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Over 200 million people have, and another 600 million are at risk of contracting, schistosomiasis, one of the major
neglected tropical diseases. Transmission of this infection, which is caused by helminth parasites of the genus
Schistosoma, depends upon the release of parasite eggs from the human host. However, approximately 50% of eggs
produced by schistosomes fail to reach the external environment, but instead become trapped in host tissues where
pathological changes caused by the immune responses to secreted egg antigens precipitate disease. Despite the
central importance of egg production in transmission and disease, relatively little is understood of the molecular
processes underlying the development of this key life stage in schistosomes. Here, we describe a novel parasite-
encoded TGF-b superfamily member, Schistosoma mansoni Inhibin/Activin (SmInAct), which is key to this process. In situ
hybridization localizes SmInAct expression to the reproductive tissues of the adult female, and real-time RT-PCR
analyses indicate that SmInAct is abundantly expressed in ovipositing females and the eggs they produce. Based on
real-time RT-PCR analyses, SmInAct transcription continues, albeit at a reduced level, both in adult worms isolated from
single-sex infections, where reproduction is absent, and in parasites from IL-7R�/�mice, in which viable egg production
is severely compromised. Nevertheless, Western analyses demonstrate that SmInAct protein is undetectable in
parasites from single-sex infections and from infections of IL-7R�/�mice, suggesting that SmInAct expression is tightly
linked to the reproductive potential of the worms. A crucial role for SmInAct in successful embryogenesis is indicated
by the finding that RNA interference–mediated knockdown of SmInAct expression in eggs aborts their development.
Our results demonstrate that TGF-b signaling plays a major role in the embryogenesis of a metazoan parasite, and
have implications for the development of new strategies for the treatment and prevention of an important and
neglected human disease.
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Introduction

Amongst the Bilateria, transforming growth factor–b (TGF-
b) signaling is recognized as playing an essential role in
embryogenesis in deuterostomes and in arthropod proto-
stomes, but its role in lophotrochozoan protostomes is
unclear [1]. Schistosomes, the causative agents of schistoso-
miasis, one of the major neglected tropical diseases [2,3], are
metazoan parasites that belong to the lophotrochozoan
phylum Platyhelminthes.

Components of TGF-b signaling have been molecularly
characterized in metazoans throughout the animal kingdom.
Activation of this pathway begins at the cell surface when a
dimeric ligand binds a complex consisting of types I and II
receptor serine/threonine kinases [4]. Upon ligand binding,
the constitutively active type II receptor phosphorylates and
activates the type I receptor, which then phosphorylates
cytoplasmic Smad proteins that translocate to the nucleus,
where they mediate gene expression [4]. Components of a
functional TGF-b pathway(s), including one type I receptor
[5] (Schistosoma mansoni receptor kinase-1 [SmRK1], S. mansoni
transforming growth factor–b type I receptor [SmTb RI]), one
type II receptor [6,7] (SmRK2, SmTb RII), and three Smads
[8–10], have been identified in S. mansoni, with nearly all
components localized to either the surface of the worm or
reproductive tissues of the female [5–9,11]. Nevertheless,
while nearly the entire transcriptome of S. mansoni has been
examined with the identification of 163,000 expressed
sequence tags (ESTs) [12], a ligand of parasite origin for the

TGF-b pathway(s) has remained elusive. This has led to the
hypothesis that the ligands for schistosome TGF-b receptors
are of host origin [5,13,14], and a suggestion that host TGF-b,
signaling through SmRK2, plays a role in the pairing of male
and female parasites [7].
Sexually mature S. mansoni live within the mesenteric

vasculature, where each female produces approximately 300
eggs each day. Transmission of schistosomiasis depends upon
the release of parasite eggs from the human host. Develop-
ment of an immature egg into a mature egg containing a
miracidium, the stage of the parasite that invades the
intermediate fresh water snail host, occurs outside of the
female worm, and takes approximately 5 d. Many of the eggs
produced by schistosomes fail to reach the external environ-
ment, but instead become trapped in host tissues, where
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pathological changes caused by the immune responses to
secreted egg antigens cause disease [15]. Despite the central
importance of egg production in transmission and disease,
and recent advances in proteomics and transcriptomics
[12,16–18], essentially nothing is known of the molecular
pathways involved in embryogenesis in schistosomes.

In this study, we describe the cloning and characterization
of a S. mansoni TGF-b homolog, S. mansoni Inhibin/Activin
(SmInAct). Although we found SmInAct to be expressed in adult
male and female parasites, and in eggs, the localization of
SmInAct expression to the reproductive organs of female
parasites focused our attention on the role of this gene in egg
production. A role for SmInAct in reproduction was
supported by analyses of female parasites recovered from
infertile infections, in which we found that SmInAct protein
was undetectable. Confirmation of the importance of this
TGF-b superfamily member in the reproductive process was
obtained from RNA interference (RNAi) studies, in which
targeted knockdown of SmInAct in female worms or directly
in the eggs that they produce resulted in a marked cessation
of embryogenesis.

