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The gut–brain axis refers to the bidirectional communication between the gut and brain,
and regulates intestinal homeostasis and the central nervous system via neural networks
and neuroendocrine, immune, and inflammatory pathways. The development of
sequencing technology has evidenced the key regulatory role of the gut microbiota in
several neurological disorders, including Parkinson’s disease, Alzheimer’s disease, and
multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more
than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be
controlled with drugs. Interestingly, patients with inflammatory bowel disease are more
susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with
intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut–
brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship
between the gut microbiota and epilepsy, summarize the possible pathogenic
mechanisms of epilepsy from the perspective of the microbiota gut–brain axis, and
discuss novel therapies targeting the gut microbiota. A better understanding of the role of
the microbiota in the gut–brain axis, especially the intestinal one, would help investigate
the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.
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1 INTRODUCTION

Epilepsy is a chronic neurological disorder that affects >70 million people worldwide (1) with a
considerable social and economic burden. Characterized by relapses and unprovoked spontaneous
seizures (2), its mechanisms are complicated, and 60% of cases are idiopathic (3). In clinical practice, a
diagnosis of epilepsy is challenging. If patients have infrequent seizures, the electrical markers for
diagnosis may not be present, and epileptiform discharges may occasionally occur in patients who do
not have seizures. The most common antiepileptic treatments are pharmaceutical, including low-cost
medications and new drugs. However, in >30% of patients with epilepsy, seizures cannot be controlled
with drug therapy, a phenomenon known as refractory epilepsy (4). The ad hoc Task Force of the
International League Against Epilepsy (ILAE) defined drug resistance as “failure of adequate trials of
two tolerated, appropriately chosen and used antiepileptic drug schedules (whether as monotherapies
or in combination) to achieve sustained seizure freedom” (5). Despite alternative treatments such as
dietary control, nerve stimulation, and surgery, still some patients do not improve. Although the
effectiveness of seizure focus resection is high, not all patients benefit from it, some exhibit obvious
org October 2021 | Volume 12 | Article 7424491
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adverse effects, and surgery alone may not be sufficient, due to the
complex etiology of epilepsy (6, 7). Therefore, there is a need to
develop more effective protocols for the diagnosis and treatment
of epilepsy.

Epileptic patients often have gastrointestinal symptoms, while
patients with inflammatory bowel disease have a higher
susceptibility to epilepsy (8). Ketogenic diet (KD) has been
used for a long time as a non-pharmacological therapy in
drug-resistant epileptic patients not suitable for surgery—
especially in children—with good curative effects (9). These
clinical phenomena support a relationship between the gut and
epilepsy. Recent advances in sequencing technology have allowed
studies on the composition and function of microbiota in
neurology. In recent years, some studies have suggested
statistical differences in fecal microbial composition between
epileptic patients and healthy people, as well as between
epileptic patients before and after KD treatment, and in animal
models (10–21). The intestinal microbiota may shape brain
function through a variety of pathways and systems, including
the central nervous system (CNS), the hypothalamic–pituitary–
adrenal (HPA) axis, immune and inflammatory systems, and
neuromodulators, and could therefore also be involved in
epilepsy (Figure 1). Remodeling intestinal microbiota through
individualized diet, probiotics, antibiotics, and even fecal
microbiota transplantation (FMT) may become the future
standard treatment of refractory epilepsy. Herein, we review
Frontiers in Immunology | www.frontiersin.org 2
the latest knowledge on the correlation between the gut
microbiota (GM) and epilepsy.
2 CLASSIC ANIMAL MODELS
OF EPILEPSY

Epilepsy is a complex syndrome with a complicated etiology
(structural, genetic, infectious, metabolic, immune, and
unknown) and diverse clinical manifestations (1, 22). Due to
its complexity, in 2017, the ILAE developed a three-level
classification, including seizure types, epilepsy types, and
epilepsy syndromes (22). Epilepsy can be divided into four
categories: focal epilepsy, generalized epilepsy, combined
generalized and focal epilepsy, and unknown epilepsy (22).
According to its responsiveness to antiepileptic drugs, epilepsy
can be divided into drug-sensitive and refractory epilepsy.
Together, the complex etiology, clinical signs, and classification
of epilepsy determines the lack of a specific animal model
reflecting all of its characteristics. Classical animal models of
epilepsy include the following categories. The maximal
electroshock model and pentylenetetrazol (PTZ) models are
classical ones that simulate acute epilepsy (23). The kindling
model simulates the characteristics of progressive development
and long-term recurrence through repeated electrical and
chemical stimulation of the thalamus, amygdala, hippocampus,
FIGURE 1 | The microbiota–gut–brain axis in epilepsy. Bad gut microbiota could upregulate the production of epilepsy-promoting metabolites, the secretion of
inflammatory factors, and so on, which lead to abnormal GABA/glutamate ratio and then induce the epilepsy. Chronic stress may be a trigger for this process.
Healthy gut microbiota could produce good metabolites, such as SCFAs and serotonin, which could inhibit the occurrence of epilepsy. HPA axis, enteric nervous
system, and vagus nervous system are also involved in the interaction between gut microbiota and epilepsy. ACTH, Adrenocorticotropic hormone; AED, Antiepileptic
drug; CRF, Corticotrophin-releasing factor; HPA, Hypothalamic–pituitary–adrenal; GABA, g-aminobutyric acid; KD, Ketogenic diet; MAMP, Microbe-associated
molecular pattern; SCFA, Short-chain fatty acid; PRR, Pattern recognition receptor.
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and other regions, while continuous stimulation could induce
status epilepticus. The WAG/Rij rat model is used for the study
of hereditary absence epilepsy (24). In addition, animal models
of epilepsy with a special etiology can be prepared by microbial
infection, trauma, ischemia, and hypoxia. Chemical kindling
models induced by li-pilocarpine (25) or kainic acid (26, 27),
amygdala electrical kindling models (28), and genetic models
have been used to construct animal models of refractory epilepsy
(29). These models are important for exploring the pathogenesis
of intractable epilepsy and screening and identifying new
antiepileptic drugs.
3 THE CLOSE RELATIONSHIP BETWEEN
INTESTINAL MICROBIOTA AND EPILEPSY

The microbiota, a wide variety of microorganisms populating the
gut, including 50 bacterial phyla, is 10 times more abundant than
the somatic and germ line cells of the human body (30).
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
Fusobacteria, Verrucomicrobia, and Cyanobacteria are the
seven dominant bacterial phyla in the human gastrointestinal
tract, among which Bacteroidetes and Firmicutes constitute
>90% (31–33). Although the overall distribution of GM in
Frontiers in Immunology | www.frontiersin.org 3
healthy people remains constant, temporal and spatial
differences still exist. GM influences human health by
regulating the metabolism and the host immune response. It
has been reported that the species of GM in individuals with
neuropsychiatric and neurodegenerative disorders differ from
those in healthy people, but there are few reports on the
correlation between epilepsy and GM (34). With the wide
spread of 16S/18S rDNA sequencing, recent studies have
reported that individuals with refractory epilepsy show altered
GM composition (34). We elaborate on the relationship between
the GM and epilepsy in humans and murine and discuss the
dietary intervention for epilepsy via modulation of GM.

3.1 Human Microbiota and Epilepsy
Only a few population-based studies revealed GM differences
between the epilepsy group and healthy controls (HC) in a
relatively limited sample size (Table 1) (10–15). Xie et al.
compared the GM of 14 patients with refractory epilepsy and
30 HCs and found a higher GM diversity in HCs (15). At the
phylum level, Bacteroidetes was the main GM in the HC group,
followed by Firmicutes, while Firmicutes predominated in
patients (15). At the genus level, the GM was also significantly
different between these two groups (15). Peng et al. demonstrated
differences in GM diversity and composition between the drug-
resistant (DR), drug-sensitive (DS), and HC groups, and that
TABLE 1 | Summary of previous studies on the intestinal microbiota in patients with epilepsy (drug-resistant/drug-sensitive).

