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Abstract Cognitive models in psychology and neuroscience widely assume that the human brain

maintains an abstract representation of tasks. This assumption is fundamental to theories

explaining how we learn quickly, think creatively, and act flexibly. However, neural evidence for a

verifiably generative abstract task representation has been lacking. Here, we report an

experimental paradigm that requires forming such a representation to act adaptively in novel

conditions without feedback. Using functional magnetic resonance imaging, we observed that

abstract task structure was represented within left mid-lateral prefrontal cortex, bilateral

precuneus, and inferior parietal cortex. These results provide support for the neural instantiation of

the long-supposed abstract task representation in a setting where we can verify its influence. Such

a representation can afford massive expansions of behavioral flexibility without additional

experience, a vital characteristic of human cognition.

Introduction
Many complex tasks we perform daily, though different in their details, share an abstract structure.

For example, riding a bike and driving a car differ in many details, including the actions they require,

but they share an abstract similarity as modes of transportation. It has long been proposed that

humans can learn this abstract structure and leverage it to think creatively, make novel inferences

and rapidly generalize knowledge to unique problems we have never encountered before (Gick and

Holyoak, 1980; Harlow, 1949; Tenenbaum et al., 2011; Tolman, 1948) – e.g. applying rules

learned about when to break on a bicycle to an automobile. Reproducing this generativity continues

to vex even the most impressive artificial intelligences (Lake et al., 2017; Russin et al., 2020), and is

arguably one of the most defining features of human cognition (Penn et al., 2008).

In reinforcement learning, the structure of a task is described by its decomposition into ‘states’ –

variables that specify the condition of the environment (Sutton and Barto, 2018). The definition of

states is critical to determining how learning takes place, such as whether new information is

restricted to a specific set of circumstances or is shared between conditions with overlapping fea-

tures. States that cannot be resolved from sensory information alone are said to be ‘hidden’ or

‘latent’ – in such cases, the organization of these states be must inferred from the distribution of

rewards, or other outcomes, throughout the task. In practice, latent states (LSs) have been defined

as distributions over the spatio-temporal occurrence of rewards or punishments (Gershman et al.,

2013; Nassar et al., 2019), task stimuli or stimulus features (Collins and Frank, 2013;

Gershman and Niv, 2013; Tomov et al., 2018), or conditionalization of action values based on

recent task history (Schuck et al., 2016; Zhou et al., 2019). From this distribution over task features,

an agent can infer which conditions might belong to the same LSs and which do not. This informa-

tion can then be used to segregate or lump together observations, making learning more efficient,
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and enabling generalization of learning between settings that share the same LSs (Gershman and

Niv, 2010; Niv, 2019).

Recent work has provided evidence that the orbitofrontal cortex (OFC) and hippocampus (HPC)

maintain structured, abstract representations of tasks during planning and navigation in conceptual

spaces, including latent task states (Liu et al., 2019; McKenzie et al., 2014; Schuck et al., 2016;

Tavares et al., 2015; Wilson et al., 2014; Zhou et al., 2019). Likewise, other studies have investi-

gated the neural processes supporting fast acquisition of stimulus-response rules based on latent

task knowledge (Badre et al., 2010; Collins et al., 2014; Eichenbaum et al., 2020; Frank and

Badre, 2012). However, an essential feature of an abstract representation is that it can be used to

generalize behaviors to new settings, in absence of feedback, through a process of inference. To

date, no study has investigated the neural systems that maintain an abstract task representation that

is observed to satisfy this criterion. As a consequence, it remains unknown how the brain carries out

this essential function. To address this gap, we used fMRI to test the hypothesis that latent, general-

izable task representations used to control our behavior during a task are instantiated in neural activ-

ity, particularly in OFC and HPC.

Participants completed a task where they gathered rewards in an environment where a latent,

generalizable structure was available. Throughout the experiment, images of trial-unique items from

three categories appeared beneath a context, denoted by a scene (Figure 1). Participants decided

whether to ‘sell’ each item or pass. If they sold, they would receive or lose reward probabilistically,

as determined by the combination of item category and context. Participants saw each of these

combinations in short batches of trials termed mini-blocks. Importantly, the contexts could be clus-

tered based on the expected values associated with each item category. This structure provided an

opportunity to link these contexts together using an abstract, LS representation based on the distri-

bution of category-value associations over contexts. We hypothesized that participants would form,

and later use, this representation to generalize adaptive behaviors to new conditions without any

need for reinforcing feedback.

This hypothesis was tested across three phases (Figure 1—figure supplement 1). During phase

1, participants learned about the abstract LSs using three item categories (hands, foods, and leaves)

across nine contexts (Figure 1b). In the next phase, participants learned the values of three new

item categories (faces, animals, and objects) in three of the nine contexts; one drawn from each LS

(Figure 1c). Then, in a final generalization phase, they were tested on the remaining six contexts

using the three new image categories, without feedback. Optimal performance depended on gener-

alizing the new category values learned during the second phase to the held-out contexts

(Figure 1d). We expected that this inference would depend on those contexts being linked to a LS

representation within a generalizable task representation based on the expected values of catego-

ries encountered during the first phase.

Results
Participants were tested in three sessions. In session 1, participants completed a behavioral version

of the task where performance in the generalization phase determined their inclusion in the fMRI

experiment in sessions 2 and 3. 48% of participants passed a criterion of �70% accuracy in all 18

generalization conditions and so were recruited for two fMRI sessions. Participants who failed to

meet this criterion performed the same task in two additional behavioral sessions rather than in the

scanner. Of these participants, 50% ultimately passed the accuracy criterion by the third session.

Thus, the majority of participants (75%) could carry out this generalization task given sufficient expe-

rience (Figure 2—figure supplement 1).

In session 2, all participants carried out the same task, but with new context stimuli – requiring

them to learn which contexts linked to which LSs anew. This session also included additional blocks

of the generalization phase with conditions pseudo-randomized (rather than organized in mini-

blocks). fMRI participants completed these additional blocks in the scanner and the rest of the

experiment behaviorally. In session 3, all participants completed a shortened version of the training

as a reminder of the task and were presented with new pseudo-randomized generalization blocks (in

the scanner for fMRI participants).
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Figure 1. Schematic of the experimental task, and its design and logic. (a) In each trial of the training and generalization phases, participants were

asked to make a decision to sell or pass on an image, the value of which depended on contexts shown above the image. Throughout the two training

phases, participants received feedback on every trial, but not during generalization. Participants saw three categories of images in the same context

over small batches of trials for each unique combination (termed a mini-block) before switching to a new context. (b–d). The left tables show the reward

Figure 1 continued on next page
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Abstract task structure affords inference of novel behaviors without
feedback
Analysis of learning curves within mini-blocks of trials demonstrates that participants immediately

made use of the abstract task structure in the first segment of the generalization phase. Through the

first few trials of each mini-block of the initial and new category training, fMRI participants’ accuracy

steadily improved. In contrast, in the generalization phase, accuracy was near ceiling from the first

trial (mean p(correct)=0.96, SD = 0.06; Figure 2a). The rate of this learning curve in the generaliza-

tion phase was significantly lower than either of the other phases (Figure 2b), consistent with partici-

pants inferring an adaptive behavior without need for additional experience or feedback (Wilcoxon

signed rank tests: Z’s � 3.21, p’s � 0.004, Bonferroni-corrected for multiple comparisons). Similar

results were observed in participants who completed the behavioral version of the task in session 2

and passed the generalization accuracy criterion (Figure 2—figure supplement 2a), with a signifi-

cantly lower rate of change in the accuracy learning curve in the generalization phase compared to

the initial training or new category training phases (Wilcoxon signed rank tests: W’s = 45, p’s = 0.01,

Bonferroni-corrected for multiple-comparisons).

Notably, high accuracy during generalization was accompanied by elevated reaction times (RT;

mean = 4.04 s, SD = 1.7 s) on the first trial, with a sharp drop-off subsequently (mean = 1.15 s,

SD = 0.08 s; Figure 2c). The rate of speeding was significantly steeper in the generalization phase

compared to the initial or new category training phases averaged across the first three contexts in

each phase (Wilcoxon signed rank tests: Z � 3.46, p�0.002, Bonferroni corrected for multiple com-

parisons; Figure 2d). The same pattern in the rate of speeding was observed in participants from

the behavioral group who passed the generalization criterion in session 2 (generalization versus ini-

tial training RT rates: W = 36, p=0.047, Bonferroni-corrected for multiple-comparisons; Figure 2—

figure supplement 2d). Thus, rather than immediately applying a structure learned incidentally dur-

ing training, participants took additional time to infer values during the first generalization trials –

indicative of a concerted, deliberative process.

As each LS was repeated twice via two contexts during generalization, we could test how previ-

ously encountering a LS impacted RTs during a repetition. Participants were faster for the second

presentation of contexts from the same LS during generalization compared to contexts from differ-

ent LSs (repeated measures t-tests: (15)�2.13, p’s < 0.05, d’s � 0.53), indicating that additional infer-

ences were made more quickly when a LS had been accessed previously (Figure 3a). Comparison of

the rate of exponential curves fit to these RT data in each participant demonstrated that these

curves were steeper in the first context compared to the second context averaged across LSs (Wil-

coxon signed rank test: Z = 3.36, p=0.0007), but there were no differences in the rate of these

curves according to the sequential order of LSs (Wilcoxon signed rank test: Z � 1.13, p�0.2, uncor-

rected; Figure 3b). A numerically similar pattern of results was observed for the rate of change for

learning curves in the behavioral group who passed the generalization criterion, but did not reach

statistical significance (Figure 3—figure supplement 1). These data argue that participants were

faster in completing the transfer of new category values to contexts if a context belonging to the

same LS representation had already been activated, but did not necessarily use information about

other LSs they had encountered in narrowing this inference problem.

Figure 1 continued

structure for example context-category pairs across the three phases of the experiment in a single session. Cells show the probabilities of reward for

each pair. The right schematics illustrate clustering of contexts by category-values into latent states (LSs; blue and orange arrows) and inference of

values via structured knowledge (red arrows). Only two LSs are shown for visualization. Latent State (LS) Hands (H), Foods (F), Objects (O), and Animals

(A). (b) In the initial training phase, participants were presented with trial-unique images from three categories of images. These contexts could be

grouped together through an abstract LS representation based on the similarity of their category-value associations. (c) Participants were later trained

on three new categories in a subset of the previous contexts. Grayed out columns indicate contexts that were left out of this phase. Thus, the values of

new categories were trained in only one context in each LS cluster. (d) In the generalization phase, participants were asked to make decisions about the

left out, novel context-category combinations without feedback. Participants had to use their knowledge of the LSs linking contexts together learned in

the initial training. See Figure 1—figure supplement 1 for a table laying out the full experimental design over three experimental sessions.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic showing design of whole experiment over multiple sessions.
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Latent task states continue to influence behavior after initial inference
After an initial inference, participants may have formed rules for responding to the new context-cate-

gory combinations and no longer used the LS representation throughout the scanned generalization

task. We reasoned that if participants are continuing to utilize the latent abstract task structure, this

would be evident in switch costs when the active LS changed between-trials (Collins and Frank,