Results

Cloning and Sequence Analysis of SmInAct
SmInAct was identified through a tblastn search of the

Wellcome Trust’s Sanger Institute’s S. mansoni genome
sequence using the C-terminal region of the Drosophila
melanogaster dActivin sequence. We were unable to identify
SmInAct in EST databases regardless of whether we searched
using the coding or 39–untranslated region (UTR) sequences.
The 59 and 39 ends of SmInAct were amplified via rapid
amplification of cDNA ends (RACE) using primers designed
from within putative coding sequence and adult S. mansoni
cDNA as template. The 1.3-kb, full-length SmInAct transcript
contains 10 base pairs (bp) of 59UTR, 808 bp of 39UTR, and a
poly-A tail. The deduced amino acid sequence of SmInAct is
161 residues long and contains many of the molecular

hallmarks for a TGF-b, including a putative basic proteolytic
cleavage site located at position 32 as RQRR where the
bioactive, C-terminal domain (126 amino acids) is enzymati-
cally separated from the N-terminal pro-domain. Nine
invariant cysteine moieties, and invariant proline and glycine
residues (Figure 1A) essential for the proper dimerization and
tertiary structure of a TGF-b homolog, are all predicted in
SmInAct. The deduced amino acid sequence of SmInAct
contains one putative N-linked glycosylation site at position
110. Within the bioactive domain, SmInAct is 27% identical
to both DAF-7 from Caenorhabditis elegans and dActivin from
D. melanogaster, and 29% identical to human TGF-b 1 (Figure
1A). Phylogenetic analysis of SmInAct among other TGF-b
superfamily members groups this homolog with members of
the TGF-b/Activin subfamily (Figure 1B), and further clusters
SmInAct phylogenetically with TGF-b homologs from the
free-living nematode C. elegans (DAF-7) and the parasitic
nematodes Brugia malayi (Bm-TGH-2) and Strongyloides stercor-
alis (Ss-TGH-1).

SmInAct Transcript and Protein Expression and
Localization
To determine the expression of SmInAct at the transcript

level, real-time reverse transcriptase–polymerase chain reac-
tion (RT-PCR) was performed on cDNA from eggs, adult male
parasites, and adult female parasites from mixed-sex infec-
tions. As seen in Figure 2A, SmInAct is expressed in all stages
tested at relatively similar levels. Western analyses using
polyclonal antibodies against recombinant SmInAct were
used to determine the protein expression profile of SmInAct.
The anti-SmInAct serum recognized a 28-kDa protein in egg
antigen extracts and a doublet (32 kDa and 28 kDa) in adult
male and female extracts (Figure 2B, lanes 1–3); these bands
presumably represent the unprocessed (32 kDa) inactive and
processed (28 kDa) active forms of the molecule. The relative
molecular weights of the two bands recognized by anti-
SmInAct antiserum in parasite extracts are larger than that
predicted by the sequence, presumably due to detergent and
reducing agent-resistant dimerization, and/or to glycosylation
at amino acid 110. Glycosylation plays an important role in
the solubility and secretion of other members of the TGF-b
superfamily [19,20]. Eggs appear to contain only the lower
molecular weight, putatively active form of SmInAct. To
localize SmInAct within the parasite, we performed in situ
hybridization on sections of adult worms. Anti-sense probes
localized SmInAct transcripts to the reproductive tissues of the
adult female, with strong signals in the vitellaria and ovary
(Figure 2C), whereas in adult males, SmInAct transcripts
localized to various subtegumental regions (Figure 2D).
The expression pattern in the female suggested a role for

SmInAct in egg production. We focused on this possibility, and
reasoned that if this were the case, SmInAct expression might
be diminished in unfertile females. In vivo, successful
oogenesis requires the presence of male schistosomes [21],
and, for reasons that have remained unclear, an intact CD4þ

T lymphocyte compartment within the host [22]. Therefore,
we analyzed SmInAct expression in female parasites from mice
harboring single-sex infections, and in parasites from severely
lymphopenic interleukin-7 receptor knockout (IL-7R�/�) mice
carrying mixed-sex infections, which produce a significant
number of dead eggs [23,24]. Real-time RT-PCR demonstra-
ted that SmInAct mRNA levels were significantly decreased,
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Author Summary

