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Abstract

To enhance reproducibility in scientific research, more and more datasets are becoming publicly available so that
researchers can perform secondary analyses to investigate questions the original scientists had not posited. This increases
the return on investment for the NIH and other funding bodies. These datasets, however, are not perfect, and a better
understanding of the assumptions that shaped them is required. The 2020 Junior Research Parasite Award recognized our
work that showed that the signal-to-noise ratio in a particular dataset had not been investigated, leading to an erroneous
conclusion in the original research. In this commentary, I share the process that led to the identification of the problem and
hopefully provide useful lessons for other research parasites.

Introduction

The Pacific Symposium on Biocomputing (PSB) Conference in
2020 recognized our contribution to rigorous secondary analysis
with a Junior Parasite Award. This honor, initiated in 2017 and
supported by Gigascience and the Gordon and Betty Moore Foun-
dation, is awarded annually [1, 2] and is subsequently described
in a published commentary that explains lessons learned while
mining and re-analyzing the datasets. Below I summarize the
steps that helped us.

My investigation into signal-to-noise ratios in a dataset be-
gan when I read an article that presented work to aid in under-
standing the molecular pathogenesis of Rett syndrome, a neu-
rodevelopmental disorder caused by loss-of-function mutations
in the MECP2 gene. The MeCP2 protein is a methyl-binding epige-
netic factor that controls the expression of several other genes.
Previous microarray and RNA-seq studies have confirmed that
thousands of genes are dysregulated in various brain regions in
MeCP2-deficient mice. Thus it was surprising that the conclu-
sion of this study was that the genes most likely to be misregu-
lated by a mutated MeCP2 were genes longer than 100 kb [3]. This
intriguing observation garnered much attention, but it was also

biologically puzzling. Why would very long genes be more likely
to be misregulated? Could the fact that neuronal genes tend to
be longer than genes in other body tissues [4] have something to
do with it?

My curiosity led me to re-analyze different MeCP2 datasets
to reproduce the plots and results from the article. During this
exercise, I realized that the previous studies did not use any sta-
tistical methods to establish a baseline against which the signif-
icance of the length-dependent changes could be measured—
they assumed intra-sample variations to be equal to zero. This
is not a good statistical practice. Just as in a wet lab where it
is important to validate reagents prior to doing experiment to
avoid having conclusions invalidated after discovering that one
solution was bad, similarly, we need to check published datasets
thoroughly. In the case of our study, this meant establishing the
baseline variation. We found that when we established the base-
line variation prior to analysis, the apparent bias toward misreg-
ulation of long genes by MeCP2 disappeared [5].

We then went a step further: we wondered about potential
biases in other benchmark transcriptomic datasets, ones that
did not include mutant MeCP2. We analyzed these using the au-
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2 Establishing a baseline to avoid errors in secondary analyses

Figure 1: (A) Schematic of a subset of steps that are part of the exploratory data analysis workflow. Each box contains a description of the data analysis step and arrows

indicate the progression through the analysis workflow. Ex: examples of respective data analysis step. (B) Schematic workflow of a typical secondary analysis project
where big data is first analyzed to detect biases, batch effects in the dataset, gain insights and generate hypotheses, and integrate different datasets to get optimal
results.

thors’ methods and found that these benchmark datasets also
seemed prone to a “long gene bias.” This led us to hypothesize
that the “long gene trend” might be an artifact of the microar-
ray and RNA-seq technologies used to generate these datasets
because both require PCR gene amplification. We therefore an-
alyzed gene expression changes on the NanoString platform,
which is not amplification-based. Here, we found that genes
>100 kb were no more likely to be affected by MeCP2 mutations
than genes of the shorter length. This supported our hypothesis
that the previous observations of a long-gene bias resulted from
amplification-based technologies and the failure to establish a
proper baseline [5].