2013). To avoid conflating LS and context switches, we isolated this analysis to only trials where the

context changed between trials. We found a significant switch cost in RT for trials when the LS

changed versus stayed the same between trials (repeated-measures t-test: t(15) = 2.33, p=0.03,

d = 0.58; Figure 2e), which did not differ between scanner sessions (p=0.8). The same effect was

independently observed in participants in the behavioral group who passed the generalization crite-

rion (Figure 2—figure supplement 2; t(8) = 3.45, p=0.009, d = 1.15). These data indicate that par-

ticipants used these LS representations throughout the scanned task. Participants were also faster

when both the context and LS remained the same (t(15) = 5.29, p<0.0001, d = 1.32).
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Figure 2. Learning curves and repetition effects from training and generalization phases for fMRI participants in session 2. (a) Mean accuracy across

participants for first six trials of the first nine mini-blocks of initial and new category training, as well as blocked generalization phase. Dashed line

indicates chance-level performance. (b) Estimated exponential rate of change in mean accuracy in the first six trials for all mini-blocks in each phase. (c)

Mean reaction times (RT) for each trial in each of the first nine mini-blocks for each of these phases. Shaded area represents standard error of the mean

(SEM). Mean and standard error were calculated from the log-transformed RTs. (d) Estimated exponential rate of change in RT for first six trials within

each phase for the first mini-blocks within the first three contexts in presentation order. For panels (b and d) each dot represents a single participant,

horizontal and vertical bars represent the mean and SEM, respectively. *p<0.05, **p<0.01, Wilcoxon signed rank test, corrected for multiple

comparisons. (e) RTs for trials from the pseudo-randomized generalization phase from sessions 2 and 3 during fMRI scanning where latent states

remained the same or switched from the previous trial, while the context switched or stayed the same. RTs have been log-transformed and z-scored

within session for each participant. Each line represents a participant, black dashed line indicates mean, and error bars indicate SEM. †p<0.05,
†††p<0.0001, repeated-measures t-test. See Figure 2—figure supplement 1 for the mean accuracies for the fMRI and behavioral groups for each

phase and session of the experiment. See Figure 2—figure supplement 2 for data from behavioral group participants who passed the generalization

accuracy criterion in session 2.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Accuracy in all sessions of the experiment for behavioral and fMRI groups.

Figure supplement 2. Learning curves and repetition effects from training and generalization phases for behavioral participants who passed the

accuracy criterion for generalization in session 2 (N = 9).
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Generalization behavior is best explained by a hierarchical LS
representation
Notably, generalization in this task might not only be achieved through the use of a LS representa-

tion to bridge contexts. For example, an associative retrieval process could also explain these results

if newly trained category values could be transferred through mediated retrieval of contexts held-

out of the generalization phase via shared category-value associations learned in the initial training

(Kumaran and McClelland, 2012; Schapiro et al., 2017).

To test this possibility, we compared four alternative computational models that generated pre-

dictions for participants’ RTs based on different memory network configurations where contexts, cat-

egory-values, and LSs were represented as nodes with different levels of activation.

First, the conjunctive associative retrieval (CAR) model represented each condition as a combina-

tion of category and context features, and linked these conjunctive representations to each other

based on shared features, but had no representation of LS (Figure 4a).

The independent associative retrieval (IAR) model similarly did without a LS representation, but

rather than only representing contexts and categories as conjunctions, maintained independent rep-

resentations of each and linked contexts to each other based on shared category-value associations

(Figure 4b).

In contrast to these associative retrieval models, we included two LS models. A simple LS model

connected category-values to three LSs, but forewent any representation of context (Figure 4c). A

hierarchical latent state (HLS) model connected category-values to contexts, and further clustered
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Figure 3. Reaction times (RT) for fMRI participants in mini-blocks during generalization in session 2, organized by the presentation of latent states (LS 1,

2, 3) and contexts (first and second). Participants were significantly slower on the first trial of mini-blocks when encountering the first context in a LS

compared to the second context in the same LS, but not in subsequent trials. (a) RT curves for mini-blocks organized by the order of LSs and contexts

encountered. Lines indicate means, shaded area indicates the SEM. (b) Rates of exponential functions fit to these RT curves. Each dot represents a

single participant. ††p<0.001, Wilcoxon signed-rank test, *p<0.05, Bonferroni-corrected for multiple comparisons, p̂<0.05, uncorrected. See Figure 3—

figure supplement 1 for data from the behavioral group participants who passed the generalization criterion in session 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Reaction times (RT) for participants in the behavioral group who passed the generalization criterion in session 2 (N = 9) during

mini-blocks during generalization in session 2, organized by the presentation of latent states (LS 1, 2, 3) and contexts (first and second).
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O-). (a) Conjunctive associative retrieval (CAR) model where each node represents a context-category conjunction with a particular value. (b)
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Figure 4 continued on next page
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these contexts around LSs, so that activation of each context and category was inherited from the LS

representation (Figure 4d).

Each of these models relied on the basic assumption that RTs depend on the degree of activation

in the network nodes currently activated. On each trial, activation within the network would increase

at different rates depending on the relation of nodes to those that were activated during retrieval.

Three rate parameters determined this increase for nodes that were directly activated on a trial (a1),

nodes directly connected to those activated (a2), and the rest of the network which might be

searched but was not directly relevant to the current trial (a3). To establish that these models dif-

fered substantially in their predictions, we tested each model on data simulated using the best fit

model parameters from itself and the three alternatives. This cross-model comparison clearly dem-

onstrated that the predictions of these four models were dissimilar and each model provided a

much better fit to itself than its alternative counterparts (Figure 4—figure supplement 1a).

The HLS model provided the best fit to participants’ RT data in the fMRI group in sessions 1 and

2, and the nine participants in the behavioral group who passed the generalization accuracy criterion

in session 2 (Table 1; Figure 4—figure supplement 1a). Comparison of the three rate parameters of

this model showed an ordering consistent with the expectation that the degree of activation of items

should fall off at a distance from the items presented on the current trial (Figure 4—figure supple-

ment 1b), where values for a1 were significantly greater than a2 and a3 (Wilcoxon signed rank test:

Z’s = 3.51, p’s = 0.001, Bonferroni corrected), and values for a2 were significantly greater than a3

(Z = 2.68, p=0.02, Bonferroni corrected).

To understand why the HLS model better accounted for participants’ data, we compared RTs sim-

ulated from the best fit model parameters for each participant with each of the four models, focus-

ing on data from session 2 for the fMRI group, as it was more pertinent to the neuroimaging results

(Figure 4a–d). We organized these data by the order of presentation of each context associated

with each LS (as in Figure 3), switches of category mini-block, and all other trials within a mini-block

and then compared the root-mean squared deviation (RMSD) of each model for each trial type. We

found that both the LS models provided a better fit on category switch trials compared to the CAR

model (repeated-measures t-test, t(15) � 4.76, p’s � 0.002, d � 1.19, Bonferroni-corrected for multi-

ple comparisons). Numerically, the HLS model also provided a better fit to these trials than the IAR

model, though this difference was not statistically significant (t(15) = 2.02, p=0.06, d = 0.50, uncor-

rected). The two associative retrieval models tended to systematically overestimate RTs on these cat-

egory switch trials, likely because category-values associated with the trained context in the new

category training phase were only activated by mediated retrieval, whereas in the LS models these

Figure 4 continued

category-values are linked to a LS node, without any representation of context. (d) Hierarchical LS model with contexts clustered around LSs, and

category-values linked to each context. Border and arrow colors signify mode of retrieval. Below each schematic are scatterplots for z-scored reaction

times for all participants in all correct trials of the generalization phase and simulated reaction times from each model, color-coded by trial type. See

Figure 4—figure supplement 1 for further details on fit of each model to the data. H, Hands; A, Animals; F, Faces; O, Objects. Values: +, positive

expected value; �, negative expected value.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Supplementary analyses for computational modeling of reaction times (RTs).

Table 1. Sum of negative log-likelihood for four alternative models across participants and fraction of participants where each model

was lowest in this measure in parentheses, for each group and session.

Conjunctive associative retrieval Independent associative retrieval Latent state Hierarchical latent state

fMRI group – session 1 3537.78 (1/16) 3227.38
(2/16)

3428.23 (0/16) 3061.04 (13/16)

fMRI group – session 2 3849.60 (0/16) 3413.20 (4/16) 3569.10 (0/16) 3264.13 (12/16)

Behavioral group – session 2 2063.65
(0/9)

1851.76 (0/9) 1921.61 (0/9) 1713.73 (9/9)

The online version of this article includes the following source data for Table 1:

Source data 1. Sum of negative log-likelihoods for individual participants in fMRI and behavioral groups for each model in each session.
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category-values benefited from inherited direct retrieval of the higher-order LS representation. The

HLS model also had lower RMSD for the first presentation of the second context compared to the

LS model (t(15) = 4.76, p=0.001, d = 1.19, Bonferroni-corrected for multiple comparisons). As the LS

model had no separate representation of context, any activation related to a prior LS would be fully

transferred to its second presentation through another context, resulting in an underestimation of

RTs. Instead, the results were more consistent with separate context representations that inherit acti-

vation from a higher-order LSs, that is, the use of a HLS structure.

Representation of an abstract task representation in multi-voxel activity
patterns
Having verified that participants form and use an abstract task representation to control behavior,

we sought to test the neural systems that support this representation. We carried out a representa-

tional similarity searchlight analysis (RSA) using multiple linear regression to compare empirical rep-

resentational dissimilarity matrices (RDMs) from pattern activity to hypothesis RDMs quantifying the

predicted distances between conditions based on LSs, contexts, item categories, expected value,

interactions between these factors, and control regressors (Figure 5—figure supplement 1).

We found evidence for a LS representation in bilateral dorsal- and ventrolateral prefrontal cortex

(PFC) with a rostral distribution, as well as the bilateral precuneus, left middle temporal gyrus, and

bilateral inferior parietal lobules (Figure 5a; Supplementary file 1). Comparing this statistical map

with resting-state functional networks from Yeo et al., 2011 revealed that this LS representation

overlapped most with a frontoparietal network centered on the inferior frontal and intraparietal sulci

(Figure 5—figure supplement 2).

In contrast, context was associated with activity in the bilateral fusiform gyri (Figure 5b).

Expected value was associated with activity in OFC, as well as left superior frontal and angular gyri

(Figure 5c). Item category was robustly represented throughout visual areas and PFC (caudally on

the left and broadly on the right; Figure 5—figure supplement 3).

To test whether these results were consistent across fMRI sessions, we carried out separate

whole-brain searchlight RSAs within each session. The resultant statistical maps for the main effects

of interest were similar in both sessions (Figure 5—figure supplement 4). Contrasts between statis-

tical maps for all terms in the multiple regression model only revealed a stronger effect for value in

the left middle temporal gyrus in session 2 compared to session 3 (MNI coordinates: �48,–22, 0),

and no other significant differences in either direction.

As a secondary question, we were also interested in whether higher-order representations of

latent task states and expected value influenced each other, or perceptual-semantic representations

of item category. To test this, we included regressors for hypothesis RDMs that captured interactions

between LSs, value, and item category, as well as control regressors for interactions of these factors

with context. Interactions between item category with value and LS were not significant; though

items with same value in the same LS were represented more similarly in ventral temporal cortex

(VTC) (Figure 5—figure supplement 1), observations recapitulated in ROI-based analyses of activity

within the VTC (Figure 6b).

We also conducted ROI-based RSAs focused on HPC and OFC, given a priori expectation that

these regions are involved in representing latent task structure during task performance. RSAs within

these ROIs were null for LS representations (Figure 6a,c). To test these effects at a finer grain, we

conducted second-level tests of the whole-brain searchlight analysis masked by these ROIs. Here,

we found signals consistent with LS and expected value representations in central OFC, but not HPC

(Figure 6—figure supplement 1; Supplementary file 2). There were significant effects for category

representations in both of these ROIs, in line with broad discrimination between semantically and

perceptually distinct categories of stimuli in these regions (Chikazoe et al., 2014; Kuhl et al., 2012;

McNamee et al., 2013; Pegors et al., 2015).