Schistosomes are parasitic worms that infect hundreds of millions of
people in developing countries. They cause disease by virtue of the
fact that the eggs that they produce, which are intended for release
from the host in order to allow transmission of infection, can
become trapped in target organs such as the liver, where they
induce damaging inflammation. Egg production by female schisto-
somes is critically dependent on the presence of male parasites,
without which females never fully develop, and (counterintuitively)
on the contribution of signals from the host’s immune system. Very
little is understood about the molecular basis of these interactions.
Here, we describe a newly discovered schistosome gene, which is
expressed in the reproductive tract of the female parasite and in
parasite eggs. The protein encoded by this gene is made only when
females are paired with males in an immunologically competent
setting. Using recently developed tools that allow gene function to
be inhibited in schistosomes, we show that the product of this gene
plays a crucial role in egg development. Examining how the
expression of this gene is controlled has the potential to provide
insight into the molecular nature of the interactions between male
and female parasites and their hosts. Moreover, the pivotal role of
this gene in the egg makes it a potential target for blocking
transmission and disease development.



but not absent, in females from these infections (Figure 2E).
Of particular interest, SmInAct protein was undetectable by
Western analyses in females from single-sex infections as well
as from infections of IL-7R�/� mice (Figure 2B).

While the localization of SmInAct transcripts to the male
subtegumental region is not immediately informative in
terms of function in the male, we nevertheless noted that
male parasites recovered from infertile infections in IL-7R�/�

mice were similar to female parasites in terms of transcrip-
tional and post-transcriptional regulation of SmInAct ex-
pression (Figure 2B and 2F). Moreover, this was also the case

for male parasites recovered from male single-sex infections
(Figure 2B and 2F).

RNAi-Mediated Knockdown of SmInAct Expression
To gain a better understanding of the function of SmInAct

and the signaling pathway it activates, this TGF-b homolog
was targeted for knockdown via RNAi [25–27]. Pairs of adult
males and females recovered from infected mice were soaked
in double-stranded RNA (dsRNA) corresponding to SmInAct
(1 lg/ml) or an irrelevant control dsRNA (luciferase) for 1 wk
in vitro, followed by RNA extraction and real-time RT-PCR
analyses. SmInAct dsRNA–treated worms showed a consistent

Figure 1. SmInAct Is a Member of the TGF-b/Activin Subfamily

(A) ClustalW alignment of the C-terminal domain of the SmInAct protein with three other members of the TGF-b/Activin subfamily. Amino acids
identical to the SmInAct sequence are shaded gray. Numbers to the right indicate position of the last amino acid in the row within each respective full-
length sequence. Stars indicate invariant amino acid residues in TGF-b homologs.
(B) Phylogenetic dendrogram demonstrating that SmInAct is a member of the TGF-b superfamily. SmInAct (red) is shown clustering among members of
the TGF-b/Activin subfamily (solid line), and not with members of the BMP/growth differentiation factor subfamily (dashed line). Conserved residues in
the C-terminal region of each homolog (final 94–106 amino acids) were used in the analysis. Percentages at branch points are based on 1,000 bootstrap
runs.
doi:10.1371/journal.ppat.0030052.g001
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and significant decrease in SmInAct expression of .40% when
compared to SmInAct expression in worms soaked in the
irrelevant control dsRNA (Figure 3A). No consistently
significant difference in the numbers of eggs produced by
control versus SmInAct dsRNA–treated worm pairs was
observed, suggesting that SmInAct is not important for egg
production per se. However, in examining these cultures, we

noted that eggs produced by SmInAct dsRNA–treated para-
sites failed to develop (unpublished data). To specifically
address the role of SmInAct in egg development, we treated
eggs directly with SmInAct dsRNA. Approximately 20% of
eggs laid by adult parasites during the first 2 d of in vitro
culture will develop over the ensuing 5 d to contain miracidia
[28], with a typical progression of development through six