Understand the Dataset and Statistical
Methods Used by the Original Researchers

Downloading datasets from public repositories such as Gene Ex-
pression Omnibus is extremely easy, and it is tempting to take
the data at face value and “simply” apply the algorithms that
one is interested in. This temptation is all the stronger now
because the widespread use of Google, Wikipedia, and simi-
lar platforms subtly persuades us that information is the same
as knowledge. But it is not. To transform data into informa-
tion, information into knowledge, and knowledge into under-
standing, we must approach the dataset with curiosity about
its design, its purpose, the assumptions that guided its cre-
ation, and so forth [2]. This includes defining the dataset in
terms of outcome variables (e.g., gene expression datasets), bio-
logical variables (e.g., genotype or phenotype information), and
confounding covariates (e.g., data generated using different se-
quencing platforms or across different days). Other pertinent
details include statistical methods and the assumptions that
ground them, such as normality, heteroscedasticity, and inde-
pendence of observations. These pieces of information establish
a foundation for further analyses and enable us to ask better
questions.

Deconvolute Assumptions with Exploratory
Data Analysis

I recommend exploratory data analysis (EDA) to gain insight into
the characteristics of the dataset. EDA uses different visualiza-
tion techniques such as box plots, histograms, and scatter plots
as a first step to learn whether the dataset is normalized, how
the data points are distributed, and the total number of fea-
tures in an assay. Next, I recommend using methods to reduce
high-dimensional data, such as principal component analysis
(PCA) and multi-dimensionality scaling (MDS). A well-labeled
PCA plot has the power to reveal batch effects [6], labeling er-
rors in the metadata sheet, inter- and intra-sample variations,
and features that can distinguish groups within the sample
(Fig. 1A).

During my efforts to understand the MeCP2 article, I wrote
scripts that automate exploratory data analysis for all the
datasets to investigate the plots methodically. This allowed our
analysis to be consistent across different datasets of the same
type. One of the eureka moments that came from such analy-
ses was that the previous studies assumed that there was no
intra-sample variation within the control group. This realiza-
tion helped us develop a statistical approach to estimate intra-
sample variation against which the significance of the length-
dependent changes in mutant samples could be more accurately
evaluated [5]. EDA revealed the degree of variability among dif-
ferent sample groups and informed further analyses required to
investigate the background noise.

Use Benchmark Datasets to Determine the
Ground Truth

Because most scientific studies involve small sample sizes or low
statistical power [7], a well-characterized benchmark dataset
can be invaluable. In my project, it was by taking advantage of
SEQC (Sequencing Quality Control) consortium datasets [8] that
enabled us to see that the major source of technical variation
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was within samples. This led to our postulate that there might
be PCR amplification bias.

In summary, any secondary data analysis project needs to
methodically analyze possible biases and batch effects. Prelim-
inary analysis will lead to hypotheses that should be tested us-
ing benchmark datasets. If required, publicly available genomic
datasets should be used for data integration to elucidate biolog-
ical pathways and mechanisms (Fig. 1B).

Recognizing Error Is Part of Learning

In closing, I want to address the larger picture of this study and
this award. “Parasite” does not have a positive connotation for
most people, but the work of secondary analysis is an important
part of expanding the body of knowledge. There have been many
articles expressing concern over reproducibility in biomedical
sciences [9], and I would argue that we can enhance scientific
research by being more welcoming toward the discovery of mis-
takes and negative results. There is a bias towards positive new
results [6], but if we do not publish negative results, mistakes can
become embedded and lead to failed experiments and delay in
scientific progress [10]. We are grateful to the researchers who
generated and made the dataset accessible to the community,
without which our research would not have been possible.

Note from the Editors

The 2020 Research Parasite Award was held at the Pacific Sym-
posium on Biocomputing on the Big Island of Hawaii, and in 2021
was presented at the virtual event via a livestream. The estab-
lishment of the award was a reaction to an editorial that pre-
sented arguments against data sharing, including that it pro-
moted a system where “research parasites” (those who reuse
datasets created by “frontline researchers”) would proliferate. As
promoters of data sharing GigaScience Press has each year spon-
sored the Junior Parasite Award for postdoctoral, graduate, or un-
dergraduate trainees and is again proud to support the award
with travel grants and prize money. For more see the Research
Parasite Awards website, https://researchparasite.com/.
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