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Experimental measurements or computational model predictions of the
post-translational regulation of enzymes needed in a metabolic pathway is
a difficult problem. Consequently, regulation is mostly known only for
well-studied reactions of central metabolism in various model organisms.
In this study, we use two approaches to predict enzyme regulation policies
and investigate the hypothesis that regulation is driven by the need to main-
tain the solvent capacity in the cell. The first predictive method uses a
statistical thermodynamics and metabolic control theory framework while
the second method is performed using a hybrid optimization–reinforcement
learning approach. Efficient regulation schemes were learned from exper-
imental data that either agree with theoretical calculations or result in a
higher cell fitness using maximum useful work as a metric. As previously
hypothesized, regulation is herein shown to control the concentrations of
both immediate and downstream product concentrations at physiological
levels. Model predictions provide the following two novel general principles:
(1) the regulation itself causes the reactions to be much further from equili-
brium instead of the common assumption that highly non-equilibrium
reactions are the targets for regulation; and (2) the minimal regulation
needed to maintain metabolite levels at physiological concentrations maxi-
mizes the free energy dissipation rate instead of preserving a specific
energy charge. The resulting energy dissipation rate is an emergent property
of regulation which may be represented by a high value of the adenylate
energy charge. In addition, the predictions demonstrate that the amount
of regulation needed can be minimized if it is applied at the beginning or
branch point of a pathway, in agreement with common notions. The
approach is demonstrated for three pathways in the central metabolism of
E. coli (gluconeogenesis, glycolysis-tricarboxylic acid (TCA) and pentose
phosphate-TCA) that each require different regulation schemes. It is
shown quantitatively that hexokinase, glucose 6-phosphate dehydrogenase
and glyceraldehyde phosphate dehydrogenase, all branch points of
pathways, play the largest roles in regulating central metabolism.
1. Introduction
While our understanding of regulation of transcription and post-transcriptional
processes has blossomed in the past 25 years due to advances in high-through-
put experimental technologies such as RNA expression, ChIP-Seq and mass
spectrometry-based proteomics, our understanding of post-translational
regulation has advanced [1–4], but not as rapidly or as far [5].

Fifty years ago, it was postulated that the purpose of post-translational
regulation in metabolism is to either maintain a balance of the energy charge
of the adenylate pool [6], or to control solvent properties [7]. Solvent properties
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have long been recognized as important determinants of cel-
lular activity and function. Atkinson recognized that the
maintenance of physiological concentrations of metabolites
may well be the most pressing problem of metabolic control
[7]. Metabolite concentrations are both a function of the reac-
tion kinetics and a molecule’s standard chemical potential,
of which the latter varies only over a small range for each indi-
vidual metabolite because solution conditions inside a cell also
vary over a small range. Interestingly, the set of enzymes
which are post-translationally regulated is relatively well-
conserved across species as well [3], despite the fact that the
rate constants for the same enzymes can vary dramatically [8].

In addition to metabolite concentrations per se, solvent
capacity in the cell has recently focused on molecular crowd-
ing [9,10] and the impairment of diffusion [11]. As a cell
approaches equilibrium, the cell’s cytoplasm can become
glassy such that diffusion is limited. At the same time, control
of metabolites through regulation of enzyme activities is no
longer effective near equilibrium [12]. The equilibrium con-
stant, K, for a reaction is the ratio of the exponent of the
standard chemical potentials. Consequently, metabolite con-
centrations may potentially approach values determined by
their standard chemical potentials in solution, which can be
quite large for highly charged metabolites like fructose 1,6-
bisphosphate and acetyl-coenzyme A. Not only will metab-
olite levels rise, but also less water will be produced by
metabolism inside the cell. In E. coli, up to 50% of the bulk
water is produced by metabolism [13]. Even away from equi-
librium, cells clearly must regulate metabolite levels to
prevent high concentrations that would be detrimental to
diffusional processes necessary for life.

The degree to which the concentration of intermediate
metabolites are homeostatically maintained can be rational-
ized by analogy to economic supply and demand concepts
formalized in metabolic control analysis (MCA), a powerful
tool for providing insight into metabolic regulation [14]. For
example, when flux is controlled by demand, the supply
determines the degree to which the concentrations of inter-
mediate metabolites are homeostatically maintained [15].
It should be noted that supply and demand concepts in
economics are closely related to thermodynamics [16].