Figure 2. SmInAct Expression Is Linked to Reproductive Capability

(A) SmInAct is expressed in the egg, adult male, and adult female. The RNA tested is indicated on the x-axis, and the y-axis represents the ratio of
SmInAct cDNA relative to a-tubulin cDNA (reference gene), as determined by real time RT-PCR. Data are presented as mean ratios (þ/� standard
deviation [s.d.]) from three separate experiments. There is no significant difference in SmInAct expression among the stages tested.
(B) SmInAct protein is detectable in eggs, adult males, and adult females from mixed-sex infections in wild-type mice, but is not detectable in females or
males from single-sex infections, or in females or males from mixed-sex infections of IL-7R�/� mice.
(C) SmInAct transcript is localized to the reproductive tissues of the adult female, including the ovary (O) and vitellaria (V) (left panel, in situ hybridization
with anti-sense probe) A serial section was probed with sense-strand SmInAct and over-developed (right panel). G, gut. Scale bar¼ 110 lm.
(D) SmInAct transcript is localized to subtegumental regions of the adult male, with concentrations of expression around the oral sucker (O.S.) and
ventral sucker (V.S.) (left panel, in situ hybridization with anti-sense probe). A serial section was probed with sense-strand SmInAct and over-developed
(right panel). Scale bar¼ 110 lm.
(E) SmInAct mRNA levels are significantly lower in females isolated from single-sex infections or from IL-7R�/�mice than in females isolated from infected
wild-type mice. SmInAct mRNA levels were measured by real-time RT-PCR. Data are presented as mean fold change in expression (þ/� s.d.) from two
RNA extractions.
(F) SmInAct mRNA levels in males isolated from single-sex infections or from IL-7R�/�mice compared to mRNA levels in wild-type mice. SmInAct mRNA
levels were measured by real-time RT-PCR. Data are presented as mean fold change in expression (þ/� s.d.) from two RNA extractions. There is no
significant difference in SmInAct expression in males from single-sex infections or from IL-7R�/�mice versus males isolated from mixed-sex infection of
wild-type mice.
doi:10.1371/journal.ppat.0030052.g002
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stages illustrated in Figure 3B. Therefore, eggs produced by
worm pairs for the first 2 d ex vivo were collected and soaked
in dsRNA (1 lg/ml) corresponding to SmInAct or an irrelevant
dsRNA for 5 d, and their development was scored. Relative to
eggs soaked in an irrelevant dsRNA, where ;20% of the eggs
developed through stage 6, eggs treated with SmInAct dsRNA
aborted development at stage 2 (Figure 3C and 3D). An
absence of SmInAct transcripts (Figure S1), and a nearly 10-
fold decrease in SmInAct protein (Figure 3E), were associated
with the failure of SmInAct dsRNA–treated eggs to develop.
This phenotype was not observed when eggs were treated
with dsRNA corresponding to luciferase, a sequence not
encoded in the schistosome genome (Figure 3C and 3D), or to

S. mansoni cathepsin B1 (SmCB1), a cathepsin B detectable in
eggs (Table 1).

Discussion

Multiple components of a TGF-b signaling pathway have
been characterized in S. mansoni, but a ligand of parasite
origin for the pathway has remained elusive. Additionally,
while functions in host–parasite interactions have been
proposed based on the expression of receptors on the
parasite surface, and on the responsiveness of the parasite
receptors to host TGF-b [5–7,14], the function that TGF-b
signaling plays in S. mansoni has remained unclear. In this
study, we report the expression of SmInAct, a TGF-b–like

Figure 3. SmInAct Is Essential for Egg Development

(A) Treatment of adult parasites with dsRNA corresponding to SmInAct led to a 40% reduction in SmInAct mRNA levels. dsRNA treatment is indicated on
the x-axis, where control worms were treated with luciferase dsRNA. Data are presented as the mean fold change in SmInAct expression (þ/� s.d.) from
three separate experiments, as determined by real-time RT-PCR using paramyosin as a reference gene for expression.
(B) Developmental progression of eggs laid in vitro. Eggs produced by paired males and females during the first 48 h ex vivo were cultured in vitro for 5
d, and an egg from the developing majority was photographed. Stages of development approximate progressive 20-h periods. Scale bar ¼ 110 lm.
(C) Immature eggs produced by adult parasites ex vivo and soaked in SmInAct dsRNA failed to develop into miracidia. Eggs soaked in an irrelevant
control dsRNA (luciferase, 1 lg/ml) developed through stage 6 within 5 d (left) while eggs soaked in SmInAct dsRNA (1 lg/ml) for the same period
halted development at stage 2 (right). Main scale bar¼ 210 lm. Inset scale bar¼ 110 lm.
(D) Quantitative analysis of the SmInAct dsRNA–induced developmental phenotype. Control- or SmInAct dsRNA–treated eggs were examined
microscopically and scored as either developed or undeveloped based on the presence or absence of a miracidium. Data are presented as mean
percent developed (þ/� s.d.) from four separate experiments.
(E) SmInAct protein levels are decreased by approximately 10-fold following treatment with SmInAct dsRNA. Protein extacts from 350 control or SmInAct
dsRNA–treated eggs were separated via SDS-PAGE in 10-fold serial dilutions, blotted, and probed with anti-SmInAct antiserum. A silver-stained sister
SDS-PAGE gel is shown to confirm protein loading.
doi:10.1371/journal.ppat.0030052.g003
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ligand in the parasitic flatworm S. mansoni, the production of
which is coupled to the reproductive potential of the worms.
We provide evidence that SmInAct plays a crucial role in
embryogenesis.