Univariate contrast of accuracy
Lastly, we tested a univariate contrast of correct and error responses. Although less functionally spe-

cific than the above analyses, we expected this contrast to reveal regions broadly involved in engag-

ing with this generalization task. This contrast revealed greater activation in the HPC and OFC on

correct responses (Figure 7; Supplementary file 3).
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Discussion
Here, we observed that a LS representation capable of supporting generalization of knowledge to

new settings is instantiated most strongly within activity in mid-lateral PFC and parietal cortex. This

pattern overlaps with a network previously implicated in contextual modulation of behavior in hierar-

chical reinforcement learning and cognitive control tasks (Badre et al., 2010; Choi et al., 2018;

Collins et al., 2014). Like hierarchical task structure in those experiments, latent task states enable

faster learning, reduced memory load, and greater behavioral flexibility (Frank and Badre, 2012;

Koechlin and Summerfield, 2007). Recent work has similarly implicated mid-lateral and inferior pari-

etal cortex in inferring latent causes within tasks (Tomov et al., 2018) and discovering hierarchical

rules (Collins et al., 2014; Eichenbaum et al., 2020). Our findings extend these observations to

Figure 5. Whole-brain representational similarity searchlight analysis for main effects of interest. Each upper panel shows hypothesis representational

dissimilarity matrix (RDM) for task factors. Lower panels show t-statistic map from a searchlight analysis testing these predictions in pattern activity

projected onto inflated cortical surfaces. All maps are defined with a cluster forming threshold of p<0.001 and corrected for multiple comparisons with

permutation tests for defining a cluster extent threshold at p<0.05. These maps include representations of (a) latent states (LSs), (b) contexts, and (c)

value. Cluster extent threshold for each contrast is given by the value of k. A, B, C refer to distinct LSs. A1, B1, C1 and A2, B2, C2 refer to distinct

contexts that belong to each of those LSs. F, Faces; A, Animals; O, Objects. +, positive value; �, negative value. See Figure 5—figure supplement 1

for comparison of LS map to 17 network parcellation by Yeo et al., 2011, Figure 5—figure supplement 2 for the statistical map for the item category

regressor, and Figure 5—figure supplement 4 for interaction terms. See Figure 5—figure supplement 3 for comparison of main effects of interest

within each session, and Figure 5—figure supplement 5 for a view of all regressors included in the multiple linear regression model.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Percentage overlap of latent state (LS) statistical map from Figure 5a with 17 network parcellation of functional connectivity

networks from Yeo et al., 2011 based on the data of 1000 participants.

Figure supplement 2. Whole brain searchlight analysis for image categories.

Figure supplement 3. Statistical maps for main effects of multiple regression model from searchlight representational similarity analyses (RSAs)

estimated separately for data from sessions 2 and 3 and projected onto inflated cortical surfaces.

Figure supplement 4. Whole-brain searchlight analyses for interaction terms.

Figure supplement 5. Hypothesis representational dissimilarity matrices (RDMs).
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Figure 6. Representational similarity analysis results from all voxels included in regions of interest (ROIs). Plots show distribution of beta coefficients

across participants from multiple linear regression analyses comparing hypothesis representational dissimilarity matrices (RDMs) with empirical RDMs

estimated for each ROI. Each point represents a single participant, with means represented by horizontal bars and SEM as vertical bars. (a)

Orbitofrontal cortex (OFC), (b) ventral temporal cortex (VTC), and (c) hippocampus (HPC). *p<0.05, **p<0.01, ***p<0.0001 one-sample t-tests against

zero. See Figure 6—figure supplement 1 for results of second-level tests on value and latent state terms restricted to the OFC ROI.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Results of representational similarity analysis searchlight results with explicit mask in orbitofrontal cortex.
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indicate that this network is not just involved in discovering and maintaining task structure, but more

generally represents tasks in an abstract format that facilitates novel behaviors, even in the absence

of reinforcement. Once formed, such a fully abstract task representation could potentially be used

not only for online, stable task control in the face of changing circumstances, but also as the genera-

tive mechanism for rapidly generalizing diverse knowledge between settings, affording great behav-

ioral flexibility with minimal training.

Our behavioral results offer insights into the timing and nature of processes that form this

abstract task representation. While some accounts of generalization argue that integration of related

items occurs during encoding (Shohamy and Wagner, 2008; Zeithamova et al., 2012a), others

have suggested that this can happen online during retrieval through statistical inference

(Kumaran and McClelland, 2012). In this task, participants could build their task representation at

any point prior to the generalization phase, including during the initial training phase. The lengthy

RTs during the first trials of generalization suggest that this inference required additional online

processing, and this abstract task structure may not have been fully constructed until it was probed.

These data are consistent with accounts arguing that generalization during acquired equivalence can

also occur at retrieval (De Araujo Sanchez and Zeithamova, 2020) and depends on the demand to

make new inferences. It is likely that linking of contexts to a LS occurs at both encoding and

retrieval, with the timecourse of this process varying across individuals.

Modeling of RTs during the first mini-blocked section of the generalization phase has also pro-

vided some insights into the process of how generalization of task information takes place. An asso-

ciative retrieval model without any LS representation underestimated RTs on category switch trials,

as this model did not separate category-values by context or LS. However, a fully integrative repre-

sentation of LSs was also insufficient, as this alternative collapsed related contexts into the same LS,

and underestimated the time needed to make additional inferences about contexts that had not

been presented earlier. Instead, our data were most consistent with an intermediate solution where

related contexts were bridged by a LS, and category-values were separated by contexts. Thus, our

data were consistent with participants accomplishing generalization via an integrated task represen-

tation on the basis of shared features (Schlichting and Preston, 2015; Shohamy and Wagner,

2008; Zeithamova et al., 2012b), while still retaining independent representations of each context.

Our task design may have shaped this representation: the instructions strongly encouraged par-

ticipants to link contexts to an unseen latent variable (see Materials and methods), and the mini-

Figure 7. Univariate whole-brain contrast of correct and erroneous responses projected onto inflated cortical

surfaces and on a single axial slice showing orbitofrontal cortex and hippocampus. This statistical map was defined

with a cluster forming threshold of p<0.001 and corrected for multiple comparisons with permutation tests for

defining a cluster extent threshold at p<0.05. Cluster extent threshold for each contrast is given by the value of k.
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block trial structure likely encouraged learning the values of each category within each context.

Thus, ours is an evidence that we can form such LS representations, use them for generalization, and

represent them in frontoparietal network while performing a task based on them. We do not rule

out that people cannot also use associative retrieval or that they may do so instead of using a LS in

other task contexts. Nonetheless, evidence that we can, and do, form LSs under certain circumstan-

ces is an important observation that confirms a long held hypothesis in the field.

Behavioral evidence also indicated that this LS representation was maintained throughout the

scanned generalization task. Analysis of RTs showed switch costs for latent task states that exceeded

those for changes of context alone. In principle, this representation was not necessary for this por-

tion of the task, as participants could have instead consulted the inferred values of the 18 context-

category combinations, or simply memorized which six conditions were associated with negative

expected values. Instead, participants appeared to continue referencing this more abstract, and

compact, representation of the three latent task states to aid decision-making. Maintaining such a

representation would be particularly helpful as a means of compressing task information in memory,

and it could be useful in case of further need to update information about these latent task states

and propagate this information to linked task conditions (e.g. in a reversal of the expected values for

a particular context-category combination). Characterizing if, and how, the neural representation of

latent task states described here comes to influence decision-making and learning in such settings

remains an important outstanding question.

In this experiment, we were able to cross two factors previously associated with OFC function

within the same experiment: latent task states and expected value (Stalnaker et al., 2015). We

found limited evidence for OFC representing latent task states, though expected value was robustly

represented in this ROI. These data are consistent with rodent electrophysiological data indicating

that expected value signals contribute more to the variance of activity within this region than repre-

sentations of task space (Farovik et al., 2015; Zhou et al., 2019). However, both OFC and HPC

were activated for correct responses compared to errors, possibly consistent with their role in

retrieving relevant task knowledge, if not in actively representing latent task structure in this

experiment.

Prior observations may be reconciled with our results if distinct neural circuits are involved in rep-

resenting latent task states under different cognitive demands. Much recent work has focused on

the involvement of the medial PFC, OFC, and HPC in learning and representing structured knowl-

edge, from the relations of paired associates to complex schemas (Baldassano et al., 2018;

Chen et al., 2017; Garvert et al., 2017; Ghosh et al., 2014; van Kesteren et al., 2013). However,

the network identified here as representing latent task states shares greater similarity with regions in

lateral PFC and inferior parietal cortex identified by past studies focused on abstract representations

of a task in cognitive control settings (Loose et al., 2017; Woolgar et al., 2011). While these

regions belong to mostly distinct functional networks (Choi et al., 2018; Yeo et al., 2011), informa-

tion may be shared via strong connections between mid-lateral PFC with medial PFC, OFC, and

HPC (Averbeck and Seo, 2008; Petrides, 2005), and regions that straddle these networks, such as

the angular and superior frontal gyri (Margulies et al., 2009). Information passed through these

select pathways might allow structured knowledge about abstract task elements to inform a control

representation in mid-lateral PFC (Badre and Nee, 2018).

Frontoparietal systems may be more involved in representing this kind of abstract task structure

when it is necessary for actively controlling behavior contingent on changing contexts, as in this

experiment. Other work that has examined analogous abstract task representations in the context of

conditional action selection and selecting between causal models have found evidence for the

involvement of frontoparietal cortex (Collins et al., 2014; Eichenbaum et al., 2020; Tomov et al.,

2018), similar to our results. In contrast, OFC and HPC could be engaged more by resolving uncer-

tainty about the prevailing latent task state (Chan et al., 2016; Saez et al., 2015), or planning within

a cognitive map of latent task states (Schuck et al., 2016; Zhou et al., 2019). Other related work

indicates that these regions are involved in, and necessary for, constructing abstract representations

(Kumaran et al., 2009; Schuck and Niv, 2019; Spalding et al., 2018; Zeithamova et al., 2012a),

and so may be particularly engaged by the process of bridging contexts and forming a representa-

tion of latent task states. Thus, while OFC and HPC may work together to form an understanding of

the latent task structure, mid-lateral PFC and parietal cortex are perhaps more involved in imple-

menting this representation for the purposes of controlling behavior. Indeed, such a division of labor
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would be consistent with the long-standing observation of a knowledge-action dissociation from the

study of patients with frontal lobe disorders (Milner, 1964). As we did not scan participants during

training, or the first mini-blocked section of the generalization phase, we cannot yet speak to the

neural circuits engaged in initially forming this abstract task representation.

In sum, we have discovered evidence of a neural instantiation of a long-supposed construct of

cognitive models: an abstract task representation that enables generalization to new tasks in

absence of reinforcement. Future studies could evaluate how and when this representation is

formed, when and if this neural representation is necessary for generalization behavior, and why

some participants take longer to leverage this abstract task structure. This study thus opens new

ground in understanding the neural systems supporting some of the key cognitive processes and

behavioral features that distinguish species like humans in their behavioral flexibility and capacity for

rapid leaning (Lake et al., 2017; Penn et al., 2008).

Materials and methods

Experimental procedure
The study design and analyses were pre-registered on the Open Sciences Framework prior to col-

lecting the data (https://osf.io/x6fmb). Participants completed an acquired equivalence task where

they learned that nine contexts belonged to three different LSs (three per state) on the basis of their

shared value associations for three object categories. They then used this knowledge to complete a

generalization task where they inferred values for a new set of categories in contexts with which they

had not been previously paired. A schematic overview of the structure of this experiment is provided

in Figure 1 and Figure 1—figure supplement 1.