More recent breakthroughs in the study of metabolic
regulation include work in which mass spectrometry and
NMR measured metabolite and protein levels, along with
fluxes modelled from 13C isotope labelling were used with
Michaelis–Menten kinetics to determine whether the pre-
dicted reaction fluxes matched fluxes modelled from
isotope labelling data [2]. The correlation between predicted
fluxes were evaluated with and without regulation. If the
match was better with regulation, then regulation was
assumed. The work was a tour de force in that chemostat
studies were used to carefully measure both absolute and
relative metabolomics data while at the same time cover as
much of the proteome as possible. In addition, Michaelis–
Menten kinetic models addressed multiple levels of
regulation. The pay-off was not only predictions of which
enzymes might be regulated, but also inferences about the
regulating molecule.

In addressing possible scalability (or at least cost of exper-
imentation) in the previously mentioned study, a similarly
sophisticated informatics approach was used to develop a
model of small molecule regulatory networks from curated
databases of enzymes, integrate the regulatory network
with a metabolic model of E. coli, and distill information on
how substrates and inhibitors contribute to metabolic flux
regulation [3]. Interestingly, this work did not find support
for the common notion that reactions which are furthest
from equilibrium are those that are most likely regulated.

Here, we investigate the hypothesis that the post-transla-
tional regulation of enzymes is at least in part driven by the
need to maintain the solvent capacity in the cell. We evaluate
this hypothesis by comparing experimental metabolomics
data with steady-state concentrations predicted computation-
ally from equations for reformulated mass action kinetics.
Using quantitative metabolomics data as well as physical
and biological principles, MCA and alternatively reinforce-
ment learning (RL) are used to predict the control of
activity required to bring metabolite levels down to observed
values. Consequently, the machine learning results confirm
that an optimal control policy can be formulated which
directly achieves minimal regulation by efficiently reducing
excessive metabolite concentrations.

The predictions agree with known regulation of central
metabolism in model organisms. Moreover, these results
show that regulated reactions are further away from equili-
brium precisely because of the regulation, turning common
wisdom about enzyme regulation upside-down. Instead of
highly non-equilibrium reactions being the targets for regu-
lation in metabolic pathways [17,18], regulation results in
reactions being much further from equilibrium than non-
regulated reactions. Being further away from equilibrium
than other reactions is an effect, not a cause, of regulation.
2. Results
We solve the prediction problem of which enzyme to regulate
by a novel combination of methods from statistical thermo-
dynamics, control theory and RL. The initial step is to
determine steady-state concentrations without applying
regulation by using numerical optimization of the respective
ordinary differential equations such that each reaction in the
pathway is the same distance from equilibrium. That is, a
maximum path entropy solution [19,20]. This is done using
the Marcelin dynamical force equation for mass action kin-
etics [21] by assuming that the time dependence is the same
for all reactions. Marcelin proposed in 1910 that the rate of
a reaction is proportional by a factor, c, to the exponent of
the thermodynamic driving force on the reaction [22]. In
modern terms, the driving force on a reaction j is the reaction
affinity Aj = dG/dξj with G being the system free energy, ξj
being the extent of the reaction, kB is Boltzmann’s constant
and T is the temperature. For the reverse reaction, the driving
force is A−j = dG/dξ−j, giving a net rate of,

Jnet,j ¼ c j eAj=kBT � c j eA�j=kBT , (2:1)