Understanding of the developmental processes regulated
by TGF-b in invertebrates is based largely on data from the
model organisms D. melanogaster and C. elegans. Decapentaplegic,
a bone morphogenetic protein (BMP)–like homolog in D.
melanogaster, acts as a morphogen by determining cell fate
along the dorsal–ventral axis in a gradient-dependent
manner [29]. Also in D. melanogaster, a type I receptor, baboon,
stimulates cellular proliferation and is essential for normal
embryonic development [30]. Presumably, SmInAct could be
fulfilling functions in the schistosome egg analogous to these
known roles for decapentaplegic and/or baboon. None of the
three characterized TGF-b homologs in C. elegans are
important for patterning or growth of the embryo [31–33];
however, two TGF-b homologs have yet to be examined (tig-2
and Y46E12BL.1), and, intriguingly, serial analysis of gene
expression (SAGE) tags for both homologs have been found in
the C. elegans embryo [34]. Like the other C. elegans TGF-b
homologs that are resistant to RNAi affects, tig-2 and
Y46E12BL.1 have no phenotype in genome-wide RNAi
screens [35,36]; therefore, direct mutagenesis will likely be
required to determine the function of these genes.

The identification of SmInAct, a TGF-b superfamily
member, as a key component of egg development in S.
mansoni, a member of the Platyhelminthes, the earliest branch
of the Bilateria [37], underscores the central role played by
this pathway in embryogenesis. While one type I and one type
II TGF-b receptor have been characterized for S. mansoni,
there appears to be at least three type I receptors and two
type II receptors present in the genome based on a
preliminary blast search for homologs. It will be important
to delineate which of the S. mansoni type I and type II TGF-b
receptors are involved in SmInAct signaling and to identify
the Smads important for transmitting the signal induced by
this growth factor. Furthermore, identifying the genes
regulated by SmInAct signaling will provide information
regarding the precise function that this growth factor serves
in egg maturation, as well as the functions the pathway may
serve in other life stages of the parasite, including the adult
male.

SmInAct protein was not detectable in infertile females
recovered from single-sex infections or from IL-7R�/� mice,
despite the fact that these parasites contained SmInAct
transcripts (although at lower levels than in fecund parasites).
This strongly indicates that SmInAct is both transcriptionally

and post-transcriptionally regulated by worms of the oppo-
site sex as well as by signals from the host. It is well established
that parasites recovered from hosts lacking CD4þ T cells are
developmentally stunted and produce significantly fewer
fertile eggs than those recovered from mixed-sex infections
of immunocompetent hosts. Translation of SmInAct mRNA is
the first identified molecular process downstream of the
effect of the host immune system on schistosome develop-
ment [22–24], and as such, could open the way towards an
increased understanding of this unusual feature of schisto-
some biology. The finding that the production of SmInAct in
males is under the same constraints as in females is curious
and perhaps indicates an additional function(s) for SmInAct
in S. mansoni. We are unaware of a link between the site of
expression of SmInAct in the male schistosome and repro-
ductive events, and further work is required to elucidate the
function of SmInAct in male worms.
In other settings, the uncoupling of transcription and

translation is linked to the activation of the integrated stress
response [38–41]. This mechanism, conserved in eukaryotes,
re-programs cells to conserve energy in response to stress
signals such as amino acid deficiency and oxidative stress by
restricting the translation of transcripts requiring an active
translation initiation complex [38–41]. Limited cellular
energy is then used for the expression of genes necessary to
maintain cell viability [42]. In this context, parasites in single-
sex infections and in mice lacking CD4þ T cells may be
considered stressed due to the lack of signals received from
the opposite sex and immunocompetent host, thereby
restricting the translation of non-essential transcripts. SmI-
nAct protein expression may be considered expendable
considering the role it plays in embryogenesis rather than
in crucial cellular functions linked to the survival of the adult
worm. A more thorough investigation of the S. mansoni
homologs of translation factors involved in the stress
response and of the regulation of other transcripts and
protein expression will be required to evaluate this possi-
bility.
Post-transcription regulation of eukaryotic transcripts is

controlled in part by the 39UTR [43]. This region can bind
elements (including microRNAs and proteins) that inhibit the
translation and/or decrease mRNA stability. For example,
39UTRs of several mammalian cytokines contain adenosine-
and uridine-rich elements (AREs) that bind ARE-binding
proteins (ARE-BPs) (reviewed in [44]). The binding of ARE-
BPs to these transcripts causes either rapid decay or inhibits
their translation. While AREs are somewhat divergent in
sequence, they often contain the consensus ‘‘AUUUA’’ and

Table 1. Comparsion of the Development of Eggs Soaked in SmInAct dsRNA versus SmCB1 dsRNA

dsRNA Treatment Developed Eggsa (number) Undeveloped Eggsb (number) Percent Developed Significancec

Control 71 342 17.2

SmInAct 49 721 6.4 p � 0.0001

SmCB1 124 520 19.3 p ¼ 0.446

aThe number of eggs that reached stage 6 of development (Figure 3B).
bThe number of eggs that failed to develop past stage 2 (Figure 3B).
cp-values based on Yates’ chi-square between SmInAct or SmCB1 dsRNA–treated eggs and control.
doi:10.1371/journal.ppat.0030052.t001
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are found in a uridine-rich environment. Interestingly, the
long 39UTR of SmInAct has two exact repeats of ‘‘UUUC-
TAUUUA’’ that contain the consensus ‘‘AUUUA’’ ARE
(underlined). Furthermore, the 39UTR of SmInAct is U-rich
(43% uridines). It will be interesting to determine whether
these repeats, or other regions of the long 39UTR, play a role
in the post-transcriptional regulation of SmInAct expression.