Author Year Type of experimental
design

Patient Group Age Key Findings

Gong et al. (35) 2020 Cross-sectional study Exploration Cohort
(n=55 EP and n = 46
HC) and Validation
Cohort (n = 13 EP and
n = 10 HC)

EP: 26.33± 12.05
HC: 28.5 ± 4.27

HC: a typical human diversity profile
EP: lower alpha diversity;
Phylum:↑Actinobacteria and Verrucomicrobia;↓Proteobacteria
Genus:↑Prevotella_9, Blautia, Bifidobacterium
DRE:
Phylum: ↑Actinobacteria, Verrucomicrobia, and Nitrospirae
Genus:↑Blautia, Bifidobacterium, Subdoligranulum, Dialister,
and Anaerostipes

Şafak et al. (36) 2020 Cross-sectional study Idiopathic focal epilepsy
(n = 30) and HC (n = 10)

EP: 41.3 ± 12.2
HC: 1.7± 6.8

HC:↑Firmicutes (Blautia, Coprococcus, Faecalibacterium, and
Ruminococcus), Bacteroidetes (Bacteroides and
Parabacteroides), Actinobacteria (Bifidobacterium and
Collinsellagenus)
EP:↑Proteobacteria (Campylobacter, Delftia, Haemophilus,
Lautropia, Neisseria), Fusobacteria

Peng et al. (37) 2018 Cross-sectional study DRE (n = 42), DSE (n =
49), HC (n = 65)

DRE: 28.4 ± 12.4
DSE: 5.1 ± 14.6
HC: 29.4 ± 13.8

DSE and HC: ↑Bacteroidetes;
DRE group: ↓ Bacteroidetes, ↑Firmicutes, and
↑Verrucomicrobia

Lee et al. (38) 2020 Prospective study Intractable epilepsy (n =
8), HC (n = 32)

EP: 3.49 ± 1.76 EP:↓Bacteroidetes, Proteobacteria;↑Actinobacteria
↓Microbiota richness indices
Biomarkers for intractable epilepsy:↑E. faecium, B. longum, E.
lenta;↑ABCT

Lee et al. (39) 2021 Prospective study DRE (n = 23) vs. DSE
(n = 21)

DSE: 44 ± 17.2
DRE: 41 ± 13.6

DSE:↑Bacteroides finegoldii, Ruminococcus_g2
DRE:↑Negativicutes
Alpha and beta diversities: no significant difference between the
two groups
Epilepsy patients with a normal EEG: ↑Bifidobacterium
Epilepsy patients with a normal MRI: ↑Bacteroides finegoldii

Xie et al. (40) 2017 Prospective
observational study

Refractory epilepsy
(n = 14) vs. HC (n = 30)

EP: 1.95 ± 3.10
HC: aged up to 3 years

HC:↑Bacteroidetes,↑Actinobacteria
EP:↑Proteobacteria,↑Firmicutes
DRE, drug-resistant epilepsy; DSE, drug-sensitive epilepsy; EP, patients with epilepsy; HC, health control group.
Patients age was expressed as the mean ± SD according to the normality of distribution.
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epilepsy frequency and GM were correlated (12). The alpha-
diversity of the DR group was higher than that of the DS and HC
groups, and similar between the HC and DS groups (12). Alpha-
diversity in patients with ≤4 seizures per year was similar to that
of HC, while patients with >4 seizures had significantly higher
alpha-diversity (12). At the phylum level, DS and HC had similar
GM composition, with Bacteroidetes as the largest phylum and
Firmicutes as the second (12), while in the DR group, Firmicutes
was the largest group, followed by Bacteroidetes (12). At the
genus level, differences between the DS and DR groups still
existed (12). Bifidobacteria and Lactobacillus were lower in
patients with >4 seizures per year than in patients with ≤4
seizures per year (12). Bacterial function analysis showed that
glucose- and lipid-associated metabolic pathways were all
downregulated in the epileptic group and ABC (ATP-binding
cassette) transporter-associated metabolic pathways elevated in
the DR group compared to the DS group (12). Gong et al.
investigated GM structure and composition in an exploratory
cohort (epilepsy patients, n = 55; HC, n = 46) and validated the
GM as a biomarker for epilepsy in a validation cohort (epilepsy
patients, n = 13; HCs, n = 10) (10). A much lower GM alpha-
diversity was observed in patients than in HCs (10).
Actinobacteria and Verrucomicrobia increased and
Proteobacteria decreased at the phylum level, while at the
genus level, Prevotella_9, Blautia, and Bifidobacterium
increased in patients with epilepsy (10). They further
constructed a random forest model based on the GM and
verified its value as a biomarker to discriminate epilepsy from
HCs or drug-resistant epilepsy (DRE) vs. drug-sensitive epilepsy
(DSE) (10). Safak et al. performed a contrast analysis of the fecal
microbiome between idiopathic focal epilepsy (n = 30) and the
HC group (n = 10), finding that Proteobacteria and Fusobacteria,
which could cause autoimmune diseases, were significantly
higher in the idiopathic focal epilepsy group than in the HC
group, and Bacteroidetes and Actinobacteria, which have a
positive effect on the immune system, were significantly lower
(11). This study indicated the possible roles of autoimmune
mechanisms and inflammation in the etiology of epilepsy.
However, they did not perform a GM diversity analysis. Lee
et al. conducted a study on the GM of eight children with
intractable epilepsy and 32 HCs (13). Microbiota richness was
lower in the epilepsy group than in the HC group (13).
Actinobacteria was higher in the epilepsy group than in HCs,
whereas Bacteroidetes was lower (13). They identified 17 and 18
species of bacteria strongly related to epilepsy and the HC group,
respectively (13). Enterococcus faecium, Bifidobacterium longum,
and Eggerthella lenta were the strongest potential biomarkers in
the intractable epilepsy group (13). They also suggested the ABC
transporter as a functional biomarker of intractable epilepsy,
consistent with the results of Peng et al. (12, 13). Forty-four adult
epilepsy patients were classified into the DRE (n =23) and DSE
groups (n = 21) in a 2021 study (14). Alpha- and beta-diversity
analyses showed no significant differences between patients in
these two groups, but GM composition differences were related
to patients’ response to epileptic drugs, magnetic resonance
imaging (MRI), and electroencephalogram (EEG) (14).
Frontiers in Immunology | www.frontiersin.org 4
Bacteroides finegoldii and Ruminococcus_g2 were more
abundant, and negativicutes decreased in the DRE group; B.
finegoldii was more abundant in patients with normal MRI, and
Bifidobacterium was more abundant in patients with normal
EEG (14). Taken together, these six clinical studies evaluated GM
diversity, composition, and function in patients with epilepsy,
but with partially inconsistent results. All these studies indicated
GM dysbiosis in patients with epilepsy, showing the potential
value of GM for epilepsy diagnosis and treatment, especially in
refractory epilepsy, but there are still some contradictions. Most
studies indicated a higher alpha-diversity in the HC group than
in the epilepsy group (10, 13–15); however, a study suggested the
opposite result (12). GM changes in patients with epilepsy are
not completely consistent. However, given the many variables
that could affect the gut microbiome, such as differences in study
design, age, diet, and living environment, efforts are needed to
conduct larger sample analyses based on reasonably
controlled variables.

3.2 Murine Microbiota and Epilepsy
The susceptibility to PTZ-induced epilepsy was increased in rats
with 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-induced colitis
(41). In a mouse model of PTZ-induced seizures, intestinal
inflammation increases convulsive activity and decreases the
effectiveness of antiepileptic drugs. Further, alleviation of
intestinal inflammation has a specific antiepileptic effect (8). In
addition, a reversible inflammatory response characterized by
microglial activation and an increase in tumor necrosis factor
alpha (TNFa) was observed in the hippocampus of TNBS-
treated rats, suggesting that gut inflammation may increase
CNS excitability by inducing CNS inflammation (41); however,
the underlying mechanism is still unknown. Medel-Matus et al.
revealed that chronic stress can facilitate seizure development by
perturbing the GM (42). GM transplantation from stress donors
to sham-stressed subjects increased seizure kindling rate and
duration after kindling of the basolateral amygdala, while the
proconvulsant effects of chronic stress were prevented by GM
transplantation from sham stress donors (42). In WAG/Rij rats,
a genetic model of absence epilepsy, GM was altered with a lower
Bacteroidetes/Firmicutes ratio at the age of 1 month and before
the onset of epilepsy, and a further reduced Bacteroidetes/
Firmicutes ratio with a large number of absence seizures was
observed at 4 months (16). Short-chain fatty acids (SCFAs) are
messengers between the gut and brain, and butyrate has an anti-
epileptic effect in rats (43). SCFAs were reduced in WAG/Rij rats
(16). Furthermore, FMT altered the number of absence seizures
in rats with concomitant GM remodeling (16). This model
suggests that the GM is involved in the initiation and
maintenance of hereditary absence seizures. In conclusion,
both human and murine studies have shown that the GM is
closely related to the occurrence of multiple types of epilepsy.

