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Abstract

Amyloid � protein (A�) has been associated with Alzheimer’s disease (AD) because it is a major component of the extracellular plaque
found in AD brains. Increased A� levels correlate with the cognitive decline observed in AD. Sporadic AD cases are thought to be chiefly
associated with lack of A� clearance from the brain, unlike familial AD which shows increased A� production. A� aggregation leading
to deposition is an essential event in AD. However, the factors involved in A� aggregation and accumulation in sporadic AD have not
been completely characterized. This review summarizes studies that have examined the factors that affect A� aggregation and toxicity.
By necessity these are studies that are performed with recombinant-derived or chemically synthesized A�. The studies therefore are not
done in animals but in cell culture, which includes neuronal cells, other mammalian cells and, in some cases, non-mammalian cells that
also appear susceptible to A� toxicity. An understanding of A� oligomerization may lead to better strategies to prevent AD.

Keywords: Alzheimer’s disease • Abeta • oligomerization/aggregation • peptide toxicity

J. Cell. Mol. Med. Vol 13, No 3, 2009 pp. 412-421

© 2009 CSIRO
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

doi:10.1111/j.1582-4934.2008.00609.x

Guest Editor: B. O. Popescu

• Introduction
• Amyloid Structure
• Mechanism of Amyloid aggregation
• A�: a natively unfolded protein?

• Ambiguities in synthetic Ab studies
• Formation of Amyloid plaques
• Role of Ab in AD Pathogenesis
• Conclusion

*Correspondence to: Ian G. MACREADIE,
CSIRO Molecular and Health Technologies, 
343 Royal Parade, Parkville, 

Victoria 3052, Australia. 
Tel.: (+61-3) 9662 7299; Fax: (+61-3) 9662 7266
E-mail: ian.macreadie@gmail.com

Introduction

Alzheimer’s disease (AD) belongs to a large cohort of diseases
characterized by amyloidoses. Extracellular senile plaques, the
foremost pathophysiological hallmark of AD are composed of a
dense core of amyloid fibrils associated with degenerating neu-
rites, astrocytes and astrocytic processes [1]. Amyloid � protein
(A�) is the main protein component of senile plaques [2].
Extracellular A� is generated by proteolytic processing of amyloid
precursor protein (APP) by �-secretase followed by �-secretase at
the cell surface. In the AD brain, there appears to be an apparent
failure in regulating the production and clearance of A�, leading to
increased levels of A� and consequently aggregation and neuro-

toxicity (Fig. 1). Studies using mouse models, cell culture, syn-
thetic A� and biophysical methods have shown a strong correla-
tion between increased levels of A� leading to acute dementia in
AD [3–10]. Due to A�’s ability to bind several different molecules
and attain multiple physical states [11], our understanding of the
key neurotoxic mechanism(s) causing cognitive decline in AD is
incomplete. It is also increasingly believed that cognitive decline in
AD is a result of multiple toxicity mechanisms of different A� forms.

The onset of AD supports an age-dependent dichotomous
model including familial early onset cases (10% of all AD cases)
and late onset cases. Increased production of A� is a feature of
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early onset AD and can be caused by mutations observed in APP
and �-secretase complex [12]. Three fully penetrant (autosomal
dominant) genetic mutations (presenilin 1, presenilin 2 [compo-
nents of �-secretase complex] and APP) have been described for
early onset AD. These mutations either alter APP metabolism or the
nature of secreted A�. Thus the mechanism of amyloid plaque for-
mation is primarily driven by increased local concentration of A� or
due to the intrinsic aggregating property of the mutant A� form.

For late onset, which comprises 90% of AD cases,
apolipoprotein E is the only genetic risk factor observed with
moderate penetrance. However, senile extracellular amyloid
plaques are observed in the majority of the late onset AD cases
indicating that the mechanism of neurodegeneration could be
similar. Although, late onset AD cases do not show signs of
increased production of A�, it has been suggested that reduced
degradation of A� by neprilysin and insulin-degrading enzyme
[13, 14] and reduced perivascular drainage [15] may describe
the elevated levels of A� in the AD brain. Several molecular
mechanisms for clearance of A� have been demonstrated,
including microglial clearance [16] via the macrophage scavenger
receptor [17], receptor for advanced glycation end products
[18], low-density lipoprotein receptor-related protein internaliza-
tion and degradation of A� complexes with apolipoprotein E and
�2-macroglobulin [19, 20].