where the cj was a term with units of time that was assumed
to be a constant. This early thermodynamic formulation of
mass action kinetics was remarkably close to the transition
state theory rate law later found by Eyring, Evans and
Polanyi [23] and was only different from the mass action
rate due to the assumption that the time-valued term was a
constant. However, the assumption is useful. Assuming that
the reactions all occur on the same timescale allows one to
find the maximum path entropy steady-state solution easily
[21]. In this case, the thermodynamic odds of each reaction
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Figure 1. Initial steady-state properties before any regulation is applied in the form of reduced activity coefficients for glycolysis–pentose phosphate pathway
(PPP)–tricarboxylic acid (TCA) cycle with high NAD/NADH and low NADP/NADPH conditions (a,b) as well as high NAD/NADH and high NADP/NADPH conditions
(c,d ). The steady state is determined by maximizing the reaction path entropy such that the net thermodynamic driving force on each reaction is proportioned
according to the governing equation for metabolite kinetics, equation (4.10). (a) Unregulated reaction fluxes under conditions of high NAD/NADH and low NADP/
NADPH. Reactions in upper glycolysis (HEX1 to FBA on the x-axis) have a flux that is twice that of lower glycolysis (GAPD to PDH) and the TCA cycle (CSM to MDH)
because one molecule of fructose 1,6-bisphosphate in upper glycolysis becomes two molecules of glyceraldehyde 3-phosphate at the beginning of lower glycolysis
(FBA and TPI reactions); reactions of the PPP (PGL to TKT2) have no significant flux under these conditions. (b) Unregulated reaction free energies under conditions of
high NAD/NADH and low NADP/NADPH. Reactions of upper glycolysis have a free energy change of approximately −RgTlog KQ−1 =−3.8 kJ mol−1, while reactions
of lower glycolysis and the TCA cycle have reaction free energies of −RgTlog (2 · KQ−1) =−3.8− RgTlog (2), where the factor of two is due to the stoichiometry
difference between upper glycolysis and lower glycolysis/TCA cycle. Under identical nutrient (boundary) conditions, reduction of the activity coefficients to values less
than 1.0 reduces both the steady-state fluxes and the reaction free energies as shown in figure 3. (c) Unregulated reaction fluxes under conditions of high NAD/NADH
and high NADP/NADPH. Reaction fluxes are similar to (a) with the exception of the PPP which has a flux similar to upper glycolysis. PGI is the branch point for flux
into PPP from upper glycolysis. (d ) Unregulated reaction free energies under conditions of high NAD/NADH and high NADP/NADPH. The reaction free energies of PPP
now are further removed from equilibrium and all have roughly similar values, as do the sets of reactions for upper glycolysis, lower glycolysis and the TCA cycle.
Under identical nutrient (boundary) conditions, reduction of the activity coefficients to values less than 1.0 reduces both the steady-state fluxes and the reaction free
energies as shown in figure 4. Upper glycolysis: HEX1, hexokinase; PGI, phosphoglucose isomerase; PFK, phosphofructokinase; FBA, fructose bisphosphatase. Lower
glycolysis: TPI, triosephosphate isomerase; GAPD, glyceraldehyde 3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO,
enolase; PYK, pyruvate kinase; PYRt2m, pyruvate transporter; PDH, pyruvate dehydrogenase. PPP: G6PDH, glucose 6-phosphate dehydrogenase; PGL, phosphoglu-
conolactonase; GND, phosphogluconate dehydrogenase; RPI, ribose 5-phosphate isomerase; RPE, ribose 5-phosphate epimerase; TKT1, transketolase 1; TALA,
transaldolase; TKT2, transketolase 2. TCA cycle: CSM, citrate synthase; ACONT, aconitase; ICDH, isocitrate dehydrogenase; AKDG, a-ketoglutarate dehydrogenase;
SUCOAS, succinyl-CoA synthetase; SUCD, succinate dehydrogenase; FUM, fumarase; MDH, malate dehydrogenase; GOGAT, glutamine oxoglutarate aminotransferase.
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at steady state (Methods, equation (4.3)) are similar in
value in upper glycolysis, lower glycolysis and the tricar-
boxylic acid (TCA) cycle, though varying by a factor of two
due to stoichiometry. Figure 1 shows the resulting steady-
state reaction fluxes and reaction free energies for the
glycolysis–pentose phosphate pathway (PPP)–TCA cycle
underhighNAD/NADHand lowNADP/NADPHconditions.
If there are no constraints, the configuration also results in
a maximal entropy distribution of metabolites. However, the
metabolites will be constrained to be away from the equili-
brium distribution if there are non-equilibrium boundary
conditions. Since the initially predicted concentrations will
then be proportional to their Boltzmann probabilities, the
initially predicted concentrations may be exceedingly high
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Figure 2. Schematic of in silico framework for learning regulation (grey box) with coupled simulation or optimization routine controlling environmental feedback.
Initial framework input (green box) consists of target metabolite concentrations from experimental data. The output (red box) consists of a learned optimal enzyme
regulation scheme necessary to reach the target concentrations. Learning is performed by repeatedly testing different regulation schemes and updating the value
function, V, that returns a scalar value for a given set of enzyme activities. Enzyme activities, represented as states, are chosen for regulation by performing actions
that are determined by a policy function. A given policy is determined by V. The new steady-state metabolite concentrations resulting from applied regulation are
determined by an optimization routine. Alterations in metabolite concentrations are a direct result of moving into a state s0 from a state s after taking action a,
i.e. performing regulation. These dynamic changes are used to define a reward function, R, that determines environmental feedback. Rewards are used to direct the
agent as it explores and learns a policy that predicts optimal enzyme regulation.
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[7] compared to experimentally observed values from
isotope-labelled, mass spectrometry measurements [24,25].