3.3 Dietary Intervention for Epilepsy via
Modulation of GM
Diet is a major factor in shaping GM composition (44, 45).
Zmora et al. concluded in their review that nutrients in food
October 2021 | Volume 12 | Article 742449
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could shape the GM in a variety of ways: (1) directly interact and
regulate microorganisms, (2) indirectly by influencing host
metabolism, and (3) by passively introducing microbiota (46).
Researchers analyzed fecal microbiota by applying next-
generation sequencing technology and classified enterotypes
into Bacteroides, Prevotella, and Enterobacteriaceae, which
could be correlated with dietary habits (47). Long-term intake
of animal protein and fat was beneficial to the growth of the
Bacteroides enterotype, while carbohydrate-enriched diet
enriched Prevotella (48). A classic Western diet (rich in fats or
proteins) results in the reduction of beneficial butyrate-
producing bacteria, Bifidobacteria, and Eubacterium. Most of
the carbon and energy of the GM originate from dietary fiber (49,
50). Dietary protein is an essential source of nitrogen for GM
growth, but high-protein diets are related to high levels of
harmful metabolites in feces, cancer, and inflammatory bowel
disease (50, 51). GM composition can be adjusted by altering the
proportion of dietary fiber, protein, and fat (52). Therefore, a
healthy diet and lifestyle are both important in GM formation.

KD indeed has a role in reducing the frequency of seizures,
especially in refractory epilepsy; however, the underlying
mechanisms need to be further elucidated. The existing
mechanisms mainly involve neurotransmitters, brain energy
metabolism, oxidative stress, and ion channels (53, 54). KD can
induce GABA synthesis by upregulating glutamic acid and
inhibiting GABA degradation by altering GABA transaminase
activity (55, 56). Aspartate is a known glutamate decarboxylase
inhibitor whose reduction can theoretically promote GABA
synthesis. Aspartate levels were reduced in astrocytes exposed to
ketone bodies, and similar declines were found in the forebrain
and cerebellum of mice fed with KD (57). Ketosis increases the
conversion of glutamate to glutamine in astrocytes (57).
Glutamine then enters the neurons, eventually converting to
GABA and increasing the inhibition of neurons. Barañano et al.
reported that KD could prevent neuronal overexcitation via
changes in brain pH, directly inhibit channels, and contribute to
the conversion of the stimulatory glutamate to the inhibitory
Frontiers in Immunology | www.frontiersin.org 5
GABA (58) which could be secreted by certain Lactobacillus and
Bifidobacterium strains (59). KD also promotes the production of
fatty acids, particularly PUFAs, which may activate peroxisome
proliferator-activated receptors that regulate anti-inflammatory,
antioxidant, and mitochondrial genes, leading to enhanced energy
reserves, synaptic function stabilization, and hyperexcitability
restriction (60).

KD induces GM alteration and it is therefore involved in this
treatment of epilepsy. At present, only four clinical studies
suggest that KD may play a protective role in epilepsy patients
by adjusting the GM (Table 2) (15, 17–19). Xie et al. performed
successive KD therapy for ≥1 week in 14 infants with refractory
epilepsy, after which the clinical occurrence of epilepsy was
largely alleviated. Proteobacteria and Cronobacter decreased,
and Prevotella and Bifidobacterium significantly increased after
KD treatment (15). Zhang et al. further explored the changes in
GM after KD in children (n = 20) and linked these changes to the
differential efficacy of KD treatment (17). A lower alpha-diversity
of the GM was observed after 6 months of KD (17). The
abundance ratio of Bacteroidetes significantly increased, while
that of Firmicutes and Actinobacteria significantly decreased
during KD intervention (17). Bacteroides can regulate the
secretion of 6–17 interleukins in dendritic cells, which are
connected with seizures and can break down dietary fiber into
SFCAs, which are beneficial for patients with epilepsy (64).
Several gut bacteria (Clostridiales , Ruminococcaceae,
Rikenellaceae, Lachnospiraceae, and Alistipes) were enriched in
the non-responsive group, which makes them potential
biomarkers and therapeutic targets in patients with non-
reactive epilepsy (17). Lindefeldt et al. offered 12 children with
therapy-resistant epilepsy 3-month KD and observed differences
in bacterial taxa and functional structures (18). Compared with
baseline, fecal microbial profiles showed an approximately
identical alpha-diversity after KD therapy and a relatively
decreased abundance of Bifidobacteria, E. rectale, and Dialister
and increased abundance of E. coli (18). Functional analysis
revealed a decline in seven pathways associated with
TABLE 2 | Summary of previous study on intestinal microbiota in epileptic patients with KD treatment.

Author Patient Group Age Epilepsy
Type

Intervention Key Finding

Xie et al.
(40)

EP (n = 14) vs. HC (n = 30) EP: 1.95 ± 3.10
HC: aged up to 3
years

Refractory
epilepsy

KD for 1
week

Healthy group: ↑Bacteroidetes;↑Actinobacteria
Refractory group: ↑ Proteobacteria,↑Firmicutes
KD treated group: ↑Bacteroidetes;↓Proteobacteria, Cronobacter

Zhang et al.
(61)

EP (n = 20) EP: median age
is 4.3 years

Refractory
epilepsy

KD for 6
months

After KD treatment: ↓Alpha diversity;↑Bacteroidetes,↓Firmicutes
In the non-responsive group: specific gut microbiota is enriched

Lindefeldt
et al. (62)

Children with epilepsy (n = 12)
vs. parents (n = 11)

EP: 2–17 years Refractory
epilepsy

KD for 3
months

Parents group:↑Bacteroidetes, Proteobacteria;↓Actinobacteria,
Firmicutes,
After KD treatment: ↑Proteobacteria (E. coli);↓Actinobacteria, Dialister,
Bifidobacteria, and E. rectale;
Alpha diversity does not change significantly
Function: Changes in 29 SEED subsystems

Gong et al.
(63)

EP (n = 12) vs. HC (n = 12) EP: 2–8 years Refractory
epilepsy

KD for 6
months

DR group: ↑Alpha diversity;↑Actinobacteria, Enterococcus,
Anaerostipes, Bifidobacterium, Bacteroides, and Blautia
After KD: ↑Subdoligranulum, Dialister, Alloprevotella;
↓Bifidobacterium, Akkermansia, Enterococcaceae, Actinomyces
In the non-responsive group: some taxa are more prevalent
KD, ketogenic diet; EP, patients with epilepsy; HC, health control group.
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carbohydrate metabolism after KD (18). Gong et al. treated 12
drug-resistant epileptic children during 6 months with KD and
observed changes in GM composition and metabolites (19). The
abundance of eight epilepsy-associated genera of GM
significantly changed with decreases in Bifidobacterium,
Akkermansia muciniphila, Enterococcaceae, and Actinomyces
and increases in Subdoligranulum, Dialister, and Alloprevotella,
which were more prevalent in patients with an inadequate
response to KD than in those with an adequate response (19).
In these four studies, the epileptic symptoms were alleviated to
different degrees after KD treatment, and GM composition and
function changed to some extent after KD treatment.