To aid in building a structured representation of the task, participants were told they were playing

the role of a photographer selling photos of different item categories in three goblin kingdoms with

distinct preferences for these categories. In each trial, participants had to make a bet on whether to

sell an image or to pass. This decision was a risky choice where selling could be paid off with a

reward in fictitious gold or punished with a loss of gold. After a decision to sell, feedback was pro-

vided in terms of the gold won or lost. Passing would lead to no change in gold, but feedback was

provided in terms of the outcome had the participant chosen to sell. Thus, in all phases of the exper-

iment except for generalization (see below), fully informative feedback was provided independent of

participants’ choices. Participants were incentivized with a monetary bonus proportional to the

amount of gold they earned in the task. All photos were trial-unique so that participants never

learned the values of specific images, but of general image categories.

This experiment took place over three sessions. Each experimental session was comprised of

three main phases. First, in the beginning of the initial training phase, participants were tasked with

selling photos of hands, foods, and leaves in three contexts, represented by a natural scene image

above the photo they were selling (A1, B1, C1). Participants were told that the contexts each came

from a different ‘kingdom’, equivalent to the generative LSs (LS A, LS B, LS C), and that each of

these kingdoms preferred one category of items strongly over the other two categories. Within each

context one item category was associated with a 90% probability of reward and 10% probability of

punishment for a decision to sell, while the other two categories were associated with a 10% chance

of reward and 90% chance of punishment. In each trial in this initial training phase, participants could

gain 50 gold or lose 25 gold for choosing to sell a photo. Thus, the expected value of selling, with-

out knowledge of the probability of reward for each category, was zero.

After two blocks of this training, participants then encountered ‘roadwork’ after which they would

learn about a new context in each kingdom represented by novel natural scenes (A2, B2, C2). This

roadwork repeated a second time after another two blocks so that participants learned about three

contexts in each of the three kingdoms. Importantly, all contexts associated with a given LS had the

same reward probability structure across item categories. Participants were not directly informed of

which contexts corresponded to which kingdoms, but had to make these inferences based on their

shared category values. The scene images for each context were randomly selected from a set of

nine for each participant, so there was no systematic visual relationship between the contexts of

each kingdom. Further, as contexts belonging to each ‘kingdom’ were encountered after each
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episode of roadwork, this event bound was not a cue to task structure and no aspect of temporal

adjacency could link contexts to a LS.

These initial training blocks consisted of 54 trials with six trials per condition. This initial training

phase was organized in batches consisting of a series of trials for each context-category combination

(i.e. a ‘mini-block’). These mini-blocks were nested by context, so that participants saw each cate-

gory in the same context one after another (e.g. A1-hands, A1-leaves, A1-foods), before switching

to a new context and looping once again through each combination of context-category pairs (e.g.

B1-leaves, etc.). The order of presentation for these categories within each context was randomized,

as was the order of these contexts. Following these six initial training blocks, participants completed

a final reminder training block with the three categories presented in all nine contexts in mini-blocks

of eight trials (216 trials total).

In the second phase, participants completed training on new image categories (faces, animals,

and man-made objects) within a subset of the previous contexts (e.g. A3, B3, C3). Which set of con-

texts was presented in this phase (i.e. A1, B1, C1 versus A2, B2, C2 or A3, B3, C3) was randomized

across participants. Participants completed 90 trials in the course of a single block, consisting of 10

trial mini-blocks for each combination of the three contexts and three categories.

In the new category training phase, two categories of items were now associated with a 90%

chance of reward and 10% chance of punishment in each context, while these values were reversed

in one context. The categories that were rewarded and punished in each context were randomized

with respect to the categories in the initial training across participants. For example, there was no

rule in the experiment that faces have high value in contexts where hands have low value. The pun-

ishment associated with selling a photo was increased to 100 gold in this block so that the expected

value of selling a photo without knowing the probability of reward in a specific category-context

combination was still zero.

Finally, in the third phase, participants carried out a generalization test where they were pre-

sented with photos from these new categories in conjunction with the six contexts held out of the

prior new category training (e.g. A1, B1, C1 and A2, B2, C2, if A3, B3, C3 were trained with the new

categories). Critically, participants did not receive feedback throughout this phase and could thus

not learn the values of these new categories from experience. Instead, they would have to rely on

their knowledge about which contexts belonged to which kingdoms (i.e. LSs) based on the shared

category value associations learned in the initial training phase. This generalization test included 10

trial mini-blocks for each of the 18 conditions (each context-category combination, with three cate-

gories and six contexts), resulting in 180 trials total. Participants were informed that the value in

gold earned and lost on each trial had been doubled from the new category training phase to fur-

ther incentivize performance.

It is important to emphasize that generalization during this phase was only possible based on a

representation of the shared LSs among contexts. The particular pairings of items and contexts dur-

ing generalization had never been encountered previously. And, as no feedback was provided dur-

ing this phase, mappings could not be learned through reinforcement. Further, as the item

categories themselves were different from the initial training phase, nothing about the objects or val-

ues could link the contexts encountered during generalization to what was learned during phases 1

or 2 except for an abstract LS. That LS already clustered the contexts encountered during generaliza-

tion with that encountered during new category learning because they had shared a value structure

during initial learning, albeit a different value structure on different object categories. Thus, perform-

ing accurately during the generalization phase of this task provides unambiguous evidence for reli-

ance on an abstract LS representation.

For all blocks of the training and mini-blocked generalization phases, there was no response

deadline. The inter-trial interval (ITI) was generated from a lognormal distribution with a mean of 1 s,

maximum time of 4 s, and minimum of 0.5 s. Participants’ choice was underlined and the stimuli

remained on screen for a 0.5 s inter-stimulus interval. In all blocks, except the generalization test,

feedback was displayed for 1.5 s, after which the trial would end. Participants also briefly saw the

total gold they had earned within the block after it had ended. However, as there was no way for

participants to link these earnings back to the specific trials within the generalization phase, they

could not learn the structure of the task from this kind of feedback once they had reached this sec-

tion of the experiment.
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As already noted, this experiment took place over three sessions. The first session was entirely

behavioral and served to test how well participants could complete the generalization phase. Prior

behavioral pilot experiments had found that approximately 50% of participants did not successfully

infer all new context-category values during generalization based on only one experience with train-

ing, and so failed to completely learn the latent task structure. As our pre-registered analysis plan

depended on participants understanding this structure, we planned, a priori, to exclude from fMRI

any participants who did not meet a performance criterion of �70% accuracy in all 18 conditions of

the generalization test in this first session. Instead these participants were asked to return and com-

plete the rest of the experiment in two additional behavioral sessions. This allowed us to test

whether these participants could generalize in this task, given sufficient experience (see main text).

That observation helps limit any concerns about generalizability raised by our selection procedures.

In the second and third sessions, after completing the blocked generalization test, participants

completed three functional runs of the generalization task but without the nested trial structure (i.e.

mini-blocks nested by contexts). These blocks also had a three second response deadline for each

trial. In each run, 10 trials from each of the 18 conditions were presented in a pseudo-random

sequence optimized for efficiency using Optseq2 with ITIs ranging from 1 to 9 s (180 trials in total)

(Greve, 2002). This also ensured that the rate of transitions between trials that shared features was

effectively at chance (i.e. 33% for LSs, 16.7% for contexts). After each response, the chosen option

(‘sell’ or ‘pass’) was underlined and the stimulus would remain on-screen until the end of the

response deadline. A random subset of six of these 12 optimized sequences was selected for the six

functional runs for each participant. Thus, each participant completed 1080 trials of this generaliza-

tion task over the course of two sessions in the scanner (60 trials per 18 conditions), or behaviorally

for those participants who did not pass the generalization criterion in the first session. This dense

sampling per participant provided more statistical power for our study by reducing within-subject

measurement error. Before completing this task, participants also completed a short practice task

with the same mixed trial structure with just one trial from each condition.

Participants were given ample information about the structure of the task in instructions that pre-

ceded each new phase of the experiment, but not specific information that about which categories

were rewarding in which contexts, and which contexts were part of the same kingdoms (i.e. LSs).

Specifically, participants were informed that the outcomes were stable but probabilistic (without

being explicitly informed of this probability), and were told how many categories of photos each

kingdom preferred in each phase of the task. Participants were also instructed that they would later

complete a test phase without feedback, so they should strive to commit the values of photo cate-

gories in each context to memory. They were also informed of the latent task structure in a general

sense, namely that contexts represented locations within distinct kingdoms, and that the relation of

contexts to different kingdoms could be uncovered by their shared values for the item categories,

but were never explicitly told which contexts were associated with which kingdoms. Participants

were also informed that the contexts within each kingdom could appear to be visually very different

from each other to discourage them from using such a strategy to link contexts together. To facili-

tate forming such an abstract task representation, the instructions specifically suggested that partici-

pants use a semantic elaboration strategy that tied together the distinct contexts within each

kingdom, and the values of the categories within these contexts. These instructions and the cover

story about the goblin kingdoms were included to help encourage participants to learn the abstract

structure of the task rather than try and individually commit the values of all 54 context-category

conjunctions to memory.

At the end of the third session, outside of the scanner, participants completed a similarity judg-

ment task for the context natural scene images that were shown in their specific generalization test.

Participants were shown these images on a black background in random starting positions and asked

to use the mouse to drag and drop these images on-screen so that their distances reflected the simi-

larity. Participants were specifically instructed not to use any information about to which kingdoms

the contexts belonged, but only the visual content of the image. The Euclidean distances between

these images were then used to estimate a subjective, participant-specific estimate of the visual simi-

larity of these images used as a nuisance regressor for RSA analyses.
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Participants
Fifty participants were recruited for this study. Four participants were found to not meet eligibility

requirements for the study after session 1 (e.g. they had piercings or implants that were not compat-

ible with MRI), and their data was not analyzed. Twenty-four did not reach criterion performance in

the generalization phase (see above) in session 1 and were invited to complete the second and third

sessions in behavioral testing settings rather than in the scanner. Six of these participants dropped

out of the study before completing both remaining sessions and two did not have complete data

due to computer errors. Twenty-two participants passed the generalization criterion and were asked

to complete the remaining two sessions in the scanner. Of these participants, two had low accuracy

in the generalization phase in the fMRI sessions, indicating a failure to learn the task structure, and

their data was not analyzed. Two further participants were excluded because of excessive movement

(more than one voxel) in more than one run. One participant had excessive movement only in the

last run of the last session and this single run was discarded from analysis. One participant could not

complete the experiment due to problems with the scanner on the day of testing, and one partici-

pant dropped out of the study before finishing both scanned sessions. In total, 16 participants (10

female, mean age 21.3 years, SD = 3.3 years) passed the generalization criterion on the first day,

completed both days of the fMRI experiment and were included in analyses, while 16 participants

(11 female, mean age 22.3 years, SD = 2.5 years) did not pass this criterion on the first day and com-

pleted the remaining 2 days of testing in behavioral sessions. All participants gave their written

informed consent to participate in this study, as approved by the Human Research Protections Office

at Brown University, and were compensated for their participation.

The sample size for this study was determined by the target sample size for the fMRI experiment.

Data collection was ceased once 16 participants had completed both fMRI scanning sessions while

meeting eligibility for inclusion in our analysis (i.e. very little movement and high accuracy during the

generalization phase of the experiment). The target sample size was based on a related experiment

that successfully used RSA within an OFC ROI (Chan et al., 2016). This target sample was halved, as

the current experiment involved two sessions of fMRI scanning and we expected within-subject mea-

surement error to be reduced by this dense sampling approach.