These high concentrations allow for highly effective infer-
ence of regulation to control the concentrations. The
predicted concentrations, ~ni, are brought into alignment
with experimental observations, ni, by applying regulation.
Regulation is determined using either an MCA approach, or
a hybrid optimization–RL approach (Methods). In both
cases, regulation is applied in the form of an activity coeffi-
cient, αj, that scales the thermodynamic driving force for
reaction j, where αj = 1.0 indicates no regulation while αj =
0.0 indicates complete regulation.

In the two MCA-based methods that were developed,
reactions are regulated based on the sensitivity of the pre-
dicted concentrations to the activity coefficient that
modulates each reaction, which is carried out by a specific
enzyme. The sensitivity of the ith metabolite with concen-
tration ni (observed or predicted) to the activity, αj,
of enzyme j, is described by the concentration control
coefficient, Cn

i,j,

Cn
i,j ¼

@ logni
@ loga j

: (2:2)

When using predicted concentrations, ~ni, we write C~n
i,j to

specify the concentration control coefficient for predicted
metabolite concentrations. We use a loss function defined
as the logarithm of the division of the predicted concen-
trations or counts to the measured concentrations or counts,
Li ¼ log (~ni=ni): The change in the loss function due to a
change in the activity of reaction j is

DLi,j ¼ log ~ni � log (~ni � D~ni(Da j)): (2:3)

A reaction j selected for regulation if it is the one whose
change in activity results in the largest change in the loss
functions of all metabolites whose predicted concentrations
exceed the experimentally observed concentrations, as deter-
mined by DL j ¼

P
i DLi,j. Regulation is considered complete
when predicted metabolite concentrations are brought into
agreement with experimental measurements.

Two approaches were taken with MCA: an unrestricted
control approach (unrestricted MCA) in which any enzyme
could be a regulator for any metabolite, and a restricted
approach in which only enzymes whose immediate products
exceeded the target values could be considered as a regulator.
While the unrestricted approach optimizes the system as a
whole, the restricted approach is consistent with the concept
of modularity in biological systems. We refer to the latter as a
local-control approach (local MCA) since an enzyme’s
immediate products (and possibly other metabolites) are
being controlled.

The RL method (figure 2) formulates the problem of regu-
lation in terms of a Markov decision process [26], which is
commonly represented as a tuple {S, A, P, R}, where S rep-
resents the set of possible states (enzyme activities for each
reaction), A represents the set of possible actions (reactions
to regulate), P represents the transitional probabilities between
states, and R represents the reward function. RL is used to
obtain an optimal regulation scheme by learning from delayed
environmental feedback [27,28]. Figure 2 illustrates how reac-
tions are chosen using a policy function which returns the
reaction to be regulated (action) given the current enzyme
activities (state). Learning is performed by iteratively updating
the state value function using environmental feedback
(rewards) from solving the optimization routine. Specifically,
we use a temporal difference bootstrapping technique [29]
called n-step SARSA [30,31], an on-policy version of the
recently popularized Q-learning method [32]. In the Methods
and electronic supplementary material, we provide in-depth
descriptions of the theories and approaches behind the
steady-state optimization, the MCA methods and the
RL method.