Olson et al. studied two mouse models of refractory epilepsy
and found that KD could increase the GABA/glutamate ratio in
the colonic lumen, serum, and hippocampus by modulating key
bacterial species, resulting in seizure reduction (20). This is the
first study to verify the role of GM in the antiseizure effects of KD
treatment in a mouse model. The protective effect of KD was
abrogated in GF or Abx-treated SPF mice, while recolonization
with KD-associated bacteria restored the epilepsy protection of
KD treatment to normal levels (20). This phenomenon suggests
the essential role of the GM in the epileptic protective
mechanism mediated by KD. Further, this study revealed the
possible underlying cellular and molecular pathways by which
specific GM interact with each other to modulate peripheral
metabolites and then impact the levels of hippocampal
neurotransmitters (20). In a recent animal study, the
abundance of Firmicutes was increased, and Acetatifactor,
Anaerotaenia, Escherichia, Flintibacter, Oscillibacter, and
Erysipelatoclostridium were higher in the KD group than in the
ND group. The GM with increased abundance was related to the
production of SCFAs and GABA (21). Although KD has specific
value in the treatment of epilepsy and neurodegenerative
diseases, it increases the risk of glucose and lipid metabolism
disorders. The glucose intolerance and lipid accumulation
induced by KD are closely related to the source and proportion
of fat in the diet, which could be associated with alterations in
GM composition (65).

There are still some questions on the mechanism whereby KD
could protect epileptic patients from seizures. For example, how
does modulation of bacterial species affect changes in membrane
potential of hippocampal neurons? Is modulation of GABA/
glutamate levels the main pathway? How can changes in bacterial
species modulate GABA/glutamate levels? These questions
should be the subject of future research.
4 MECHANISM OF THE CORRELATION OF
MICROBIOTA–GUT–BRAIN AXIS
AND EPILEPSY

4.1 Immune and Inflammation Pathways
The pathogenesis of epilepsy is linked to neuroimmunity and
neuroinflammation (66). Accumulating evidence has demonstrated
that immune and inflammatory pathways in the brain–gut axis may
be involved in the pathogenesis of epilepsy. Microglia and astrocytes
Frontiers in Immunology | www.frontiersin.org 6
are the main inflammatory cells in the CNS, and their inflammatory
state promotes the occurrence of epilepsy (67, 68).

4.1.1 Gut Immunity
The lymphoid tissue of the intestinal mucosa contains 70%–80%
of all immune cells in the body (69). The GM affects immune
cells; for example, germ-free (GF) mice show immune
abnormalities with a decreased population of T and B cells and
a reduced cytokine production (70). Further, the GM appears as
one of the most important factors for the maturation of
microglial cells, as well as the astrocyte activation (71), which
is age- and sex-dependent (72). The GM regulates innate
immunity, adaptive immunity, and inflammatory mechanisms
to modulate the development of epilepsy.

4.1.2 Gut Barrier and Blood–Brain Barrier
The intestinal mucosal barrier and blood–brain barrier (BBB)
work together to prevent GM and its secretions from entering the
brain. “Leaky gut” syndrome is characterized by increased
intestinal permeability, which allows bacteria, toxic metabolites,
and small molecules to translocate into the bloodstream (73).
Under gut inflammation, bacteria can directly release factors into
the systemic circulation, which activates peripheral immune cells,
alters BBB integrity and thus transport rates, and can even induce
“leaky brain” (74). Stress can increase intestinal mucosal
permeability, and lipopolysaccharides and other cytokines in the
lumen enter the blood circulation stimulating toll-like receptors,
producing inflammatory cytokines that could increase BBB
permeability and damage the brain (75, 76).

4.1.3 Neuroimmunity
Astrocytes are the most abundant glial cells in the brain and have a
variety of functions, including regulating the integrity of the BBB, the
recycling of neurotransmitters, and participating in immune
responses (77). Microglial cells are the resident macrophages of the
CNS, mediating the innate immune response (78). Microglia with a
larger, less ramified, amoeboid morphology can promote
inflammation, neuronal activity regulation, phagocytic neuron
clearance, and chronic seizures (79). Microglia and astrocytes are
involved in the pathogenesis of epilepsy by releasing excess cytokines
(67), and interact with each other: microglia can modulate astrocytes’
phenotype and function (80), while mouse microglia can regulate
astrocytes’ behavior through, for example, VEGF-B, which promotes
the pathogenic response and inflammatory response of astrocytes,
and TGF-a, which promotes the opposite (81). Gut microbes
metabolize dietary tryptophan into aryl hydrocarbon receptor
agonists and interact with its receptor to control microglial
activation and TGF-a and VEGF-B expression, thereby modulating
astrocyte pathogenic activity (81, 82). Inflammatory cytokines and
chemokines released by astrocytes enhance microglial activities,
including migration, phagocytosis of apoptotic cells, and synaptic
pruning (83). The interaction between astrocytes and microglia leads
to increased pro-inflammatory cytokine production and BBB
permeability, which results in the infiltration of peripheral blood
immune cells and cytokines into the CNS, and subsequent chronic
neuroinflammation (84). GF and antibiotic-treated (Abx-treated)
animals have also altered microglial morphology and defects in
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maturation, activation, and differentiation, resulting in an inadequate
immune response to a variety of pathogens, which could be repaired
after GM recolonization, which suggests that intestinal microbial
diversity is critical for microglial and CNS function (85). In addition
to glial cells residing in the CNS, peripheral immune cells, such as T
cells and monocytes invading the brain tissue, are also involved in
epilepsy’s morbidity. Monocytes can differentiate into macrophages
and invade the brain, where they differentiate into “microglia-like
cells” and contribute to epilepsy (86). As the organ with the largest
population of immune cells, the gut is likely to play a role in this
process, but the exact mechanism requires further investigation.

The GM can induce epilepsy through the innate immune
pathway. BBB permeability increases throughout the life of GF
mice related to the decreased expression of occludin and claudin-
5 proteins in the endothelium (87). GM dysbiosis decreases
claudin production and increases the permeability of the
intestinal lining, leading to the escape of microorganisms,
metabolites, and toxins from the intestinal lumen (88). GM
dysbiosis also reduces SCFAs, which increases BBB
permeability and promotes neuroinflammation (89). If these
two barriers are broken, the immune cells and factors released
by the microbiota enter the brain and induce seizures.
Peptidoglycan (PGN) is a component of the bacterial cell wall
that mainly exists in the human intestinal tract (90). PGN, as a
driver of chronic encephalitis, has also been detected in brain
microglia (90). Chronic inflammation, such as sclerosis-related
temporal lobe epilepsy, is also a cause of epilepsy (91). Therefore,
we conclude that PGN may translocate from the gut to the CNS
by promoting gut leakage and brain leakage, leading to chronic
inflammation and contributing to the occurrence of epilepsy.

The GM also contributes to epilepsy generation by inducing
adaptive immunity. The GM can induce immune cells to produce
cytokines that enter the brain through the intestinal mucosa and
BBB and activate brain immune cells to participate in the immune
response. T helper cell 17 (Th 17) cells are a proinflammatory CD4+
T cell subtype and key components of adaptive immunity (92). IL-
17 is a cytokine produced by Th 17 cells, which can bemodulated by
specific GM phyla, such as Bacteroidetes (92, 93). As recently
shown, both in the CSF and in the peripheral blood of patients
with epilepsy, IL-17 levels were higher than in controls, and highly
correlated with the frequency and severity of seizures (94–97).
Therefore, the GM can influence the occurrence of epilepsy by
mediating IL-17. GM metabolites, such as SCFAs, can affect the
synthesis and secretion of immunoglobulins by regulating B
lymphocyte differentiation (98, 99). The absence of commensal
microbiota downregulates IgA and IgG1, and upregulates IgE,
which leads to increased susceptibility to diseases (100, 101).

Therefore, GM can induce an immune response through the gut–
brain axis, which leads to epileptogenesis. However, only a few studies
have directly focused on the relationship between the gut, immune
responses, and epilepsy, and many issues remain to be explored.