Amyloid structure

Amyloidoses are associated with the misfolding of a native protein
into a cytotoxic form, which occurs in parallel with, or as an alter-
native to physiological folding. This is followed by deposition in
tissues in bundles of �-sheet fibrillar protein. The fibrillar form of
proteins is a structure dominated by hydrogen bonding between
the amino and the carbonyl groups of the main chain, rather than
by specific interactions of the side chains observed in globular
proteins [21]. Amyloid proteins also exhibit the ability to form
multiple conformations [22]. According to the ‘folding energy
landscape theory’, protein folding follows a funnel-like pathway in
which the conformational intermediates progressively merge into
a final species with minimum free energy and maximum stability
[23]. However, in amyloid formation, at a minimum energy similar
to that of the native protein state, the polypeptide acquires an
alternative and relatively stable ‘misfolded state’ which is prone to
aggregation [24]. The native structures and amino acid sequences
of the proteins associated with amyloid diseases have been found
to vary considerably; however, amyloid fibrils isolated from differ-
ent sources share a common ultrastructure [25].

The capacity to form fibrillar amyloid structures is not exclu-
sive to a specific group of proteins but is generic to all polypep-
tide chains [26]. �-helical proteins forming amyloid fibrils under
appropriate in vitro conditions [27] and amyloid aggregates of
non-pathogenic proteins cause toxicity to neuronal cells [28]
implying that amyloid formation does not exclusively depend on
the intrinsic nature of the protein.

Mechanism of amyloid aggregation

Fibril formation is considered to be an aggregation pathway origi-
nating from a high entropic barrier and a thermodynamically
unfavourable event [29]. The aggregation of A� is initiated by a
conformational change from random coil or �-helix into a �-
strand, quite similar to prion diseases. Hydrophobic interactions

Fig. 1 Possible events leading to A� accumulation and neurotoxicity.
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are eventually maximized by �-sheet conformation [29, 30]. A�

aggregation and fibril formation are nucleation dependent and the
kinetics of fibril formation are determined by nucleation and fibril
elongation rate [31]. Although, the formation of nuclei is thermo-
dynamically unfavourable, the addition of monomeric molecules
to the existing nuclei is favourable, and occurs by perpendicular
hydrogen bonding to the axis of the amyloid nucleus [11].

A considerable number of environmental factors as well as
some intrinsic properties of proteins can work in concert to cause
amyloidogenesis (Fig. 1). Some of these factors, particularly those
involved in AD, are listed in Table 1. These factors can influence
the thermodynamic stability of the various accessible conforma-
tions of the protein potentially causing amyloidogenesis.
Although, protein aggregation and amyloid formation have been
thought to be cytotoxic, recent studies have identified novel bio-
logical functions for amyloidogenic protein fibrils in bacteria, fungi
and even mammals [32]. Emerging evidence has indicated that
rather than amyloidogenic aggregates, the oligomeric intermedi-
ates could be the toxic entities, which also have been observed in
AD [33, 34]. Thus understanding the mechanism and factors
causing A� aggregation and stability of the oligomeric intermedi-
ates have become more important.

Numerous causes/mechanism of A� aggregation have been
observed previously. Although many studies have demonstrated
the mechanism of A� aggregation, there are certain drawbacks in
regard to the poor correlation of in vivo conditions to the con-
trolled environment in an in vitro analysis. For example, A�

assembly occurs in a very complex and dynamic environment;
characterized by the presence of different proteins, membranes,
metal ions etc., while in vitro experiments are done with extremely
simplified conditions that may bias toward amyloid aggregation.
Very little mechanistic/structural information is available regarding
the exact conformational change and mechanism of A� aggrega-
tion caused by local environmental factors in AD brain.

A�: a natively unfolded protein?