It is of interest when considering the relationship of
schistosomes with their mammalian hosts to note that in
other systems, TGF-b superfamily members have been shown
to function across phylum boundaries [45,46]. For example,
the Drosophila BMP homologs DPP and 60A are able to induce
bone development when injected into the skin of rats [45],
and mammalian BMP-4 can rescue Drosophila DPP mutants
[46]. Consequently, we believe that it is feasible that SmInAct
could act as a ligand to initiate signaling in host cells. It is
clear that proteins produced by eggs have distinct immuno-
modulatory functions [47], and SmInAct could conceivably
participate in these effects if secreted/excreted from the
schistosome egg. Our identification of SmInAct as a cytokine
that is molecularly conserved between host and parasite,
coupled with the description of an effective method for
altering gene expression in the schistosome egg, allows these
and other issues to now be addressed. Despite recent
advances in vaccine design [48], a solution for schistosomiasis
remains an elusive goal. Current attempts to control
schistosomiasis depend on repeated administration of one
drug, praziquantel, with no replacements waiting in the wings
should resistance develop. Understanding how schistosome
eggs develop could provide targets for intervention in the
schistosome life cycle and for blocking disease progression.

Materials and Methods

Parasites and animals. The Puerto Rican/NMRI strain of S. mansoni
was used in all experiments. Adult schistosomes were recovered by
hepatic-portal perfusion from C57BL/6 female mice or B6 IL-7R�/�

(The Jackson Laboratory, http://www.jax.org) that had each been
percutaneously exposed to ;60 cercariae 8 wk earlier. Adult parasites
and eggs laid were maintained in vitro in M199 (Gibco, http://
www.invitrogen.com), 10% fetal calf serum, 1% Antibiotic/Antimy-
cotic (Gibco), and 1% HEPES in a 37 8C/5% CO2 atmosphere as
previously described [11,28].

Isolation of full-length SmInAct cDNA from S. mansoni. The C-
terminal, translated region of the Drosophila activin homolog
(dActivin) (amino acids 565–669) was used to search the Wellcome
Trust’s Sanger Institute’s S. mansoni genome assembly using the tblastn
algorithm. A contig (0020320) with significant similarity to dActivin
was identified. Full-length cDNA corresponding to SmInAct was
isolated using total RNA (1 lg) from adult parasites and the
SuperScript III GeneRacer 59 and 39 RACE kit (Invitrogen, http://
www.invitrogen.com) as per manufacturer’s instructions. Gene-
specific primers were designed for isolation of the 59-end (59-
GGTTCAAAACTTTTCGGGTGTA-3 9) a nd 3 9- end ( 5 9-
AATCTTGTTGTCATCCAACTCAA-39) of SmInAct and used in RT-
PCR with GeneRacer 59 and 39 primers according to manufacturer’s
suggestions. Resulting amplicons were cloned into the TOPO cloning
vector (Invitrogen) and sequenced. To verify the full-length sequence
of SmInAct, primers designed from the 59 and 39 ends of the transcript
were used in RT-PCR, and the resulting fragment was cloned and
sequenced.

Sequence analysis. Sequence similarities between the deduced
amino acid sequence of SmInAct and other members of the TGF-b
superfamily were determined through multiple sequence alignments
using the ClustalW algorithm, as well as the Align 2 sequences (bl2seq)
program at the National Center for Biotechnology Information
(http://www.ncbi.nlm.nih.gov). An unrooted phylogram was drawn
using amino acids within the conserved C-terminal domain of
SmInAct, and known TGF-b superfamily members and distances
were drawn using the Dayhoff Pam matrix and neighbor-joining

algorithm in the PHYLIP software package developed by J.
Felsenstein, University of Washington, Seattle, Washington, United
States (http://evolution.genetics.washington.edu/phylip.html). Percen-
tages at branch points are based on 1,000 bootstrap runs.

Real-time RT-PCR. Total RNA was extracted from parasites using
Qiagen’s RNeasy Mini kit (http://www.qiagen.com), and contaminating
genomic DNA was removed by DNase treatment using the Turbo
DNA-free endonuclease (Ambion, http://www.ambion.com). First-
strand cDNA was synthesized using 500 ng of RNA, SuperScript II
reverse transcriptase (Invitrogen), and oligo dT as a primer. RT-
minus controls were performed to confirm the absence of genomic
DNA (unpublished data).