We compare the three different regulation approaches
(unrestricted MCA, local MCA and RL) by statistically char-
acterizing the rate of energy flow across the reactions. The
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rate that energy is produced in metabolism has long been
known to be one of the most significant factors in metabolic
regulation [6]. We define the sum of the rate of free energy
generated across all reactions as the free energy dissipation
rate. The free energy of the jth reaction at steady state is
DGj ¼ �RgT log (KjQ

�1
j ), where Rg is the gas constant, and

T is the temperature, Kj is the equilibrium constant and Qj

is the reaction quotient. Defining the free energy dissipation
rate as time-dependent free energy [33,34],

dG
dt

¼ �RgT
XZ
j

aj[rj logKjQ�1
j � r�j logKjQ�1

j ]: (2:4)

In the Marcelin rate law formulation (Methods, equation
(4.6)), the rate rj is proportional to the thermodynamic odds
of the reaction (or mass action ratio), KjQ

�1
j . The free

energy change for a reaction j can be broken down into two
components, an energy change, DE j ¼ �RgT logKj, and a
configurational entropy change, TDS j ¼ RgT logQj [35]. As
the reactions occur, the system moves towards equilibrium,
decreasing the reactants and increasing the products, which
results in a change in the configurational entropy due to
changes in the reaction quotients. In a steady-state or
pseudo-steady-state system, the steady state is replenished
by additional nutrients such that the reaction quotients, Qj,
return to their steady-state values. Replenishing the steady
state, however, requires work. Since the net entropy change
in a pseudo-steady-state system must be zero, the measure
of work available for processes other than maintaining the
steady state, such as replication, is,

dE
dt

¼ �RgT
XZ
j

aj[rj logKj � r�j logKj]: (2:5)

Both dG/dt and dE/dt (the energy dissipation rate) are
important metrics of the rate of work produced by metab-
olism. When regulating reactions, a biological system must
find a balance between a free energy dissipation rate that
extracts energy from the environment as quickly as possible
and a low rate of entropy change to maintain the pseudo-
steady state. In principle, any individual or species in a
pseudo-steady state that maximizes the rate of usable work,
dE/dt, will outcompete those with lower rates of net work
and will be the organism selected by nature.

We evaluated three different versions of E. coli central
metabolism under four different nutrient conditions. The
three different versions of metabolism were (1) gluconeogen-
esis, (2) glycolysis and the TCA cycle, and (3) glycolysis,
the PPP and the TCA cycle (glycolysis–PPP–TCA). Metabolite
concentration data used in the analysis were from E. coli in
exponential growth with glucose as the carbon source
[24,25]. As an alternative to experimentally measured metab-
olite concentrations, rough estimates of concentrations can be
used as well that give qualitatively similar results (see
Methods and electronic supplementary material). In all
cases, the predicted regulation matched known regulation
points in central metabolism or were adjacent to known regu-
lation points.

Below, we discuss the largest network, glycolysis–PPP–
TCA, under two identical nutrient conditions except for the
NADP/NADPH ratio, which is held fixed but at different
values throughout each analysis. In condition 1, the NAD/
NADH ratio is high (31.3) and the NADP/NADPH ratio is
low (0.02), which favours flux through upper glycolysis
rather than PPP. In condition 2, the NADP/NADPH ratio is
also high such that NADP/NADPH=NAD/NADH= 31.3
[24]. The latter condition favours increased flux through
PPP. Analyses of gluconeogenesis and glycolysis and the
TCA cycle are included in the electronic supplementary
material, figures S2 and S3. In all conditions, we compare
regulation that is found by the RL method with that found
by deterministic methods using only MCA.

2.1. High NAD/NADH requires regulation of metabolite
levels in glycolysis

Prediction of enzyme activities using MCA methods are
deterministic. Given the conditions for fixed metabolites in
which the NAD/NADH ratio is high and the NADP/
NADPH ratio is low, flux is favoured through upper glycoly-
sis over PPP, and the local MCA method predicts (figure 3a,
red ‘plus’) that five reactions in glycolysis are regulated due
to the enzymes hexose kinase (HEX1), phosphofructokinase
(PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPD),
phosphoglycerate kinase (PGK) and pyruvate dehydrogenase
(PDH), while one enzyme in PPP is regulated, phosphogluco-
nolactonase (PGL), near the beginning of the pathway. It is
known that regulation of PPP occurs one enzyme up from
PGL at glucose 6-phosphate dehydrogenase (G6PDH)
instead. But the metabolite that is over produced and is pre-
dicted to have high concentration without regulation is
phosphogluconate, the product of the PGL reaction. In prac-
tice, PGL may be a hard reaction to allosterically regulate
since it is a unimolecular ring opening reaction that may be
catalysed significantly by binding alone [36].