The folding of proteins into their correct three-dimensional struc-
ture is critically important for their biological activity and normal
functioning of the cell. With the human proteome reaching a size
of more than 100,000 proteins, it is clearly evident that protein
folding occurs in a crowded and sensitive environment highly
prone to aggregation [26]. However, cellular systems have evolved
to evade unfavourable protein aggregation. Negative selection has
been observed to avoid alternating polar and hydrophobic
residues that favour a �-sheet structure [56]. It is also suggested
that residues showing increased vulnerability to aggregation are
preferably located in different regions of the sequence from those
that determine native protein folding, termed ‘kinetic partitioning’
[57]. Apart from amino acid sequence selection, biological systems
have developed molecular chaperones and degradation mechanisms
to control the rate of formation of unfavourable structures [58].

Table 1 Pathogenic protein misfolding

Causes/factors Misfolded protein/disease Reference

Nature of the protein: (ageing, Hydrophobicity) Ageing: transthyretin protein in senile systematic amyloidoses
Hydrophobicity: A�, Prion proteins, 

[35]
[36] [37]

Concentration dependence A� in Alzheimer’s disease (AD) [38]

Mutations in amino acid sequences in the protein Hereditary amyloidosis
APP in AD 

[39]
[4] see Table 2

Mutations in associating proteins �2-Microglobulin mutations [40]

Chemical modifications of the protein Protonation of A�

Oxidative modifications of A�

[2]
[41] [42]

Protein folding machinery (Chaperones, heat shock
 proteins)

A� in AD
Alpha synuclein in Parkinson disease 

[43]
[44]

Altered proteolysis or turnover of precursor protein Mutations in Amyloid precursor protein in AD
Presenilin mutations in AD 

[4,5]
[45,46]

Decreased clearance A� in AD
Alpha synuclein in Parkinson disease 

[47]
[48]

Time of incubation A� in AD [49]

Temperature and ionic strength A� in AD [50]

Local interacting factors (other proteins, metals, 
osmolytes)

A� and Metals
Osmolytes and prions
ApoE and A�

[51],
[52], [53]
[47,54,55]
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Therefore it becomes obvious that apart from intrinsic proper-
ties of protein to aggregate, failure of the protein folding machin-
ery could also play a crucial role in amyloidogenesis [43].
Mutations in A� sequences (Table 2) have been identified in famil-
ial forms of AD which either increase the propensity to aggregate,
or decrease the stability of the native state. However, no similar
genetic evidence has been identified for the more prevalent spo-
radic AD, although widespread neuritic amyloid plaques are
observed in majority of the sporadic AD cases [1]. This indicates
that progressive A� aggregation in sporadic AD could be associ-
ated with A� binding and clearance factors [47].

Proteins are required to possess fast folding kinetics and high sta-
bility to minimize the risk of protein aggregation in the cell [69]. But
certain proteins may require higher-order structural disorders medi-
ated by binding to ligands to fulfil their function [70, 71]. Such proteins
have greater structural plasticity to favour ligand binding and could be
classified under the emerging class of ‘natively unfolded proteins’ [72].
The presence of natively unfolded proteins in the cell is believed to pro-
vide a simple solution to having large intermolecular interfaces for
diverse ligand binding and regulation, and smaller protein, genome
and cell sizes [73]. There is an increasing belief that amyloidogenic
proteins could be natively unfolded proteins [74]. A� is known to bind a
large array of extracellular and cell-associated ligands (Table 3, Fig. 1).
However, A� interaction with different molecules has not been clearly
understood in relevance to its biological function or pathology.
Although not experimentally proved, A� shows characteristics of a
‘natively unfolded protein’. Under normal conditions, A� could be
bound to a ligand essential for a normal function and occurrence of 
A� aggregation in sporadic AD may be a result of absence or struc-
tural disorder of its ligand. Thus it is suggested that the clinical
manifestations observed in AD could be either the toxic property of
the pre-fibrillar intermediate or loss of function of native A�.