SmInAct transcript levels in egg and adult stages were quantified
relative to a-tubulin using Applied Biosystems’ 7500 real-time PCR
system and SYBR green PCR Master Mix (Applied Biosystems, http://
www.appliedbiosystems.com). Total reaction volume was 10 ll with
300 nM of each primer, 5 ll of SYBR green PCR Master Mix, and 0.5
ll of cDNA as template (or water as a negative control). SmInAct
primers were: forward 59-AATCTTGTTGTCATCCAACTCAA-39 and
reverse 59-AACTACAAGCACATCCTAAAACAA-39. a-Tubulin pri-
mers were: forward 59-CCAGCAAATCAGATGGTGAA-39 and reverse
59-TTGACATCCTTGGGGACAAC-39. PCR efficiency (E) was deter-
mined for both primer sets by plotting cycle thresholds from a 10-
fold serial dilution of cDNA and inputting the slope in the equation E
¼ 10(�1/slope). For expression analyses, quantification of SmInAct
transcript relative to a-tubulin was calculated using the equation:
ratio ¼ (ESma-tubulin)

CT/(ESmInAct)
CT where ESma-tubulin is the PCR

efficiency of the reference gene, ESmInAct is the PCR efficiency of
target gene, and CT is the cycle threshold. For analysis of RNAi-
induced knockdown, quantification of SmInAct transcript relative to
paramyos in (paramyos in pr imers were : forward 5 9-
CGTGAAGGTCGTCGTATGGT-39 and reverse 59-GACGTT-
CAAATTTACGTGCTTG-39) was calculated using the 2�DDCt method.
Dissociation curves were generated for each real-time RT-PCR to
verify the amplification of only one product.

Recombinant SmInAct expression, antiserum production, and
Western analyses. Eco RI (forward) and Xho I (reverse) tagged
primers were designed to amplify the C-terminal bioactive region of
SmInAct (forward 59-GGAATTCTCATTAACTAAAGGAGATGA-3
and reverse 59-CCGCTCGAGTTAACTACAAGCACATCCTA-39).
The amplified product was cloned into the expression vector
pET28aþ (Novagen, http://www.emdbiosciences.com) and sequenced
to verify the absence of any mutations. Expression of recombinant
SmInAct was induced in Escherichia coli BL21(DE3) by addition of 1
mM IPTG when cultures reached an OD600 of 0.5 at 37 8C, followed by
3 hours of shaking at room temperature. Recombinant SmInAct was
expressed in bacteria as insoluble inclusion bodies. Exhaustive
attempts to refold the protein using gluathione and reduced
glutathione proved unsuccessful. We therefore purified the protein
via nickel column chromatography under denaturing conditions (6 M
urea) as per the manufacturer’s protocol (Novagen). Antiserum was
generated by Cocalico Biologicals (http://www.cocalicobiologicals.
com) through subcutaneous inoculation of a rabbit with 100 lg of
purified protein in complete Freund’s adjuvant, followed by three
boosts of 50 lg in incomplete Freund’s adjuvant on days 14, 21, and
49, followed by exsanguinations on day 64.

For detection of SmInAct protein, 10 lg of protein extracted from
eggs, adult males, and adult females via Dounce homogenizing in lysis
buffer (1% Triton-X 100, 20 mMHEPES, 10% glycerol, 150 mM NaCl)
supplemented with a protease inhibitor cocktail (Sigma, http://www.
sigmaaldrich.com) were separated by SDS-PAGE, electroblotted, and
probed with anti-SmInAct antiserum (1:10,000), pre-immune serum
(1:10,000), or a monoclonal antibody (4B1) against paramyosin.
Affinity purified HRP-conjugated goat anti-rabbit IgG (Cell Signaling
Technology, http://www.cellsignal.com) was used to detect bound
rabbit antibodies, while an affinity purified HRP-conjugated horse
anti-mouse IgG (Cell Signaling Technology) was used to detect the
anti-paramyosin monoclonal antibody. The secondary antibodies
were detected using ECL reagents as per manufacturer’s instructions
(GE Healthcare, http://www.gehealthcare.com).