Materials
Eighteen images of natural scenes from Konkle et al., 2010 were used to represent contexts within

kingdoms (nine for session 1 and nine for sessions 2 and 3). These scenes were chosen to be distinct

from each other in content and did not include any visible animals, people, or man-made objects

(i.e. the image categories included in the fMRI task). Over the course of the experiment, participants

saw 360 images in the initial category training for each image category (randomly sampled from a

larger set of 468 images). Hand images were taken from the 11 k Hands Database (Afifi, 2019), leaf

images from the Leafsnap database (Kumar et al., 2012), and food images from the Bank of Stan-

dardized Stimuli (BOSS) (Brodeur et al., 2014), as well as the Foodpics database (Blechert et al.,

2014). In the new category training and generalization phases, 546 images were used from each

stimulus category. These included faces from the Chicago Face Database (Ma et al., 2015), animals

from the BOSS and CARE databases (Russo et al., 2018), and man-made objects, also from the

BOSS database. All category images were cropped or padded with white pixels to fit within a square

image with a white background.

Exponential curve fitting
To test the rate of change in RTs and accuracy, we fit an exponential function to these data in the

form of

y¼ abx

where y indicates the predicted trial RT or mean accuracy, b indicates the trial number, and a and x

are free parameters that determine the scale and rate of the function respectively. The MATLAB

function fminunc (Mathworks, Natick, MA) was used to find values for a and x that produced a func-

tion that best fit individual participants’ data using a least squares cost function. This model-fitting

process was run 10 times for each parameter fit for each subject, each time with a different random
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starting point drawn from a standard normal distribution. We chose the parameters that resulted in

the lowest sum of squares from these 10 iterations to avoid fits that had converged to local minima.

Computational modeling of reaction times
We developed a set of simple learning models to compare and contrast different explanations for

how participants carried out the transfer of option values during the initial generalization phase. The

models express retrieval and generalization in terms of spreading activation among a set of nodes

that represent the various task elements. In each model, we structured the memory network differ-

ently according to the hypothesis tested. However, these models relied on the same basic assump-

tions and parameters: 1. RTs are a function of the activation strength of the nodes containing

retrieved items (Anderson, 1983). 2. The activation strength for each item is initialized at zero and

increases according to a Rescorla-Wagner learning rule (Rescorla and Wagner, 1972), controlled by

a single rate parameter bounded by 0 to 1 (a1), each time an option is retrieved, until it reaches an

asymptotic value of 1. 3. Activation spreads to contexts and categories linked with retrieved items,

controlled by a ‘mediated retrieval’ parameter (a2). 4. Memory search increases activation in all other

task-related items in each trial according to an ‘incidental retrieval’ parameter (a3). 5. Increases in

activation that are inherited from connected nodes falls off according to a power law where the rates

of successive steps are multiplied together.

We tested four model variants that each differed in how they represented this memory network,

and how activation of task elements propagates during generalization. Importantly, these models

are not meant to simulate any particular neural system, but only describe how the format of these

representations in memory might differentially affect the retrieval process and, by extension, RTs:

1. CAR – This model implements generalization through associative retrieval by assuming that
the memory system stores conjunctions of task-relevant features which can be retrieved if any
one of these features is later encountered. This memory network was represented as a matrix
of contexts-by-category conjunctions. On each generalization trial, the presented context (e.g.
A1) would activate related context-category-value conjunctions from the initial training based
on the rate parameter a1 (e.g. A1-leaves- [negative value], A1-food-, A1-hands+ [positive
value]). This would lead to the mediated activation of context-category conjunctions with the
same value associations from initial training with the rate parameter a2 (e.g. A3-hands+, A2-
hands+, etc.), which would in turn lead to activation of conjunctions of new categories associ-
ated with the context that appeared in the second training phase (e.g. A3-objects-, A3-Faces
+, etc.), as determined by the rate of a2

2. At the same time, the category presented on the cur-
rent trial (e.g. objects) would activate conjunctions with that category from the new category
training phase (e.g. A3-objects-, B3-objects+) at a rate determined by a1 The conjunction
shown on the current trial (e.g. A1-objects-) would inherit activation from the related conjunc-
tion from the new category training phase (e.g. A3-objects-) and increase in activation at a
rate determined by a1

2*a2
2. Similarly, the same category conjunction with the held out related

context (e.g. A2-objects-) would receive a mediated increase in activation at a rate of a1
2*
a2
3.

All other nodes not activated by the current trial would also increase their activation as a rate
of a3.

2. IAR – This model also implements generalization through associative retrieval, but rather than
relying on episodic conjunctions of context and category, it stores each individual task element
independently and links them together based on experience. The memory network was repre-
sented as two vectors of contexts and category-value conjunctions (i.e. separate nodes for
faces+ faces-, etc.). Each context was linked to their associated category-values from the initial
training phase, and only the held-out contexts were directly linked to category-values from the
new category training. In each trial (e.g. A1-objects-), activation in the current context (e.g. A1)
would increase with the rate parameter a1. This activation would result in direct retrieval of
category-values from initial training at a rate of a1

2, and direct retrieval of the context from the
new category training phase with the same category-value associations (e.g. A3) at the rate a1

3.
Retrieval of this context then led to activation of the relevant category-value node for the cur-
rent trial (e.g. objects-) from the new training phase at a rate of a1

4, allowing generalization, as
well as mediated retrieval of other category-values (e.g. faces+, animals+) at a rate of a1

3*a2.
Activation of category values from the initial training would also lead to mediated retrieval of
the other related context (e.g. A2) at a rate of a1

2*a2. All other nodes would increase their acti-
vation with a rate set by a3.
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3. LS – This model implements generalization through the formation of a LS that replaces sepa-
rate representations of individual contexts. Here the memory network was represented as a
vector of LSs and a matrix of LSs-by-categories, so category-values were separately nested in
each LS. In this case, there was no separate representation of a context, so any increase in acti-
vation from a trial involving context A1 immediately carried over to context A2. On each trial,
activation in the current LS (e.g. LS A) would increase according to the rate parameter a1, and
in the current category-value node according to a1

2. All other category nodes linked to the
active LS increase in activation according to a2, and all other LSs increase activation according
to a3, and their nested categories according to a3

2.
4. HLSs – This model also implements generalization through a LS, but builds on the basic LS

model to hierarchically cluster contexts within LSs. Thus, this model builds on the LS model
but includes a distinct vector for contexts, as well as a matrix of contexts-by-categories. These
contexts and context-category nodes are hierarchically nested within each LS (e.g. contexts A1
and A2 are nested within LS A). Thus, activation for each of these contexts and category nodes
is inherited from activation of the LSs and LS-category nodes. On each trial, activation in the
current context increases at a rate of a1

2, and in the current context-category at a1
3. Contexts

linked to the current LS also increase in activation according to a1*a2, as these contexts inherit
mediated activation from the LS. Categories nested in these contexts increase activation
according to the rate a1*a2

2. Activation in all other LSs increases at a rate of a3, contexts not
linked to the current LS increase at a rate of a3

2, and their nested categories according to a3
3.

For each model, predicted RTs were calculated simply as the sum of the activation level in the

current context (or LS in case of the third model) and category, subtracted from the maximum

asymptotic activation level for both combined. These values were then z-scored and compared to

participants’ z-scored RTs so that both model predictions and behavioral data were on the same

scale. The fit of each of these models was calculated as the negative log-likelihood for a simple linear

function. Only correct responses were included in this analysis, as the model assumes correct recov-

ery of option values from memory on each trial. Across all 16 participants in the fMRI group, only 17

trials were errors in session 2, and thus accounted for a very small fraction of the data (0.6%). Param-

eters were optimized using the MATLAB function fmincon, with each model fit for each participant

30 times with random starting points in order to avoid convergence on local minima.

To test whether these models made substantially different RT predictions, we carried out a cross-

model comparison using simulated data. We simulated data using the optimized parameters from

each participant for each model. We then fit each model on these simulated data, in the same way

as with participants’ behavioral data and calculated the negative log-likelihood of this fit to test if

the generative model provided a better explanation of the simulated data than the three

alternatives.

fMRI acquisition procedures
Whole-brain imaging was acquired using a Siemens 3T Magnetom Prisma system with a 64-channel

head coil. In each fMRI session, a high resolution T1 weighted MPRAGE image was acquired for visu-

alization (repetition time (TR), 1900 ms; echo time (TE), 3.02 ms; flip angle, 9˚; 160 sagittal slices; 1 �

1 � 1 mm voxels). Functional volumes were acquired using a gradient-echo echo planar sequence

(TR, 2000 ms; TE, 25 ms; flip angle 90˚; 40 interleaved axial slices tilted approximately 30˚ from the

AC-PC plane; 3 � 3 � 3 mm voxels). Functional data were acquired over three runs. Each run lasted

15.1 min on average (452 acquisitions). After the functional runs, a brief in-plane anatomical T1

image was collected, which was used to define a brain mask that respected the contours of the brain

and the space of the functional runs (TR, 350 ms; TE 2.5 ms; flip angle 70˚; 40 axial slices; 1.5 �

1.5 � 3 mm voxels). The sequence of scans was identical on both sessions. Soft padding was used to

restrict head motion throughout the experiment. Stimuli were presented on a 32-inch monitor at the

back of the bore of the magnet, and participants viewed the screen through a mirror attached to the

head coil. Participants used a five-button fiber optic response pad to interact with the experiment

(Current Designs, Philadelphia, PA).

fMRI preprocessing and analysis
Functional data were preprocessed using SPM12. Quality assurance for the functional data of each

participant was first assessed through visual inspection and TSdiffAna (https://sourceforge.net/proj-

ects/spmtools/) and ArtRepair (http://cibsr.stanford.edu/tools/human-brain-project/artrepair-
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software.html). Outlier volumes (defined by standard deviations from the global average signal)

were interpolated when possible. If interpolation was not possible, a nuisance regressor was added

to the run with a stick function at the time points for these volumes. Slice timing correction was car-

ried out by resampling slices to match the first slice. Next, motion during functional runs and days

was corrected by registering volumes to the first volume in the first session using rigid-body

transformation.

A deformation matrix for spatial normalization to Montreal Neurological Institute (MNI) stereo-

taxic space using fourth order B-spline interpolation was calculated for the motion corrected func-

tional volumes. The in-plane T1 anatomical image was used to create a brain mask for functional

analysis using the Brain Extraction Tool in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). This mask was

then normalized to MNI space using the inverse deformation matrix from the normalization of the

functional data.

Functional data were analyzed under the assumptions of the GLM using SPM12. Separate regres-

sors were included for correct, erroneous, and missed responses for each condition with the duration

of each response set to participants trial-wise RT (or the duration of the stimulus display for missed

responses). Nuisance regressors for participant motion (six translational and rotational components)

were also included, as was an additional regressor for scan session. Regressors and parametric mod-

ulators were convolved with the SPM canonical hemodynamic response function (HRF). Functional

data were pre-whitened and high-pass filtered at 0.008 Hz.

Representational similarity analysis
Whole-brain searchlight and ROI-based RSA were carried out in a two-step process.

First, in participant-level analyses, an empirical RDM was estimated from the cross-validated

Mahalanobis distances of the regressors for the 18 conditions (six contexts � three categories) aver-

aged over six runs within the generalization phase from a designated subset of voxels in each partici-

pant (either defined by an ROI or a spherical searchlight) using the RSAtoolbox v.2.0 (Nili et al.,

2014; Walther et al., 2016). The lower triangle of this empirical RDM was extracted giving the dis-

tances for the 153 condition pairs in this multivoxel space.