Ambiguities in synthetic A� studies

The dynamic nature of A� in physiological conditions has been a
major concern in determining the mechanism of A� toxicity. Since

aggregating A� is neurotoxic, cell loss and A� deposition are con-
sidered to correlate with the severity of disease symptoms.
However, several studies predict that events preceding neuronal
cell death may provide a better explanation to the progressive
decline in cognition in AD [103–105]. There are robust correla-
tions between the levels of soluble A� and the extent of synaptic
loss and severity of cognitive impairment [33, 34]. In these stud-
ies, the term soluble A� describes all isoforms of A� that remain
in the supernatant following high speed centrifugation (�100,000
� g) of tissue extracts. Although these studies have not identified
a specific assembly form(s) of soluble A�, it is clearly implied that
non-fibrillar assemblies are the main cause of synaptic dysfunc-
tion leading to cognitive decline in AD. Identifying a particular A�

species as the main cause of synaptic loss has posed serious dif-
ficulties owing to the heterogenic nature of A�. Monomeric A�

has the ability to associate into higher-ordered aggregates
depended on several interdependent factors. Thus, it is difficult to
unequivocally attribute toxicity to a discrete species. Consequently,
much confusion has resulted regarding the variable behaviour of
different peptide stocks [106, 107]. Table 4 refers to the literature
describing a range of A� isoforms. Not all descriptions are unique,
but it is clear that many isoforms have been observed, ranging
from monomers to oligomers of various sizes to protofibrils, fibrils
and aggregates.

Apart from the propensity of A�42 to generate multiple con-
formations, it possesses oxidative [113], hydrolytic [114], and
surfactant properties [115]. It is also clear that different A�

assemblies can possess distinct toxicity mechanisms [116] in 
different cell lines, even in yeast [111].

Formation of amyloid plaques

A� deposits in the brain are usually referred to as senile plaques. A�

plaques can also be observed in cognitively normal individuals
[117–119]. The major variation between A� deposits in normal indi-
viduals and those found in AD patients is their distribution [118]. In

Table 2 Mutations affecting A� aggregation

Mutations Aggregation/toxicity

Flemish (A21G) [59] Short 2 h incubation shows elevated apoptosis, slower aggregation than wild-type [60]

Arctic (E22G) [61] Increased rate of fibril formation [62]

Dutch (E22Q) [63] Causes higher amount of apoptosis at physiological concentrations with 24 h incubation, faster
 aggregation than wild-type, increased rate of fibril formation [60, 62]

Italian (E22K) [64] Aggregates rapidly [65]

Iowa (D23N) [66] Aggregates rapidly [65]

Pyroglutamate-modified A�N3(pE) [67] A�N3(pE)-40/42 peptides shows resistance to degradation by cultured astrocytes [68]
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addition to A�, other proteins accumulate within senile plaques,
including apolipoprotein E (apoE), �2-macroglobulin, interleukins,
components of the complement system, �2-macroglobulin recep-
tor, low-density lipoprotein receptor-related protein, collagenous
Alzheimer amyloid component [120–124] and also dystrophic neu-
rites, reactive astrocytes, and microglial cells [121, 125].

Apart from extracellular accumulation, A� is also known to
form insoluble pools intracellularly (reviewed in [126]). Recent
studies have confirmed the build up of intracellular A� in neuronal
cells as an early event in AD pathogenesis [127, 128] which pre-
cedes formation of amyloid plaques in the brain [129].
Intracellular A� has been postulated to originate from the result of
intracellularly localized APP proteolysis [130–132] or by receptor
associated uptake of extracellularly secreted A� [133–137]. As the
majority of A� is secreted, it is suggested that APP proteolysis
predominantly occurs at the cell membrane or cleaved A� is rap-
idly secreted [126]. Previous studies also have shown that intra-
neuronal A� is observed only in transgenic models based on APP
overexpression [138, 139] and not in wild-type. Thus it seems like
that the origin of intracellular A� is largely by uptake from extra-
cellular media. Intracellular A� is also implicated in synaptic dys-
function and associated cognitive decline [140]. However, the
nature of intracellular A� assembly, mechanism of action and its
relevance to AD pathology needs to be addressed.

Role of A� in AD pathogenesis

Memory impairment including the loss of the ability to form and
retain new episodic memories is the hallmark of early stages of
AD. Cognitive impairment is often attributed to synaptic dysfunc-
tion and neuronal cell loss particularly in the cells interconnecting
the hippocampal formation with the associating structures crucial
for memory [141, 142]. Depleted neurotransmitters [142], 25 to
35% decrease in the synapses [143, 144] and quantitative correlations
of postmortem cytopathology with cognitive deficits indicate that

Table 3 A� interacting molecules Table 4 Different isoforms of A�

Cofactor Reference

Metals:

Copper [2]

Zinc [51]

Aluminium [75]

Iron [76]

CSF and plasma proteins:

Albumin [77]

Lipoprotein: ApoE [55]

Insulin [78]

Serum amyloid P [79]

Other plasma proteins: IgG, IgA, IgM �1-Antitrypsin,
Transferrin, �2-Macroglobulin, �1-Antichymotrypsin
Antithrombin III, Transthyretin and Fibrinogen

[80]

Cell Surface Receptors:

Transforming growth factor � receptor [81]

Insulin receptor [82]

NMDA receptor [83]

p75 neurotrophin receptor [84]

Receptor for advanced glycation
End products (RAGE)

[85]

Formyl peptide receptor-like 1 [86]

Amyloid precursor protein [87]

Scavenger receptors SR-A, SR-BI [17]

�7nicotinic acetylcholine receptor (�7nAChR) [88]

CD47, CD36, �6�1-integrin [89]

Serpin-enzyme complex receptor (SEC-R) [90]

Integrin �1 [91]

HSP [92]

Intracellular proteins:

A� binding alcohol dehydrogenase [93]

Chaperone proteins [94]

20S proteasome [95]

Extracellular matrix proteins: 

Heparin sulphate
Agrin
Laminin,
Collagen-like Alzheimer amyloid plaque component CLAC.

[96]
[97]
[98]
[99]

Others: 

Membrane lipids [100]

Chondroitin sulphate-derived
Monosaccharides and Disaccharides

[101]

Cholesterol [102]

A� isoform

Soluble dimers [108], tetramers and oligomers [2]

Non-amyloidogenic amorphous aggregates [109]

Amyloidogenic fibrils [109]

Fibrillar aggregates [50]

Amyloid proto-fibrils [31]

Amyloid derived diffusible ligands [110]

Soluble non-fibrillar [111]

Hexamer, nonamer, dodecamer, A�*56 (56-kD soluble 
A� assembly) [112]
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synaptic loss is more robustly correlated than the numbers of
plaques or tangles, or extent of cortical gliosis [145].

Lesne et al. [112] study implicated a unique and novel A� iso-
form (A�*56: 56-kD soluble A� assembly) as the key neurotoxic
A� isoform responsible for cognitive decline in APP overexpress-
ing Tg2576 mice, based on its abundance, stability and occur-
rence during memory decline. However, a more recent study [108]
has identified A� dimers from the soluble extract of AD cerebral
cortex tissues. They also specifically attribute A� dimers to the
loss of long-term potentiation, enhanced long-term depression,
reduced dendritic spine density in normal rodent hippocampus
and memory disruption of a learned behaviour in normal rats.
Whether it is A� dimer or A�*56, the different toxic A� species
identified might reflect differences in the toxicity assays and A�

detection methods used. Even though the increase in soluble A�

levels and aggregation in the brain has been consistently observed
as the main indicator of cognitive decline, the localization of the
A� accumulation in the brain has not been specified.

A recent study has elaborated the extraction of A� from differ-
ent anatomical compartments (extracellular soluble, intracellular
soluble, membrane associated and extracellular insoluble) [146].
It identified membrane-associated and intracellular A� in the tem-
poral neocortex of AD patients to be more closely related to AD
symptoms than other measured A� species. This study has
addressed the very important aspect of A� localization and accu-
mulation in AD pathogenesis.

It therefore becomes essential to identify and systematically
categorize the factors responsible for A�’s native form and patho-
logical aggregation based on its relevance to physiological role or
synaptic failure in AD.

Conclusion

A� plays the central role in neurodegeneration in AD. It is widely
accepted that A� has a wide array of biological activities and affini-
ties, which have not been definitively mapped to its native or
pathological role in the brain. Although, there has been much
progress in understanding the role of A� in AD, there are several
important questions still unanswered including the physiological
nature and function of APP/A� in the normal ageing brain, how A�

contributes to the vascular defects observed in AD, what are the
genetic risk factors associated with late onset AD, what causes
vulnerability to A� toxicity, is AD caused by loss of native A� func-
tion or by its pathogenic form and are AD symptoms caused by
the cumulative effect of different toxic A� forms or exclusive to a
particular form. With A� emerging as one of the primary targets
for immunotherapy and target based drug design for AD, it
becomes essential to gain further insight into A� caused cognitive
decline in AD.
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