4.2 Nervous System
One of the most important pathways for transmitting information
between the brain and the gut is via autonomic nerve fibers (102).
Oral inoculation of Campylobacter jejuni to a mouse model leads
to increased c-fos expression in the sensory ganglia and primary
Frontiers in Immunology | www.frontiersin.org 7
sensory relay nucleus of the vagus nerve in the brainstem,
suggesting that gut stimulation can modulate brain activity via
the autonomic nervous system (103). Vagus nerve stimulation
(VNS) has become a normal therapy for epilepsy since being first
reported in 1988 (104). Ressler et al. reported that electrical
stimulation of vagal afferent fibers could modify brain
concentrations of serotonin, GABA, and glutamate, thus
explaining its use in epilepsy (105). VN goes through all
intestinal layers, except the epithelial one, so it cannot directly
interact with the GM (106). Enteroendocrine cells (EECs) can
detect signals released from the luminal microbiota through
different receptors. Previously, gut endocrine cells and the
cranial nerve were thought to communicate only through
hormones (107); however, Kaelberer et al. found that EECs
named neuropod cells could synapse with vagal neurons to
transduce gut luminal signals to connect the intestinal lumen to
the brainstem using glutamate as a neurotransmitter (107). The
discovery of neuropod cells provides a strong theoretical support
for the treatment of neurological diseases by regulating the GM.
4.3 Enteroendocrine Signaling and
Microbial Metabolites: Neurotransmitters
and Short-Chain Fatty Acids
4.3.1 Enteroendocrine Signaling
and Neurotransmitters
Neurotransmitter imbalance is closely related to epilepsy.
Neurotransmitter imbalance exists in epileptic foci, such as GABA
with hypoactivity and glutamate with hyperactivity, dopamine
and norepinephrine (NE) with hyperactivity, and serotonin with
hypoactivity (108). In the gastrointestinal tract, neurotransmitters can
be secreted directly by the GM or produced by gastrointestinal cells
under the stimulation of GMmetabolites. Different GM can produce
different neurotransmitters (Enterococcus spp., Streptococcus spp., and
Escherichia spp. produce serotonin; Lactobacillus spp. and
Bifidobacterium spp. produce GABA, Escherichia spp. and Bacillus
spp. produce NE and dopamine). The various neurotransmitters
produced by the GM can pass through the intestinal mucosa but
rarely through the BBB, with the exception of GABA (109). In
hippocampal injury, or epileptic status, GABA produced by GM can
lead to an imbalance between the GABA and glutamate systems,
causing seizures. Sun et al. showed that the relative abundance of the
genera Coprococcus, Ruminococcus, and Turicibacter was positively
correlated with glutamate and glutamine levels (110). The GM can
affect the glutamine–glutamate–GABA cycle, produce
neurotransmitters, and mediate the expression of GABA and
NMDA receptors in specific brain regions (hippocampus,
amygdala, and locus coeruleus) (111). A. mucinophilia and
Parabacteroides colonization could alter the level of amino acids in
the serum and gut lumen to modulate the levels of seizure-associated
neurotransmitters, such as GABA and glutamate, in the
hippocampus, thus providing protective anti-seizure effects in
mice (20, 112). Enterochromaffin cells (ECs) produce
approximately 90% of 5-hydroxytryptamine (5-HT) (113). In GF
mice, certain intestinal microbiota, such as spore-forming clostridia
taxa, can promote 5-HT biosynthesis in the gut by upregulating
colonic tryptophan hydroxylase 1, a rate-limiting enzyme for 5-HT
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ding et al. Gut–Brain Axis and Epilepsy
production (114, 115). Previous studies have shown that patients
with temporal lobe epilepsy have a 5-HT deficiency. A drug
combination that increases 5-HT, such as selective serotonin
reuptake inhibitors, may improve seizure control in patients with
epilepsy (116). The 5-HT decrease induced by reserpine appears to
increase susceptibility to minimal electroshock seizures in rats (117).
However, changes in intestinal 5-HT levels could not directly affect
the brain, as 5-HT cannot cross the BBB (118). Chemotherapeutic
drugs often cause nausea and vomiting, caused by the release of
large amounts of 5-HT in the intestine and the subsequent
activation of vagal afferents (119). 5-HT released by ECs may
have a potential impact on brain–gut axis signal transduction by
regulating intestinal vagal afferent activity (120) and inflammatory
responses (121). Alterations in 5-HT signaling are associated with
irritable bowel syndrome (122). Therefore, we speculate that a
change in 5-HT levels in the intestine may be related to epilepsy,
but there is no evidence to support this. N-acetyl aspartic acid
(NAA) levels are reduced in patients with epilepsy, and in the
epileptic suckling pig model, Austin et al. found that lowNAA levels
were associated with fecal Ruminococcus, and this process may be
mediated by serum cortisol (123). NE has a double effect on epilepsy
onset depending on its amount, NE at low doses has pro-epileptic
effects, while high doses could inhibit epilepsy (124). Dopamine,
serotonin, and acetylcholine are closely correlated with epilepsy and
could indirectly affect brain function through the enteric nervous
system, the vagus nervous system, and by regulating the expression
of peripheral receptors (125).

4.3.2 SCFAs
SCFAs, including acetate, propionate, and butyrate, can be
produced by some gut bacteria (mainly Bacteroides and
Firmicutes) through the fermentation of insoluble dietary
fibers (126). SCFAs play an essential role in microglial
maturation, the gut–brain nervous system, BBB permeability,
and stress responses through direct or indirect pathways, all
closely related to epilepsy (127). As mentioned earlier, SCFAs
were reduced in WAG/Rij rats, and butyrate had an anti-absence
seizure effect (16). The protective effects and mechanisms of
different SCFAs in epilepsy were further studied in a PTZ-
induced epileptic mouse model (8, 128, 129). Sodium butyrate
may exhibit antiepileptic effects in PTZ-induced epileptic mice
by alleviating intestinal inflammation and oxidative stress (8).
Butyrate also ameliorates mitochondrial dysfunction and
protects brain tissue from oxidative stress and neuronal
apoptosis through the Keap/Nrf2/HO-1 pathway, thereby
increasing seizure threshold and reducing seizure intensity
(129). Propionate treatment may alleviate seizure intensity and
prolong the incubation period of seizures by reducing
mitochondrial damage, hippocampal apoptosis , and
neurological deficits (128). These studies show that SCFAs are
reduced in epilepsy models and their protective effect on epilepsy
through different mechanisms.

4.4 The HPA Axis
Stress can promote the induction of epilepsy, and epileptic
patients have higher glucocorticoid levels (130). The HPA axis
is central to stress responses, including the secretion of
Frontiers in Immunology | www.frontiersin.org 8
corticotrophin-releasing factor, adrenocorticotropic hormone,
and subsequent release of glucocorticoids (e.g., cortisol,
corticosterone, deoxycorticosterone, and corticotrophin) and
catecholamine downstream pathways (131). The HPA axis is
regulated either by the negative feedback of glucocorticoids or by
input from numerous different brain regions, including the
prefrontal cortex, hippocampus, amygdala, and the bed nucleus
of the stria terminalis (132). Different hormones may have
different effects; for example, most deoxycorticosterones are
anticonvulsants, whereas corticotropin-releasing hormone and
corticosterone could induce seizure activity (133, 134). Despite
the correlation between the HPA axis and GM, the specific
mechanism has not been elucidated (135). Chronic stress could
upregulate glucocorticoids, which could enhance glutamatergic
signaling and induce seizures (136). GM can affect the function
of the hypothalamus by changing circulating cytokine levels or
other pathways, thereby regulating the HPA axis (137). Stress
responses in both SPF and GF mice suggest that the GM
modulates stress-dependent pituitary and adrenal activation
and alters the expression of genes regulating the corticotropin-
releasing hormone pathway in the colon (138). We hypothesized
that chronic stress may affect the HPA axis through the GM and
promote epilepsy; however, the specific relationship among the
HPA axis, GM, and epilepsy still needs to be further investigated.
5 BRAIN–GUT AXIS AS POTENTIAL
DIAGNOSTIC AND THERAPEUTIC
TARGET FOR EPILEPSY

5.1 The GM Perspective in Differential
Diagnosis of Epilepsy
The GM differences between healthy people and patients with
different types of epilepsy make it a potential biomarker for
differential diagnosis, prognosis, and treatment monitoring in
epilepsy. Fecal microbiota may not accurately reflect GM
situation because of possible pollution, and although
colonoscopy is more accurate than fecal GM, its invasiveness
limits its clinical application. In addition, the GM is affected by
age, diet, living environment, and other factors, the sample size
in these studies was small, and there were some contradictory
results. Therefore, the GM needs to be further studied in larger
patient samples and under strictly controlled variables.