Hypothesis RDMs were constructed based on the similarities/dissimilarities that would be

expected for a pure representation of a given type. These included five main effects (LS, context,

value, image category, and subjective visual similarity of contexts), as well as five interactions (LS

� category, LS � value, value � category, context � category, context � value).

In the case of LS, value, and context RDMs, the hypothesized distances were simply set so that

conditions that were the same on these factors would have smaller expected distances and larger

distances where these conditions were not the same. For the category RDM, hypothesized distances

were based on asymmetric distances related to the perceptual-semantic distances of animate and

inanimate stimuli observed in many other studies (Chikazoe et al., 2014; Thorat et al., 2019).

Namely, that animate categories (faces and animals) were expected to be more similar to each other

than inanimate objects, but inanimate objects were expected to be more similar to animals than to

faces. Distances for these hypothesis RDMs were set as ordinal integer numbers to reflect predicted

distances (e.g. for the category RDM, the expected distance between two conditions with faces

would be 1, the distance between faces and animals would be 2, and between faces and objects

would be 4). The RDM for the subjective visual similarity of contexts was specific to each participant

and derived from the Euclidean distances of these natural scene images in the similarity judgment

task completed at the end of the third session of the experiment. Interaction RDMs were created by

extracting main effect RDMs below the diagonal (i.e. the lower triangle of the RDM matrix) as a vec-

tor, z-scoring these values and multiplying them together. These interaction regressors allowed us to

test where pattern-similarity reflected the modulation of one task component another (e.g. where

items belonging to different categories were represented more similarly because of shared value

associations).

Second, these hypothesis RDMs were related to the empirical RDM through multiple linear

regression analysis, where a coefficient was estimated relating each hypothesis RDM to empirical

RDMs allowing us to parcel out variance in representational distances due to multiple factors in the

same model (e.g. Nassar et al., 2019). Main effects and interaction terms within this model were

allowed to compete for variance simultaneously. The lower-triangle of all hypothesis RDMs were

extracted as vectors, z-scored, and included as predictors, along with an intercept term, in a multiple
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linear regression analysis to calculate beta coefficients relating each hypothesis RDM to the empirical

RDM.

Searchlight analyses
Whole-brain analyses were carried out by passing a spherical searchlight with a radius of 9 mm over

each voxel within participants’ brain mask in native space. For each participant, beta coefficients for

hypothesis RDMs were calculated at each step and averaged over searchlight passes for all voxels

included in the searchlight to compute fixed-effects in a first-level analysis. This approach is similar

to a common approach of assigning coefficients to a the central voxel of each searchlight and then

smoothing these maps before second-level tests (e.g. Devereux et al., 2013), but requires one less

experimenter degree of freedom in defining the full-width half-maximum (FWHM) of the smoothing

kernel. Group level analyses were conducted by normalizing participants’ beta coefficient maps to

MNI space using the deformation field from the normalization of participants’ functional data and

computing a one-sample t-test against zero. These volumes were kept in a 1.5 � 1.5 � 1.5 mm

space and not resampled. Whole brain t-statistic maps were thresholded at a cluster defining thresh-

old of p<0.001 uncorrected. Non-parametric permutation tests (10,000 permutations) were used to

derive a cluster extent threshold (k) for each test by randomly flipping the sign for half of partici-

pants’ contrasts and generating a null distribution based on the suprathreshold maximum cluster sta-

tistics. The cluster extent threshold in each contrast was defined as the 95th percentile of this null

distribution in order to test for statistical significance at p<0.05, corrected for multiple comparisons.

(Nichols and Holmes, 2002).

Region of interest analyses
We defined three a priori anatomical ROIs in this study based on prior work using the Automated

Anatomical Labelling (AAL2) atlas (Rolls et al., 2015). First, the OFC ROI was given the same defini-

tion used by a study examining LS representations in this region (Schuck et al., 2016), which fol-

lowed that of Kahnt et al., 2012 (Kahnt et al., 2012). This definition included the bilateral

combination of the following regions: the superior orbital gyri, middle orbital gyri, inferior orbital

gyri medial orbital gyri, and rectal gyri. The VTC ROI was given the same definition used by a study

that showed that pattern activity in this region differentiated between visual images based on ani-

macy (Chikazoe et al., 2014), excepting the bilateral parahippocampal gyri. This definition included

the bilateral lingual gyri, fusiform gyri, and inferior temporal cortices. The HPC ROI was defined as

the bilateral hippocampi. These masks were warped into participants’ native brain space using the

inverse deformation matrix for all ROI-based analyses. We first conducted an RSA analysis using all

voxels within these ROIs by calculating empirical RDMs for the cross-validated Mahalanobis distan-

ces from voxels within these ROIs in the same way as in the searchlight analyses, and then using the

same multiple linear regression model to relate hypothesis RDMs to these empirical RDMs. These

beta-coefficients were then subjected to a second-level, one-sample t-test against zero to estimate

statistical significance.

These ROIs were also used as an explicit mask in searchlight analyses to test for effects that were

below threshold at a whole-brain cluster-corrected level within HPC and OFC. For these analyses,

statistical significance was evaluated as in the whole-brain searchlight analysis with cluster-based per-

mutation tests to compute a cluster extent threshold within these smaller volumes for each contrast,

controlling for multiple comparisons at p<0.05.

Univariate analyses
Functional volumes were normalized to a 1.5 � 1.5 � 1.5 mm MNI space and smoothed with an 8

mm FWHM Gaussian isotropic kernel. Beta coefficients for single subject effects were estimated

using a fixed-effects model in a first-level analysis. For whole-brain contrasts, these estimates were

then included in a second-level analysis using a one-sample t-test against zero at each voxel. As with

whole-brain RSA analyses, t-statistical maps were thresholded at a cluster forming threshold of

p<0.001 and cluster-based permutation tests were used to compute a cluster extent threshold con-

trolling for multiple comparisons at p<0.05.
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Comparison with functional networks
The results of the whole-brain LS RSA searchlight was compared with a cortical parcellation based

on resting state functional connectivity data from 1000 individuals by Yeo et al., 2011. To find the

degree of overlap within each of these functional networks, we calculated the proportion of voxels

in the cluster-corrected LS statistical map that fell within these 17 networks projected to MNI152

space and defined with liberal boundaries around the cortex.

Comparison across sessions
To assess the stability of task-relevant representations across scanning sessions, we carried out two

separate searchlight RSA analyses using data from within each session, as above. The resultant coef-

ficient maps from the multiple linear regression analysis were then contrasted between sessions in

both directions using paired t-tests. These contrasts were then assessed with the same cluster-form-

ing threshold and cluster-based permutation tests to control for multiple comparisons, as in univari-

ate and multivariate analyses.
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Identifier

Vaidya AR, Jones
HJ, Castillo J,
Badre D

2020 Category Betting Task https://osf.io/g8yj6 Open Science
Framework, g8yj6

References
Afifi M. 2019. 11k hands: gender recognition and biometric identification using a large dataset of hand images.
arXiv. https://arxiv.org/abs/1711.04322.

Anderson JR. 1983. A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior
22:261–295. DOI: https://doi.org/10.1016/S0022-5371(83)90201-3

Averbeck BB, Seo M. 2008. The statistical neuroanatomy of frontal networks in the macaque. PLOS
Computational Biology 4:e1000050. DOI: https://doi.org/10.1371/journal.pcbi.1000050, PMID: 18389057

Badre D, Kayser AS, D’Esposito M. 2010. Frontal cortex and the discovery of abstract action rules. Neuron 66:
315–326. DOI: https://doi.org/10.1016/j.neuron.2010.03.025, PMID: 20435006

Badre D, Nee DE. 2018. Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences 22:
170–188. DOI: https://doi.org/10.1016/j.tics.2017.11.005, PMID: 29229206

Baldassano C, Hasson U, Norman KA. 2018. Representation of Real-World event schemas during narrative
perception. The Journal of Neuroscience 38:9689–9699. DOI: https://doi.org/10.1523/JNEUROSCI.0251-18.
2018, PMID: 30249790

Blechert J, Meule A, Busch NA, Ohla K. 2014. Food-pics: an image database for experimental research on eating
and appetite. Frontiers in Psychology 5:617. DOI: https://doi.org/10.3389/fpsyg.2014.00617, PMID: 25009514

Vaidya et al. eLife 2021;10:e63226. DOI: https://doi.org/10.7554/eLife.63226 23 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.63226.sa1
https://doi.org/10.7554/eLife.63226.sa2
https://osf.io/g8yj6
https://arxiv.org/abs/1711.04322
https://doi.org/10.1016/S0022-5371(83)90201-3
https://doi.org/10.1371/journal.pcbi.1000050
http://www.ncbi.nlm.nih.gov/pubmed/18389057
https://doi.org/10.1016/j.neuron.2010.03.025
http://www.ncbi.nlm.nih.gov/pubmed/20435006
https://doi.org/10.1016/j.tics.2017.11.005
http://www.ncbi.nlm.nih.gov/pubmed/29229206
https://doi.org/10.1523/JNEUROSCI.0251-18.2018
https://doi.org/10.1523/JNEUROSCI.0251-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30249790
https://doi.org/10.3389/fpsyg.2014.00617
http://www.ncbi.nlm.nih.gov/pubmed/25009514
https://doi.org/10.7554/eLife.63226


Brodeur MB, Guérard K, Bouras M. 2014. Bank of standardized stimuli (BOSS) phase II: 930 new normative
photos. PLOS ONE 9:e106953. DOI: https://doi.org/10.1371/journal.pone.0106953, PMID: 25211489

Chan SC, Niv Y, Norman KA. 2016. A probability distribution over latent causes, in the orbitofrontal cortex. The
Journal of Neuroscience 36:7817–7828. DOI: https://doi.org/10.1523/JNEUROSCI.0659-16.2016,
PMID: 27466328

Chen J, Leong YC, Honey CJ, Yong CH, Norman KA, Hasson U. 2017. Shared memories reveal shared structure
in neural activity across individuals. Nature Neuroscience 20:115–125. DOI: https://doi.org/10.1038/nn.4450,
PMID: 27918531

Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK. 2014. Population coding of affect across stimuli, modalities
and individuals. Nature Neuroscience 17:1114–1122. DOI: https://doi.org/10.1038/nn.3749, PMID: 24952643

Choi EY, Drayna GK, Badre D. 2018. Evidence for a functional hierarchy of association networks. Journal of
Cognitive Neuroscience 30:722–736. DOI: https://doi.org/10.1162/jocn_a_01229, PMID: 29308987

Collins AG, Cavanagh JF, Frank MJ. 2014. Human EEG uncovers latent generalizable rule structure during
learning. Journal of Neuroscience 34:4677–4685. DOI: https://doi.org/10.1523/JNEUROSCI.3900-13.2014,
PMID: 24672013

Collins AG, Frank MJ. 2013. Cognitive control over learning: creating, clustering, and generalizing task-set
structure. Psychological Review 120:190–229. DOI: https://doi.org/10.1037/a0030852, PMID: 23356780

De Araujo Sanchez MA, Zeithamova D. 2020. Generalization and source memory in acquired equivalence.
PsyArXiv. DOI: https://doi.org/10.31234/osf.io/txjsh

Devereux BJ, Clarke A, Marouchos A, Tyler LK. 2013. Representational similarity analysis reveals commonalities
and differences in the semantic processing of words and objects. Journal of Neuroscience 33:18906–18916.
DOI: https://doi.org/10.1523/JNEUROSCI.3809-13.2013, PMID: 24285896

