of oil clearly grouped together in different parts of the PCA space,
regardless of the depth level of TAG and DAG characterization. It was found that the oils
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discrimination can be reached at both the DAG and TAG molecular groups (species), as well
as at DAG individual molecule (subspecies) and FA profile in DAG and TAG levels. The
two first PCs of the models explained between 83% to 95% of variability in lipids profiles,
which can be attributed in each case to between type-of-oil variation. This was confirmed
in OPLS-DA analyses upon supervised data modeling, with oil samples assigned to the
class (HP, CA and FL), was performed; OPLS-DA models had two predictive components.
Unambiguous classification and discrimination of the oils was obtained (Figure S1). The
findings from our discovery studies indicated that the profiling (qualitative or quantitative)
of these oils for quality control, differentiation, or authenticity may be based on their
DAG or TAG, and they will be equally successful. The validation studies involving higher
numbers of samples should follow to increase confidence and set the acceptance criteria.
The characterization of DAGs and TAGs to species level seems to be sufficient; their more-
in-depth characterization to subspecies level or FA profiling in TAGs seems to be not crucial
for oil authenticity control and the detection of adulteration. Thus, the fragmentation
of the lipid molecules, which delivers subspecies information, i.e., the acyl chain (fatty
acid) composition of the lipid molecule, is not imperative, although it is recommended
when high analysis confidence is needed. MS mode, providing only species information,
i.e., the sum of the carbon atoms and double bonds in the hydrocarbon moieties, may fit
the purpose for many applications.

The obtained results indicated that the development of analytical strategies for profil-
ing these three oils using a separation technique (liquid chromatography, LC) may focus
only on the DAG class or only on the major components of oils—TAGs—which will grant
shorter analysis times and higher laboratory throughput than the oil authenticity con-
trol based on comprehensive LC lipid profiling. The acquiring of highly comprehensive
lipidomic profiles covering DAG and TAG require high separation selectivity and long chro-
matographic run times. Currently our undergoing investigations are focused on translating
the findings to user-friendly LC-MS based methods.

The DAG and TAG molecular groups with the most significant contributions to the
differentiation of the three oils are presented in Figure 3. Identified lipid features could
be used as qualitative or quantitative markers for differentiating CA, HP and FL oils. For
example, CA oil reveals its specific regions of DAGs (36:X) and TAGs (56:X, 58:X and 60:X),
which can be used as characteristic markers for CA oil identification. DAGs 34:2; 36:2–6
and TAGs 56:4–5; 58:4 can be considered as quantitative markers for differentiation of all
three tested oils, as their concentrations differ significantly between the oils. HP has a very
high level of DAG 34:2, DAG 36:4 and DAG 36:5, whereas FL has a high amount of DAG
36:3 and DAG 36:6. CA has a much higher content of TAG 56:3–9 and TAG 58:3–7. On
the other hand, specific markers for single oils have been revealed, such as: DAG 32:3 for
FL oil, DAG 38:4 for CA oil, TAG 55:3–4 for CA oil, and TAG 56:1 for FL oil. Targeted
methods based on the identified lipidomic markers can be developed for the testing of the
oils. Various mass spectrometry technologies, both shotgun approaches and coupled to
liquid chromatography determinations, may be employed for targeting oil differentiation
or specific lipid markers. Cross-instrument adjustment of collision energies is possible [44].
Depending on food testing laboratory needs and their instrument availability, the methods
may be based on the markers from the DAG class only, on the markers from the TAG
class, or on the markers form both DAG and TAG classes. During method development
the precautions should be taken on account of higher sensitivity of coupled techniques,
as a lipid not detected under shotgun condition may appear as low intensity peak in a
LC/MS chromatogram.
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4. Conclusions

The study focused on the differentiation of three niche cold-pressed oils (CA, FL, and
HP) using a mass spectrometry shotgun lipidomic technique. It provided quantitative
DAG and TAG profiles and their FA profiles. It was demonstrated that the identification of
each oil sample at the DAG or TAG molecular group level, the DAG subspecies level, and
at the FA composition in DAG and TAG level was possible. In each case, multivariate data
analyses lead to univocal classification and differentiation of the oils. Differentiating lipid
markers were identified and may be used for the development of targeted methods for oil
testing. DAGs 34:2; 36:2–6 and TAGs 56:4–5; 58:4 can be employed as quantitative markers
for differentiation of all three tested oils, whereas DAG 32:3 for FL oil, DAG 38:4 for CA oil,
TAG 55:3–4 for CA oil, and TAG 56:1 for FL oil may be used as oil specific markers.

Targeted approaches including multiple reaction monitoring on liquid chromatogra-
phy triple quadrupole mass spectrometry systems or a list of targets for easy and fast data
interpretation for mass spectrometry shotgun analyses, as more user-friendly techniques,
are more feasible for implementation to routine laboratory practice. The main advantage of
shotgun technique is the lack of chromatographic separation, which makes the shotgun
methods fast, cost-effective, and eco-friendly, so their raising popularity and utility is
anticipated. The characterization of oils for the quality control using a shotgun lipidomic
analysis is a powerful analytical tool applicable to oil authentication, and the complexity of
data processing may be easily overcome with the setting of lists of targets.
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and hemp oils; Table S2: Content of DAG individual molecules (subspecies) in camelina, flax and
hemp oils; Table S3: Fatty acid composition of DAG and TAG molecular groups detected in camelina,
flax and hemp seed oils.
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19. Lísa, M.; Holčapek, M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric
triacylglycerols. Anal. Chem. 2013, 85, 1852–1859. [CrossRef] [PubMed]

20. Fauconnot, L.; Hau, J.; Aeschlimann, J.M.; Fay, L.B.; Dionisi, F. Quantitative analysis of triacylglycerol regioisomers in fats and oils
using reversed-phase high-performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry.
Rapid Commun. Mass Spectrom. 2004, 18, 218–224. [CrossRef] [PubMed]

21. Mondello, L.; Tranchida, P.Q.; Stanek, V.; Jandera, P.; Dugo, G.; Dugo, P. Silver-ion reversed-phase comprehensive two-dimensional
liquid chromatography combined with mass spectrometric detection in lipidic food analysis. J. Chromatogr. A 2005, 1086, 91–98.
[CrossRef]
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