5.2 The Value of the Brain–Gut Axis in the
Treatment of Epilepsy
Modulation of the GM may be a potential therapeutic approach
for intractable epilepsy. On the one hand, regulation of GM
could reduce the occurrence of seizures by adjusting the
mechanisms related to epilepsy. On the other hand, drugs can
be converted into metabolites by GM through direct or indirect
ways to exert therapeutic efficacy or cause toxic side effects (139).
For DRE patients, adjusting the composition of the gut
microbiome may promote drug metabolism and absorption
and increase their responsiveness to antiepileptic drugs. In this
section, we will review the effects of dietary intervention,
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antibiotics, probiotics, prebiotics, synbiotics, antiepileptic drugs,
and fecal transplantation on epilepsy (Figure 2).

5.2.1 Dietary Intervention
Diet, especially KD, could regulate the occurrence of epilepsy by
shaping GM as discussed in detail in Section 3. KD is a high-fat, low-
carbohydrate, and adequate protein diet used since 1921 in patients
with refractory epilepsy (140). KD also has positive effects on other
neurological diseases, such as multiple sclerosis, Parkinson’s disease,
Alzheimer’s disease, and migraine (141–143). The classic ratio of fat
to protein and carbohydrates in KD is 4:1 (18), which triggers a
metabolic pattern shift from glucose metabolism toward the
metabolism of fatty acids (53). The classic KD could relieve
epilepsy by multiple pathways, including modulation of
neurotransmitters, brain energy metabolism, oxidative stress, ion
channels, and GM (53, 54, 144).

In addition to the classical form, several modified KD diets
have arisen, including the modified Atkins diet, medium-chain
triglyceride diet, low-glycemic index treatment, and modified
Mediterranean ketogenic diet (MMKD), with various
composition ratios of fat, protein, and carbohydrates (145). In
medium-chain triglyceride diet, medium-chain triglycerides are
used instead of long-chain triglycerides (145). MMKD is
characterized by olive oil as a source of monounsaturated fatty
acids (146). Olive oil contains antioxidant molecules such as
Frontiers in Immunology | www.frontiersin.org 9
monounsaturated fatty acids and polyphenols, which have
beneficial effects on inflammation, cardiovascular disease, and
oxidative status of the body (147). MMKD can regulate the GM
of patients with mild cognitive impairment, especially fungal
flora (146). A 12-month KD based on olive oil could alleviate
symptoms in 83.1% of patients with refractory epilepsy,
comparable to the effect of a traditional KD treatment (147).
However, there is no comparative study between MMKD and
traditional KD on the efficacy and side effects on refractory
epilepsy. At present, most KDs are individualized modified KDs
balanced between ketogenic effect and palatability.

In KD, saturated fat has always been the prominent fat used
(148); however, animal and human studies have demonstrated the
anti-epileptic effects of polyunsaturated fatty acids (PUFAs),
especially omega-3(n-3) PUFAs (149). Dietary n-3 PUFAs are
found in flaxseed, nuts, marine fish, and marine mammals. N-6
PUFAs are mainly derived from animal products and vegetable oils
and constitute the majority of PUFAs in the modern Western diet
(149). Docosahexaenoic acid (DHA, 22:6n-3), the primary n-3
PUFA in the brain, participates in the regulation of neural
function through a variety of pathways, such as interaction with
ion channels and neurotransmitter release (150, 151). A case–
control study indicated a lower serum omega 3/omega 6 ratio in
children with epilepsy than in healthy children (152). Both in vitro
and in vivo studies demonstrated that a diet rich in n-3 fatty acids is
FIGURE 2 | Potential therapies for epilepsy based on gut microbiota. Ketogenic diet, antiepileptic drugs, probiotics, prebiotics, synbiotics, antibiotics, and fecal
microbiota transplantation are potential treatments for epilepsy based on the microbiota–gut–brain axis.
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beneficial for epilepsy control, but the results of clinical studies are
somewhat contradictory (149). A meta-analysis of seven clinical
trial studies in 2021 indicated that omega-3 supplementation
significantly reduced seizure frequency and was more effective in
adults than in children (153). Therefore, adjustment of dietary n-3/
n-6 levels could be associated with seizure control. A recent study
indicated that a high [fat]:[carbohydrate + protein] ratio is not
indispensable for the treatment of epilepsy (154). A new combined
diet with low [fat]:[proteins + carbohydrates] ratio, including
medium-chain triglycerides, PUFAs, low glycemic index
carbohydrates, and a high branched-chain amino acids/aromatic
amino acids ratio also reduces excitatory drive and protects against
seizures in rodent models (154). Although only tested on animals, it
is a promising diet with fewer side effects.

Dietary intervention is an effective and perspective way to
control epilepsy, and further research on the bacterial–gut–brain
axis would contribute to develop the more effective dietotherapy.

5.2.2 Probiotics/Prebiotics/Synbiotics
Probiotics are living microorganisms that, at the appropriate dose, are
beneficial to the host health (155). Most common probiotics include
Bifidobacterium and Lactobacillus (156). In 2020, the International
Scientific Association for Probiotics and Prebiotics defined prebiotics
as a “substrate selectively utilized by hostmicroorganisms conferring a
health benefit” (157). Synbiotics has been defined as “a mixture
comprising live microorganisms and substrate(s) selectively utilized
by host microorganisms that confers a health benefit on the host”
consisting of two subsets: synergistic synbiotic (the prebiotic is
selectively utilized by the co-administered live microorganisms) and
complementary synbiotic (each component works independently)
(157). In a prospective study, the frequency of seizures was reduced
by≥50% in 28.9%ofDREpatients treatedwith a probioticmixture for
4 months, and 76.9% of these improved patients maintained a lower
seizure frequency 4 months after discontinuation (158). This study
indicated that adjuvant probiotics reduced the frequency of seizures
and could be used as a complementary treatment to antiepileptic
therapy (158). In the PTZ-induced chemical kindling mouse model,
the probiotic supplementation group did not show full kindling, and
GABA increased inmouse brain tissue, which indicated that probiotic
supplementation could substantially reduce seizure severity
(159).When treating PTZ-induced seizures in mice with KD,
synbiotics or Lactobacillus fermentum MSK 408 could reduce the
side effects of KD without disturbing its antiepileptic effects (21, 160).
Both KD andMSK 408 increase GABAmetabolism by regulating the
GM (160). Several SCFAs, such as propionate and butyrate, have
antiepileptic effects. After amonth of intervention with the classic KD,
the total SCFAs were significantly reduced, especially acetate,
propionate, and butyrate, which may be due to a reduction in the
intake of fermentable carbohydrates or a reduction in fermenting
bacteriabyKD(161). Synbiotics can lead toGMenrichmentassociated
with SCFAs (21). MSK 408 could influence SCFAs and restore serum
lipidprofileandtight junctionproteinmRNAexpression in thegutand
brain independently by modulating the GM (160).

These studies are preliminary observations of supplementary
probiotics in the treatment of DRE, and further theoretical
validation and mechanism exploration in larger placebo-
controlled trials and more rigorous animal experiments should
Frontiers in Immunology | www.frontiersin.org 10
be conducted. Probiotics have the potential to be a
complementary treatment for refractory epilepsy and can be
used in combination with KD therapy to reduce side effects.