Eichenbaum A, Scimeca JM, D’Esposito M. 2020. Dissociable neural systems support the learning and transfer of
hierarchical control structure. The Journal of Neuroscience 40:6624–6637. DOI: https://doi.org/10.1523/
JNEUROSCI.0847-20.2020, PMID: 32690614

Farovik A, Place RJ, McKenzie S, Porter B, Munro CE, Eichenbaum H. 2015. Orbitofrontal cortex encodes
memories within value-based schemas and represents contexts that guide memory retrieval. Journal of
Neuroscience 35:8333–8344. DOI: https://doi.org/10.1523/JNEUROSCI.0134-15.2015, PMID: 26019346

Frank MJ, Badre D. 2012. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1:
computational analysis. Cerebral Cortex 22:509–526. DOI: https://doi.org/10.1093/cercor/bhr114, PMID: 216
93490

Garvert MM, Dolan RJ, Behrens TE. 2017. A map of abstract relational knowledge in the human hippocampal-
entorhinal cortex. eLife 6:e17086. DOI: https://doi.org/10.7554/eLife.17086, PMID: 28448253

Gershman SJ, Jones CE, Norman KA, Monfils MH, Niv Y. 2013. Gradual extinction prevents the return of fear:
implications for the discovery of state. Frontiers in Behavioral Neuroscience 7:164. DOI: https://doi.org/10.
3389/fnbeh.2013.00164, PMID: 24302899

Gershman SJ, Niv Y. 2010. Learning latent structure: carving nature at its joints. Current Opinion in Neurobiology
20:251–256. DOI: https://doi.org/10.1016/j.conb.2010.02.008, PMID: 20227271

Gershman SJ, Niv Y. 2013. Perceptual estimation obeys Occam’s razor. Frontiers in Psychology 4:623.
DOI: https://doi.org/10.3389/fpsyg.2013.00623, PMID: 24137136

Ghosh VE, Moscovitch M, Melo Colella B, Gilboa A. 2014. Schema representation in patients with ventromedial
PFC lesions. Journal of Neuroscience 34:12057–12070. DOI: https://doi.org/10.1523/JNEUROSCI.0740-14.
2014, PMID: 25186751

Gick ML, Holyoak KJ. 1980. Analogical problem solving. Cognitive Psychology 12:306–355. DOI: https://doi.org/
10.1016/0010-0285(80)90013-4

Greve DN. 2002. Optseq2. Optseq Home Page. https://surfer.nmr.mgh.harvard.edu/optseq/
Harlow HF. 1949. The formation of learning sets. Psychological Review 56:51–65. DOI: https://doi.org/10.1037/
h0062474

Kahnt T, Chang LJ, Park SQ, Heinzle J, Haynes JD. 2012. Connectivity-based parcellation of the human
orbitofrontal cortex. Journal of Neuroscience 32:6240–6250. DOI: https://doi.org/10.1523/JNEUROSCI.0257-
12.2012, PMID: 22553030

Koechlin E, Summerfield C. 2007. An information theoretical approach to prefrontal executive function. Trends in
Cognitive Sciences 11:229–235. DOI: https://doi.org/10.1016/j.tics.2007.04.005, PMID: 17475536

Konkle T, Brady TF, Alvarez GA, Oliva A. 2010. Scene memory is more detailed than you think: the role of
categories in visual long-term memory. Psychological Science 21:1551–1556. DOI: https://doi.org/10.1177/
0956797610385359, PMID: 20921574

Kuhl BA, Rissman J, Wagner AD. 2012. Multi-voxel patterns of visual category representation during episodic
encoding are predictive of subsequent memory. Neuropsychologia 50:458–469. DOI: https://doi.org/10.1016/j.
neuropsychologia.2011.09.002, PMID: 21925190

Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JVB. 2012. Leafsnap: a computer
vision system for automatic plant species identificationLecture notes in computer science (Including subseries
lecture notes in artificial intelligence and lecture notes in bioinformatics). European Conference on Computer
Vision. DOI: https://doi.org/10.1007/978-3-642-33709-3_36

Kumaran D, Summerfield JJ, Hassabis D, Maguire EA. 2009. Tracking the emergence of conceptual knowledge
during human decision making. Neuron 63:889–901. DOI: https://doi.org/10.1016/j.neuron.2009.07.030,
PMID: 19778516

Vaidya et al. eLife 2021;10:e63226. DOI: https://doi.org/10.7554/eLife.63226 24 of 26

Research article Neuroscience

https://doi.org/10.1371/journal.pone.0106953
http://www.ncbi.nlm.nih.gov/pubmed/25211489
https://doi.org/10.1523/JNEUROSCI.0659-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27466328
https://doi.org/10.1038/nn.4450
http://www.ncbi.nlm.nih.gov/pubmed/27918531
https://doi.org/10.1038/nn.3749
http://www.ncbi.nlm.nih.gov/pubmed/24952643
https://doi.org/10.1162/jocn_a_01229
http://www.ncbi.nlm.nih.gov/pubmed/29308987
https://doi.org/10.1523/JNEUROSCI.3900-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24672013
https://doi.org/10.1037/a0030852
http://www.ncbi.nlm.nih.gov/pubmed/23356780
https://doi.org/10.31234/osf.io/txjsh
https://doi.org/10.1523/JNEUROSCI.3809-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24285896
https://doi.org/10.1523/JNEUROSCI.0847-20.2020
https://doi.org/10.1523/JNEUROSCI.0847-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/32690614
https://doi.org/10.1523/JNEUROSCI.0134-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26019346
https://doi.org/10.1093/cercor/bhr114
http://www.ncbi.nlm.nih.gov/pubmed/21693490
http://www.ncbi.nlm.nih.gov/pubmed/21693490
https://doi.org/10.7554/eLife.17086
http://www.ncbi.nlm.nih.gov/pubmed/28448253
https://doi.org/10.3389/fnbeh.2013.00164
https://doi.org/10.3389/fnbeh.2013.00164
http://www.ncbi.nlm.nih.gov/pubmed/24302899
https://doi.org/10.1016/j.conb.2010.02.008
http://www.ncbi.nlm.nih.gov/pubmed/20227271
https://doi.org/10.3389/fpsyg.2013.00623
http://www.ncbi.nlm.nih.gov/pubmed/24137136
https://doi.org/10.1523/JNEUROSCI.0740-14.2014
https://doi.org/10.1523/JNEUROSCI.0740-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25186751
https://doi.org/10.1016/0010-0285(80)90013-4
https://doi.org/10.1016/0010-0285(80)90013-4
https://surfer.nmr.mgh.harvard.edu/optseq/
https://doi.org/10.1037/h0062474
https://doi.org/10.1037/h0062474
https://doi.org/10.1523/JNEUROSCI.0257-12.2012
https://doi.org/10.1523/JNEUROSCI.0257-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22553030
https://doi.org/10.1016/j.tics.2007.04.005
http://www.ncbi.nlm.nih.gov/pubmed/17475536
https://doi.org/10.1177/0956797610385359
https://doi.org/10.1177/0956797610385359
http://www.ncbi.nlm.nih.gov/pubmed/20921574
https://doi.org/10.1016/j.neuropsychologia.2011.09.002
https://doi.org/10.1016/j.neuropsychologia.2011.09.002
http://www.ncbi.nlm.nih.gov/pubmed/21925190
https://doi.org/10.1007/978-3-642-33709-3_36
https://doi.org/10.1016/j.neuron.2009.07.030
http://www.ncbi.nlm.nih.gov/pubmed/19778516
https://doi.org/10.7554/eLife.63226


Kumaran D, McClelland JL. 2012. Generalization through the recurrent interaction of episodic memories: a
model of the hippocampal system. Psychological Review 119:573–616. DOI: https://doi.org/10.1037/a0028681,
PMID: 22775499

Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ. 2017. Building machines that learn and think like people.
Behavioral and Brain Sciences 40:e253. DOI: https://doi.org/10.1017/S0140525X16001837

Liu Y, Dolan RJ, Kurth-Nelson Z, Behrens TEJ. 2019. Human replay spontaneously reorganizes experience. Cell
178:640–652. DOI: https://doi.org/10.1016/j.cell.2019.06.012, PMID: 31280961

Loose LS, Wisniewski D, Rusconi M, Goschke T, Haynes JD. 2017. Switch-Independent task representations in
frontal and parietal cortex. The Journal of Neuroscience 37:8033–8042. DOI: https://doi.org/10.1523/
JNEUROSCI.3656-16.2017, PMID: 28729441

Ma DS, Correll J, Wittenbrink B. 2015. The Chicago face database: a free stimulus set of faces and norming data.
Behavior Research Methods 47:1122–1135. DOI: https://doi.org/10.3758/s13428-014-0532-5, PMID: 25582810

Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP,
Petrides M. 2009. Precuneus shares intrinsic functional architecture in humans and monkeys. PNAS 106:20069–
20074. DOI: https://doi.org/10.1073/pnas.0905314106

McKenzie S, Frank AJ, Kinsky NR, Porter B, Rivière PD, Eichenbaum H. 2014. Hippocampal representation of
related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83:
202–215. DOI: https://doi.org/10.1016/j.neuron.2014.05.019, PMID: 24910078

McNamee D, Rangel A, O’Doherty JP. 2013. Category-dependent and category-independent goal-value codes
in human ventromedial prefrontal cortex. Nature Neuroscience 16:479–485. DOI: https://doi.org/10.1038/nn.
3337, PMID: 23416449

Milner B. 1964. Some effects of frontal lobectomy in man. The Frontal Granular Cortex and Behavior 298:211–
226. DOI: https://doi.org/10.1098/rstb.1982.0083

Nassar MR, McGuire JT, Ritz H, Kable JW. 2019. Dissociable forms of uncertainty-driven representational change
across the human brain. The Journal of Neuroscience 39:1688–1698. DOI: https://doi.org/10.1523/
JNEUROSCI.1713-18.2018, PMID: 30523066

Nichols TE, Holmes AP. 2002. Nonparametric permutation tests for functional neuroimaging: a primer with
examples. Human Brain Mapping 15:1–25. DOI: https://doi.org/10.1002/hbm.1058, PMID: 11747097

Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. 2014. A toolbox for representational
similarity analysis. PLOS Computational Biology 10:e1003553. DOI: https://doi.org/10.1371/journal.pcbi.
1003553, PMID: 24743308

Niv Y. 2019. Learning task-state representations. Nature Neuroscience 22:1544–1553. DOI: https://doi.org/10.
1038/s41593-019-0470-8, PMID: 31551597

Pegors TK, Kable JW, Chatterjee A, Epstein RA. 2015. Common and unique representations in pFC for face and
place attractiveness. Journal of Cognitive Neuroscience 27:959–973. DOI: https://doi.org/10.1162/jocn_a_
00777, PMID: 25539044

Penn DC, Holyoak KJ, Povinelli DJ. 2008. Darwin’s mistake: explaining the discontinuity between human and
nonhuman minds. Behavioral and Brain Sciences 31:109–130. DOI: https://doi.org/10.1017/
S0140525X08003543, PMID: 18479531

Petrides M. 2005. Lateral prefrontal cortex: architectonic and functional organization. Philosophical Transactions
of the Royal Society B: Biological Sciences 360:781–795. DOI: https://doi.org/10.1098/rstb.2005.1631

Rescorla RA, Wagner AR. 1972. A theory of Pavlovian conditioning: Variations in the effective- ness of
reinforcement and non-reinforcement. In: Black A. H, Prokasy W. F (Eds). Classical Conditioning. II. Current
Research and Theory. Appleton-Century-Crofts. p. 64–99.