In situ hybridization. Localization of SmInAct in 5-lm sections of
adult S. mansoni was performed as previously described [49]. DIG-
labeled sense and anti-sense transcripts were generated using Roche’s
DIG RNA labeling mix (http://www.roche.com) as per manufacturer’s
instructions with T7-tagged amplicons as template (sense: forward 59-
TAATACGACTCACTATAGGGTTGATCCAAAAAAGGTTGT-
TATGG-39, reverse 59-TTAACTACAAGCAGCTCCTA -39; anti-sense:
forward 59-ATAATATGTAATAATTGTGA -39 reverse 59- TAATAC-
GACTCACTATAGGGAACTACAAGCACATCCTAAAACAA-39). The
hybridized DIG-probes were detected using an alkaline-phosphatase
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conjugated anti-DIG antibody (Roche), and visualized using NBT
(337.5 lg/ml) and BCIP (175 lg/ml) in 0.1M Tris-HCl, 0.1M NaCl, 0.05
MgCl2. Worm sections were photographed using a Leica DMIRB
microscope and DC500 camera (Leica, http://www.leica.com).

dsRNA synthesis and RNA interference. dsRNA was synthesized
using the T7 Megascript kit (Ambion) as per manufacturer’s
instructions. T7-tagged primers were used to generate a 381-bp
SmInAct-dsRNA template encompassing the active ligand domain
(forward 59-TAATACGACTCACTATAGGGCGATCATTAAC-
TAAAGGAGATGAG-39, reverse 59-TAATACGACTCACTATAGG-
GAACTACAAGCACATCCTAAAACAA-39). Luciferase and SmCB1
dsRNAs (negative controls) were generated as described [25]. For
dsRNA treatment of worms, five adult pairs were cultured in the
presence of 1 lg/ml dsRNA for 7 d with medium and dsRNA
changes occurring every other day. For dsRNA treatment of eggs,
five adult pairs were cultured as above (in the absence of dsRNA) for
2 d, worms were removed, and dsRNA was added at 1 lg/ml. Eggs
were photographed using a Leica DMIRB microscope and DC500
camera.

Statistical analyses. Student t-test was used for statistical analyses of
dsRNA-induced knockdown of SmInAct expression, change in
expression of SmInAct in single-sex and IL-7R�/� mice, and egg
developmental phenotypes (control versus SmInAct dsRNA). Chi-
square analyses were used to test the statistical significance of the
egg developmental phenotype. The Yates correction was applied
because we specified only two categories: undeveloped and developed
(Table 1).

Supporting Information

Figure S1. SmInAct Transcript Is Not Detectable in SmInAct dsRNA–
Treated Eggs

SmInAct mRNA levels in eggs treated with SmInAct dsRNA or control
dsRNA for 5 d were measured using real time RT-PCR using
paramyosin as a reference gene for expression. dsRNA treatment is
indicated on the x-axis. Data are presented as the mean fold change in
SmInAct expression. N/D ¼ not detected. In this experiment,
paramyosin mRNA was detectable in the SmInAct dsRNA–treated
eggs. However, in most experiments in which eggs were treated with
SmInAct dsRNA, it was not possible to recover mRNA from which
reference transcripts could be detected by RT-PCR. Eggs treated with
control dsRNA always yielded high quality mRNA.

Found at doi:10.1371/journal.ppat.0030052.sg001 (560 KB TIF).

Accession Numbers

Sequence data reported in this manuscript are available from
GenBank (http://www.ncbi.nlm.nih.gov/Genbank) under accession
number DQ863513. Other GenBank accession numbers of genes
and sequences used in this study include: B. malayi TGH-1
(AAB71839); B. malayi TGH-2 (AAD19903); C. elegans DAF-7
(NP_497265); C. elegans DBL-1 (NP_504709); Danio rerio Activinb A
isoform 2 (AAX68505); D. melanogaster Activin (NP_651942); D.
melanogaster dActivin (AF454392); D. melanogaster decapentaplegic
(NP_477311); Homo sapiens Activinb E (NP_113667); H. sapiens
BMP-2 (NP_001191); H. sapiens BMP-3 (NP_001192); H. sapiens
BMP-4 (NP_031580); H. sapiens BMP-5 (NP_066551); H. sapiens BMP-
6 (NP_001709); H. sapiens BMP-7 (NP_001710); H. sapiens BMP-8
(NP_861525); H. sapiens GDF-5 (NP_000548); H. sapiens GDF-6
(NP_001001557); H. sapiens GDF-7 (NP_878248); H. sapiens GDF-10
(NP_004953); H. sapiens Inhibinb A precursor (NP_002183); H.
sapiens Inhibinb B (NP_002184); H. sapiens Inhibinb C (NP_005529);
H. sapiens TGF-b 1 (NP_000651); H. sapiens TGF-b 2 (NP_003229); H.
sapiens TGF-b 3 (NP_003230); Mus musculus BMP-2 (NP_031579); M.
musculus BMP-3 (NP_775580); M. musculus BMP-4 (NP_031580); M.
musculus GDF-10 (NP_665684);M. musculus Inhibinb A (NP_032406);
M. musculus Inhibinb B (NP_032407); M. musculus TGF-b 1
(NP_035707); M. musculus TGF-b 2 (NP_033393); M. musculus TGF-
b 3 (NP_033394); S. mansoni a-tubulin (M80214); S. mansoni para-
myosin (M35499); and Strongyloides stercoralis TGH-1 (AAV84743).
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