5.2.3 Antibiotics
Antibiotics can have either good or negative effects on the treatment
of inflammatory bowel disease, irritable bowel syndrome, hepatic
encephalopathy, and other diseases (162). Despite the little evidence
on the link between the use of antibiotics and seizures, a retrospective
study of six refractory epileptic patients treated with antibiotics
showed that certain antibiotics could reduce the frequency of
seizures in the short term (163). They hypothesized that antibiotics
might induce seizure freedom or decrease seizure frequency by
interfering with the intestinal flora and the gut–brain axis (163).
However, certain antibiotics can also induce epilepsy; for example,
lactam antibiotics, including penicillin, cephalosporins, and
carbapenems, are most likely to cause seizures (164). Unsubstituted
penicillin, like fourth-generation cephalosporins, imipenem, and
ciprofloxacin in combination with renal dysfunction, brain lesions,
and epilepsy could lead to an increased risk of symptomatic seizures.
Therefore, serum levels and EEG should be closely monitored when
using antibiotics in these patients (165). Antibiotic application exerts
short- or long-term effects on GM composition in both humans and
animals (162). Although some antibiotics can disrupt the balance of
intestinal microorganisms and cause diseases, others increase the
abundance of beneficial microorganisms and play a positive role in
the GM (162). Different antibiotics lead to different patterns of GM
alteration; for example, macrolides induce the reduction of
Actinobacteria (mainly Bifidobacteria) (166, 167), oral vancomycin
reduces Firmicutes and increases Proteobacteria (168), whereas
penicillin only has a weak effect on the human microbiota (168).
The extent of amoxicillin-induced epilepsy is not parallel to GM
changes, which is contradictory to the hypothesis that GM acts as a
bridge in antibiotic-induced epilepsy. However, the influence of
antibiotics on GM is also related to the initial GM composition
(169) and habits of the host (170). In the future, multi-center
cooperation is needed to further clarify the specific effects and
mechanisms of various antibiotics on epilepsy.

5.2.4 Antiepileptic Drugs and GM
The GM contains a rich variety of drug-metabolizing enzymes
that influence their pharmacology, resulting in interpersonal
differences in drug efficacy and toxicity (171). For example,
clonazepam is an anticonvulsant and anti-anxiety drug reduced
and metabolized by the GM, resulting in drug toxicity (172).
Non-antibiotic drugs alter the GM to some extent. In a large
study involving the effects of 1,197 non-antibiotic drugs on 40
GM, 24% of the drugs with human targets inhibited the growth
of ≥1 strain in vitro (173). Antiepileptic drugs, such as
carbamazepine, valproic acid, and lamotrigine affect GM
composition (174, 175). Valproic acid treatment during
pregnancy in mice resulted in altered fecal microbiota (176,
177), with increased Firmicutes and decreased Bacteroidetes
(178), which may be associated with ASD-like behavior in
offspring (176, 177). Lamotrigine might decrease the growth of
E. coli by inhibiting bacterial ribosome biogenesis (179). Further
research on the relationship between antiepileptic drugs and gut
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microorganisms will help to develop new antiepileptic drugs
based on the principle of GM regulation. Adjusting GM
composition could alter the metabolic process of antiepileptic
drugs to improve their efficacy and reduce side effects.

5.2.5 FMT
FMT has been proven to be an extremely effective treatment for
recurrent or refractory Clostridium difficile infections (176, 177, 180,
181). Moreover, FMT has been extensively studied as a potential
treatment for GM-related diseases. Its effectiveness has been
demonstrated in a range of diseases, such as ulcerative colitis
(182), hepatic encephalopathy (183), irritable bowel syndrome
(184), obesity (185), and even neurological disorders (186, 187).
Recent studies have revealed a correlation between epilepsy and
GM; thus, the value of FMT administration in patients with epilepsy
has been further investigated. FMT has been shown to prevent the
recurrence of epilepsy after discontinuation of antiepileptic drugs in
patients with Crohn’s disease and a long history of epilepsy (188). In
a rat model of epilepsy with basolateral amygdala kindling following
chronic stress, GM transplantation from chronically stressed rats to
sham-stressed rats accelerated the kindling epileptogenesis process,
whereas transplantation from sham-stressed group to stressed rats
reduced the pro-epileptic effects of stress (42). Olson et al. observed
an increased seizure threshold in a GF temporal lobe epilepsymouse
model after transplantation with microbiota from KD-treated mice
or long-term administration of microbiota associated with KD
treatment (20). However, there are still some challenges to the
FMT process. Currently, FMT is performed by placing small
amounts of liquefied or filtered feces directly into the colon or
through a feeding tube, enema, or capsule (189). Therefore, FMT
may result in the transmission of bacteria, viruses, or diseases that
cannot be detected by screening (189, 190). Furthermore, FMTmay
disrupt the baseline microbiota diversity, resulting in the breakdown
of colonization resistance to a broad spectrum of harmful
microorganisms (190). Therefore, more long-term follow-up
studies are needed to determine the efficacy and safety of FMT in
patients with epilepsy before large-scale clinical application.
6 GUT–BRAIN PSYCHOLOGY
AND EPILEPSY

In addition to epilepsy, current research have linked the brain–gut
axis to the development of many other neuropsychiatric disorders,
such as neurodegenerative diseases and mental disorders (191, 192).
Psychiatric diseases are often comorbid with epilepsy (193, 194).
Patients with epilepsy have an increased risk of mental illness, which
increases their disability andmortality rates (193, 194). Depression is
the most common comorbidity in patients with epilepsy (195).
Patients with epilepsy have a twofold increased risk of depression
compared to the standardpopulation(196).Mentaldisorders, suchas
depression, anxiety, dipolar disorder, and schizophrenia, could be
rooted in abnormal GM (192, 197). Though gut–brain axis in
psychology has been rapidly developed over the decades (192), the
conception of “gut–brain psychology” was firstly proposed by Jin
et al. in 2018: the discipline of studying the relationship between the
Frontiers in Immunology | www.frontiersin.org 11
gut–brain and mind (192). Neuroinflammation, HPA axis
hyperactivity, and altered neurotransmitters (such as 5-HT) are
common mechanisms for epilepsy and comorbid depression, and
involved in the gut–brain axis (117, 198, 199). KD, a well-known
treatment for epilepsy, has been shown to play a role in psychiatric
disorders (200). Other than KD, antibiotics, FMT, probiotics, and
prebiotics also have potential in regulating both mood and epilepsy
(158, 163, 188, 192). Therefore, in the process of studying the
relationship between epilepsy and brain–gut axis, the gut–brain
psychology should be considered. In the future, it may be possible
to treat neuropsychiatric diseases and improve brain and mental
health by manipulating the microbiome and the gut–brain axis.
CONCLUSION

Advances in sequencing techniques have deepened our
understanding of GM, and an increasing number of studies have
indicated the indispensable role that the brain–gut axis plays in
epilepsy. The autonomic nervous system, enteric nervous system,
neuroendocrine system, and neuroimmune system all contribute to
communication between the brain and the gut. KD has been long
used in the clinical practice as an effective treatment for intractable
epilepsy. The involvement of the brain–gut axis further clarifies the
potential mechanism behind this treatment method. In addition,
controlling GM by probiotics, prebiotics, synbiotics, antibiotics, or
FMT could reduce the frequency of seizures and improve the
threshold of epilepsy. Gut–brain psychology should be considered
in the study of gut–brain axis in epilepsy. At present, research on the
relationship between the brain–gut axis and epilepsy is still at the
preliminary stage. Future research will help identify new diagnostic
and therapeutic targets for refractory epilepsy in relation with the
gut–brain axis.
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11. Şafak B, Altunan B, Topçu B, Eren Topkaya A. The GutMicrobiome in Epilepsy.
Microb Pathog (2020) 139:103853. doi: 10.1016/j.micpath.2019.103853

12. Peng A, Qiu X, Lai W, Li W, Zhang L, Zhu X, et al. Altered Composition of
the Gut Microbiome in Patients With Drug-Resistant Epilepsy. Epilepsy Res
(2018) 147:102–7. doi: 10.1016/j.eplepsyres.2018.09.013

13. Lee K, Kim N, Shim JO, Kim GH. Gut Bacterial Dysbiosis in Children With
Intractable Epilepsy. J Clin Med (2020) 10(1):5. doi: 10.3390/jcm10010005

14. Lee H, Lee S, Lee DH, Kim DW. A Comparison of the Gut Microbiota
Among Adult Patients With Drug-Responsive and Drug-Resistant Epilepsy:
An Exploratory Study. Epilepsy Res (2021) 172:106601. doi: 10.1016/
j.eplepsyres.2021.106601