Rolls ET, Joliot M, Tzourio-Mazoyer N. 2015. Implementation of a new parcellation of the orbitofrontal cortex in
the automated anatomical labeling atlas. NeuroImage 122:1–5. DOI: https://doi.org/10.1016/j.neuroimage.
2015.07.075, PMID: 26241684

Russin J, O’Reilly RC, Bengio Y. 2020. Deep learning needs a prefrontal cortex. Work Bridging AI Cogn Sci 107:
603–616. DOI: https://doi.org/10.1016/j.neuron.2020.06.014

Russo N, Hagmann CE, Andrews R, Black C, Silberman M, Shea N. 2018. Validation of the C.A.R.E. stimulus set
of 640 animal pictures: name agreement and quality ratings. PLOS ONE 13:e0192906. DOI: https://doi.org/10.
1371/journal.pone.0192906, PMID: 29489882

Saez A, Rigotti M, Ostojic S, Fusi S, Salzman CD. 2015. Abstract Context Representations in Primate Amygdala
and Prefrontal Cortex. Neuron 87:869–881. DOI: https://doi.org/10.1016/j.neuron.2015.07.024

Schapiro AC, Turk-Browne NB, Botvinick MM, Norman KA. 2017. Complementary learning systems within the
Hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning.
Philosophical Transactions of the Royal Society B: Biological Sciences 372:20160049. DOI: https://doi.org/10.
1098/rstb.2016.0049

Schlichting ML, Preston AR. 2015. Memory integration: neural mechanisms and implications for behavior.
Current Opinion in Behavioral Sciences 1:1–8. DOI: https://doi.org/10.1016/j.cobeha.2014.07.005,
PMID: 25750931

Schuck NW, Cai MB, Wilson RC, Niv Y. 2016. Human orbitofrontal cortex represents a cognitive map of state
space. Neuron 91:1402–1412. DOI: https://doi.org/10.1016/j.neuron.2016.08.019, PMID: 27657452

Schuck NW, Niv Y. 2019. Sequential replay of nonspatial task states in the human Hippocampus. Science 364:
eaaw5181. DOI: https://doi.org/10.1126/science.aaw5181, PMID: 31249030

Shohamy D, Wagner AD. 2008. Integrating memories in the human brain: hippocampal-midbrain encoding of
overlapping events. Neuron 60:378–389. DOI: https://doi.org/10.1016/j.neuron.2008.09.023

Vaidya et al. eLife 2021;10:e63226. DOI: https://doi.org/10.7554/eLife.63226 25 of 26

Research article Neuroscience

https://doi.org/10.1037/a0028681
http://www.ncbi.nlm.nih.gov/pubmed/22775499
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1016/j.cell.2019.06.012
http://www.ncbi.nlm.nih.gov/pubmed/31280961
https://doi.org/10.1523/JNEUROSCI.3656-16.2017
https://doi.org/10.1523/JNEUROSCI.3656-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28729441
https://doi.org/10.3758/s13428-014-0532-5
http://www.ncbi.nlm.nih.gov/pubmed/25582810
https://doi.org/10.1073/pnas.0905314106
https://doi.org/10.1016/j.neuron.2014.05.019
http://www.ncbi.nlm.nih.gov/pubmed/24910078
https://doi.org/10.1038/nn.3337
https://doi.org/10.1038/nn.3337
http://www.ncbi.nlm.nih.gov/pubmed/23416449
https://doi.org/10.1098/rstb.1982.0083
https://doi.org/10.1523/JNEUROSCI.1713-18.2018
https://doi.org/10.1523/JNEUROSCI.1713-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30523066
https://doi.org/10.1002/hbm.1058
http://www.ncbi.nlm.nih.gov/pubmed/11747097
https://doi.org/10.1371/journal.pcbi.1003553
https://doi.org/10.1371/journal.pcbi.1003553
http://www.ncbi.nlm.nih.gov/pubmed/24743308
https://doi.org/10.1038/s41593-019-0470-8
https://doi.org/10.1038/s41593-019-0470-8
http://www.ncbi.nlm.nih.gov/pubmed/31551597
https://doi.org/10.1162/jocn_a_00777
https://doi.org/10.1162/jocn_a_00777
http://www.ncbi.nlm.nih.gov/pubmed/25539044
https://doi.org/10.1017/S0140525X08003543
https://doi.org/10.1017/S0140525X08003543
http://www.ncbi.nlm.nih.gov/pubmed/18479531
https://doi.org/10.1098/rstb.2005.1631
https://doi.org/10.1016/j.neuroimage.2015.07.075
https://doi.org/10.1016/j.neuroimage.2015.07.075
http://www.ncbi.nlm.nih.gov/pubmed/26241684
https://doi.org/10.1016/j.neuron.2020.06.014
https://doi.org/10.1371/journal.pone.0192906
https://doi.org/10.1371/journal.pone.0192906
http://www.ncbi.nlm.nih.gov/pubmed/29489882
https://doi.org/10.1016/j.neuron.2015.07.024
https://doi.org/10.1098/rstb.2016.0049
https://doi.org/10.1098/rstb.2016.0049
https://doi.org/10.1016/j.cobeha.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25750931
https://doi.org/10.1016/j.neuron.2016.08.019
http://www.ncbi.nlm.nih.gov/pubmed/27657452
https://doi.org/10.1126/science.aaw5181
http://www.ncbi.nlm.nih.gov/pubmed/31249030
https://doi.org/10.1016/j.neuron.2008.09.023
https://doi.org/10.7554/eLife.63226


Spalding KN, Schlichting ML, Zeithamova D, Preston AR, Tranel D, Duff MC, Warren DE. 2018. Ventromedial
prefrontal cortex is necessary for normal associative inference and memory integration. The Journal of
Neuroscience 38:3767–3775. DOI: https://doi.org/10.1523/JNEUROSCI.2501-17.2018, PMID: 29555854

Stalnaker TA, Cooch NK, Schoenbaum G. 2015. What the orbitofrontal cortex does not do. Nature Neuroscience
18:620–627. DOI: https://doi.org/10.1038/nn.3982, PMID: 25919962

Sutton R, Barto A. 2018. Reinforcment Learning. MIT Press.
Tavares RM, Mendelsohn A, Grossman Y, Williams CH, Shapiro M, Trope Y, Schiller D. 2015. A map for social
navigation in the human brain. Neuron 87:231–243. DOI: https://doi.org/10.1016/j.neuron.2015.06.011,
PMID: 26139376

Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND. 2011. How to grow a mind: statistics, structure, and
abstraction. Science 331:1279–1285. DOI: https://doi.org/10.1126/science.1192788, PMID: 21393536

Thorat S, Proklova D, Peelen MV. 2019. The nature of the animacy organization in human ventral temporal
cortex. eLife 8:e47142. DOI: https://doi.org/10.7554/eLife.47142, PMID: 31496518

Tolman EC. 1948. Cognitive maps in rats and men. Psychological Review 55:189–208. DOI: https://doi.org/10.
1037/h0061626, PMID: 18870876

Tomov MS, Dorfman HM, Gershman SJ. 2018. Neural computations underlying causal structure learning. The
Journal of Neuroscience 38:7143–7157. DOI: https://doi.org/10.1523/JNEUROSCI.3336-17.2018, PMID: 2995
9234

van Kesteren MT, Beul SF, Takashima A, Henson RN, Ruiter DJ, Fernández G. 2013. Differential roles for medial
prefrontal and medial temporal cortices in schema-dependent encoding: from congruent to incongruent.
Neuropsychologia 51:2352–2359. DOI: https://doi.org/10.1016/j.neuropsychologia.2013.05.027,
PMID: 23770537

Walther A, Nili H, Ejaz N, Alink A, Kriegeskorte N, Diedrichsen J. 2016. Reliability of dissimilarity measures for
multi-voxel pattern analysis. NeuroImage 137:188–200. DOI: https://doi.org/10.1016/j.neuroimage.2015.12.
012, PMID: 26707889

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014. Orbitofrontal Cortex as a Cognitive Map of Task Space.
Neuron 81:267–279. DOI: https://doi.org/10.1016/j.neuron.2013.11.005

Woolgar A, Thompson R, Bor D, Duncan J. 2011. Multi-voxel coding of stimuli, rules, and responses in human
frontoparietal cortex. NeuroImage 56:744–752. DOI: https://doi.org/10.1016/j.neuroimage.2010.04.035,
PMID: 20406690

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L,
Polimeni JR, Fischl B, Liu H, Buckner RL. 2011. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. Journal of Neurophysiology 106:1125–1165. DOI: https://doi.org/10.1152/jn.
00338.2011, PMID: 21653723

Zeithamova D, Dominick AL, Preston AR. 2012a. Hippocampal and ventral medial prefrontal activation during
retrieval-mediated learning supports novel inference. Neuron 75:168–179. DOI: https://doi.org/10.1016/j.
neuron.2012.05.010, PMID: 22794270

Zeithamova D, Schlichting ML, Preston AR. 2012b. The Hippocampus and inferential reasoning: building
memories to navigate future decisions. Frontiers in Human Neuroscience 6:70. DOI: https://doi.org/10.3389/
fnhum.2012.00070, PMID: 22470333

Zhou J, Montesinos-Cartagena M, Wikenheiser AM, Gardner MPH, Niv Y, Schoenbaum G. 2019. Complementary
task structure representations in Hippocampus and orbitofrontal cortex during an odor sequence task. Current
Biology 29:3402–3409. DOI: https://doi.org/10.1016/j.cub.2019.08.040, PMID: 31588004

Vaidya et al. eLife 2021;10:e63226. DOI: https://doi.org/10.7554/eLife.63226 26 of 26

Research article Neuroscience

https://doi.org/10.1523/JNEUROSCI.2501-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29555854
https://doi.org/10.1038/nn.3982
http://www.ncbi.nlm.nih.gov/pubmed/25919962
https://doi.org/10.1016/j.neuron.2015.06.011
http://www.ncbi.nlm.nih.gov/pubmed/26139376
https://doi.org/10.1126/science.1192788
http://www.ncbi.nlm.nih.gov/pubmed/21393536
https://doi.org/10.7554/eLife.47142
http://www.ncbi.nlm.nih.gov/pubmed/31496518
https://doi.org/10.1037/h0061626
https://doi.org/10.1037/h0061626
http://www.ncbi.nlm.nih.gov/pubmed/18870876
https://doi.org/10.1523/JNEUROSCI.3336-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29959234
http://www.ncbi.nlm.nih.gov/pubmed/29959234
https://doi.org/10.1016/j.neuropsychologia.2013.05.027
http://www.ncbi.nlm.nih.gov/pubmed/23770537
https://doi.org/10.1016/j.neuroimage.2015.12.012
https://doi.org/10.1016/j.neuroimage.2015.12.012
http://www.ncbi.nlm.nih.gov/pubmed/26707889
https://doi.org/10.1016/j.neuron.2013.11.005
https://doi.org/10.1016/j.neuroimage.2010.04.035
http://www.ncbi.nlm.nih.gov/pubmed/20406690
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
http://www.ncbi.nlm.nih.gov/pubmed/21653723
https://doi.org/10.1016/j.neuron.2012.05.010
https://doi.org/10.1016/j.neuron.2012.05.010
http://www.ncbi.nlm.nih.gov/pubmed/22794270
https://doi.org/10.3389/fnhum.2012.00070
https://doi.org/10.3389/fnhum.2012.00070
http://www.ncbi.nlm.nih.gov/pubmed/22470333
https://doi.org/10.1016/j.cub.2019.08.040
http://www.ncbi.nlm.nih.gov/pubmed/31588004
https://doi.org/10.7554/eLife.63226