15. Xie G, Zhou Q, Qiu CZ, Dai WK, Wang HP, Li YH, et al. Ketogenic Diet
Poses a Significant Effect on Imbalanced Gut Microbiota in Infants With
Refractory Epilepsy. World J Gastroenterol (2017) 23:6164–71. doi: 10.3748/
wjg.v23.i33.6164

16. Citraro R, Lembo F, De Caro C, Tallarico M, Coretti L, Iannone LF, et al.
First Evidence of Altered Microbiota and Intestinal Damage and Their Link
to Absence Epilepsy in a Genetic Animal Model, the WAG/Rij Rat. Epilepsia
(2021) 62:529–41. doi: 10.1111/epi.16813

17. Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y, et al. Altered Gut
Microbiome Composition in Children With Refractory Epilepsy After
Ketogenic Diet. Epilepsy Res (2018) 145:163–8. doi: 10.1016/j.eplepsyres.
2018.06.015

18. Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T,
et al. The Ketogenic Diet Influences Taxonomic and Functional
Composition of the Gut Microbiota in Children With Severe Epilepsy.
NPJ Biofilms Microbiomes (2019) 5:5. doi: 10.1038/s41522-018-0073-2

19. Gong X, Cai Q, Liu X, An D, Zhou D, Luo R, et al. Gut Flora and Metabolism
Are Altered in Epilepsy and Partially Restored After Ketogenic Diets.Microb
Pathog (2021) 155:104899. doi: 10.1016/j.micpath.2021.104899

20. Olson CA, Vuong HE, Yano JM, Liang QY, NusbaumDJ, Hsiao EY. The Gut
Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell
(2018) 173:1728–41.e1713. doi: 10.1016/j.cell.2018.04.027

21. Eor JY, Son YJ, Kim JY, Kang HC, Youn SE, Kim JH, et al. Neuroprotective
Effect of Both Synbiotics and Ketogenic Diet in a Pentylenetetrazol-Induced
Acute Seizure Murine Model. Epilepsy Res (2021) 174:106668. doi: 10.1016/
j.eplepsyres.2021.106668
Frontiers in Immunology | www.frontiersin.org 12
22. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L,
et al. ILAE Classification of the Epilepsies: Position Paper of the ILAE
Commission for Classification and Terminology. Epilepsia (2017) 58:512–
21. doi: 10.1111/epi.13709
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Beneficial Effect of Probiotics as a Supplementary Treatment in Drug-
Resistant Epilepsy: A Pilot Study. Benef Microbes (2018) 9:875–81. doi:
10.3920/BM2018.0018

159. Bagheri S, Heydari A, Alinaghipour A, Salami M. Effect of Probiotic
Supplementation on Seizure Activity and Cognitive Performance in PTZ-
Induced Chemical Kindling. Epilepsy Behav (2019) 95:43–50. doi: 10.1016/
j.yebeh.2019.03.038

160. Eor JY, Tan PL, Son YJ, Kwak MJ, Kim SH. Gut Microbiota Modulation by
Both Lactobacillus Fermentum MSK 408 and Ketogenic Diet in a Murine
Model of Pentylenetetrazole-Induced Acute Seizure. Epilepsy Res (2021)
169:106506. doi: 10.1016/j.eplepsyres.2020.106506

161. Ferraris C, Meroni E, Casiraghi MC, Tagliabue A, De Giorgis V, Erba D. One
Month of Classic Therapeutic Ketogenic Diet Decreases Short Chain Fatty
Acids Production in Epileptic Patients. Front Nutr (2021) 8:613100. doi:
10.3389/fnut.2021.613100

162. Ianiro G, Tilg H, Gasbarrini A. Antibiotics as Deep Modulators of Gut
Microbiota: Between Good and Evil. Gut (2016) 65:1906–15. doi: 10.1136/
gutjnl-2016-312297

163. Braakman HMH, van Ingen J. Can Epilepsy be Treated by Antibiotics?
J Neurol (2018) 265:1934–6. doi: 10.1007/s00415-018-8943-3

164. Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too Much of a Good
Thing: A Retrospective Study of b-LactamConcentration–Toxicity Relationships.
J Antimicrobial Chemotherapy (2017) 72:2891–7. doi: 10.1093/jac/dkx209

165. Sutter R, Ruegg S, Tschudin-Sutter S. Seizures as Adverse Events of
Antibiotic Drugs: A Systematic Review. Neurology (2015) 85:1332–41. doi:
10.1212/WNL.0000000000002023

166. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK,
Engstrand L. Short-Term Antibiotic Treatment has Differing Long-Term
Impacts on the Human Throat and Gut Microbiome. PLoS One (2010) 5:
e9836. doi: 10.1371/journal.pone.0009836

167. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al.
Intestinal Microbiome Is Related to Lifetime Antibiotic Use in Finnish Pre-
School Children. Nat Commun (2016) 7:10410. doi: 10.1038/ncomms10410

168. Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of
Oral Vancomycin on Gut Microbiota, Bile Acid Metabolism, and Insulin
Sensitivity. J Hepatol (2014) 60:824–31. doi: 10.1016/j.jhep.2013.11.034
October 2021 | Volume 12 | Article 742449

https://doi.org/10.1016/j.bcp.2019.08.009
https://doi.org/10.1016/j.brainresbull.2020.12.009
https://doi.org/10.1016/j.neubiorev.2019.05.023
https://doi.org/10.1159/000487755
https://doi.org/10.1016/j.ecl.2005.01.003
https://doi.org/10.1016/j.ecl.2005.01.003
https://doi.org/10.1523/JNEUROSCI.22-09-03795.2002
https://doi.org/10.1523/JNEUROSCI.22-09-03795.2002
https://doi.org/10.1016/0165-3806(91)90118-3
https://doi.org/10.1016/j.ynstr.2016.03.001
https://doi.org/10.1016/j.ynstr.2016.03.001
https://doi.org/10.1016/0006-8993(94)91622-5
https://doi.org/10.1016/j.neubiorev.2017.09.016
https://doi.org/10.1016/j.bbi.2018.07.007
https://doi.org/10.1016/j.cell.2020.05.001
https://doi.org/10.1016/j.nut.2010.12.015
https://doi.org/10.1016/j.celrep.2016.05.009
https://doi.org/10.1016/j.celrep.2016.05.009
https://doi.org/10.1007/s10072-017-2889-6
https://doi.org/10.3390/nu11010169
https://doi.org/10.1155/2019/8373060
https://doi.org/10.3390/nu12092645
https://doi.org/10.1016/j.ebiom.2020.102950
https://doi.org/10.1016/j.ejpn.2018.11.007
https://doi.org/10.1097/MCO.0b013e3282f44c06
https://doi.org/10.1111/j.1528-1167.2010.02654.x
https://doi.org/10.1073/pnas.92.24.11000
https://doi.org/10.1016/S0304-3940(00)00950-2
https://doi.org/10.1016/S0304-3940(00)00950-2
https://doi.org/10.1016/j.anpedi.2018.07.015
https://doi.org/10.1080/1028415X.2021.1959100
https://doi.org/10.1038/s41598-017-05542-3
https://doi.org/10.1038/nrgastro.2014.66
https://doi.org/10.3389/fimmu.2020.01428
https://doi.org/10.1038/s41575-020-0344-2
https://doi.org/10.3920/BM2018.0018
https://doi.org/10.1016/j.yebeh.2019.03.038
https://doi.org/10.1016/j.yebeh.2019.03.038
https://doi.org/10.1016/j.eplepsyres.2020.106506
https://doi.org/10.3389/fnut.2021.613100
https://doi.org/10.1136/gutjnl-2016-312297
https://doi.org/10.1136/gutjnl-2016-312297
https://doi.org/10.1007/s00415-018-8943-3
https://doi.org/10.1093/jac/dkx209
https://doi.org/10.1212/WNL.0000000000002023
https://doi.org/10.1371/journal.pone.0009836
https://doi.org/10.1038/ncomms10410
https://doi.org/10.1016/j.jhep.2013.11.034
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ding et al. Gut–Brain Axis and Epilepsy
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