The RL and unrestricted MCA methods both predict the
same minimal regulation at HEX1 and GAPD to achieve
the same goal of maintaining the predicted concentrations
at or below the experimentally observed values. The RL
method, however, additionally regulates PGK, pyruvate
kinase (PYK), the pyruvate mitochondrial transporter
(PYRt2m) and PDH to obtain a similar energy dissipation
rate. As shown in figure 3a, four of these enzymes were
also regulated in the local MCA method. The difference is
that HEX1 and GAPD are more extensively regulated in the
RL and the unrestricted MCA methods. Despite these differ-
ences in regulation, each regulated enzyme with the
exception of the pyruvate transporter are known sites of regu-
lation (known sites of regulation are highlighted in bold).
Regulation of the pyruvate transporter was only predicted
in the stochastic RL approach. It is likely that this regulation
should be assigned to PYK or PDH as it was in the
deterministic MCA approach.

As shown in figure 3b, whenever regulation is applied in
the form of reducing the activity coefficient, the free energy
of the reaction becomes more favourable compared to reac-
tions in the same pathway (e.g. compare to the consistency
of free energy changes in upper glycolysis, PPP, lower glycoly-
sis and TCA cycle in figure 1). Reducing the activity of an
enzyme in a non-equilibrium setting will cause the reactants
to increase in concentration and the products to decrease in
concentration, resulting in reaction free energies being further
away from equilibrium. Despite the different sites of regu-
lation and the difference in reaction free energies for the
three methods, the free energy and energy dissipation rates
are similar and are the most favourable rates found (figure 3c).
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2.2. High NAD/NADH and high NADP/NADPH require
additional regulation in PPP

In the second set of conditions, the NADP/NADPH ratio is
also high, which in principle favours more flux through
PPP. The resulting regulation is similar to the first conditions
in which NADP/NADPH is low with a few exceptions
(figure 4a,b). The local MCA method additionally regulated
G6PDH, the entry point into the PPP as well as transketolase
(TKT), while the RL method no longer regulated PYK and
regulated the pyruvate mitochondrial transporter (PYRt2m)
rather than PDH. The latter is likely incorrect, but the fact
that the method was trying to regulate pyruvate concen-
trations suggests that PYK might be the true target of
regulation. Like the local MCA method, the RL method also
regulated HEX1, GAPD and PGK.

By contrast, the unrestricted MCA method regulated
the same reactions as in the low NADP/NADPH condi-
tions, HEX1 and GAPD. The regulation under a high
NADP/NADPH ratio is similar to the conditions in
which NADP/NADPH is low primarily because increasing
the NADP/NADPH ratio alone is insufficient to drive
enough flux through PPP to drive metabolite concentrations
high enough for the need for additional regulation specific
to the PPP. Because of less total regulation compared to the
local MCA, the unrestricted MCA and RL methods result in
significantly higher energy dissipation rates than the local
MCA method and are thus likely to be more optimal
regulation schemes.
2.3. Regulation of PFK maximizes flux through PPP
Increased flux can be channelled through the PPP if PFK
activity is regulated to a greater extent or is turned off com-
pletely. Then significant flux flows through PPP instead of
upper glycolysis and does so in a cyclical manner, just as
observed in early studies of carbon flow in pentose metab-
olism [37]. In Neurospora crassa, glycolysis and the PPP are
circadianly regulated, with the PPP being regulated 180°
out of phase with upper glycolysis [38]. In the extreme case
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when PFK activity is turned off in the model, then the cyclical
operation of the PPP is such that three carbons are lost from
each glucose molecule as CO2 before all the carbon reaches
lower glycolysis as glyceraldehyde 3-phosphate, which also
matches early isotope labelling studies of carbon flow
through the PPP [37].

In the case when PFK activity is set to zero, all methods
apply regulation to HEX1. This is enough for the unrestricted
MCA and RL methods to bring concentrations to within the
observed experimental range, and both methods result in
maximal energy dissipation rates (figure 5). By contrast, the
local MCA method additionally requires regulation in PPP
at G6PDH, PGL and TKT. But even in this case, the local
MCAmethod fails to completely bring sedoheptulose 7-phos-
phate into the range of the experimental observations. In
attempting to control sedoheptulose 7-phosphate, the applied
regulation is extensive enough such that the net flux through
glycolysis, the PPP and the TCA cycle approaches zero. Thus,
the local MCA method fails to obtain control. In several cases
involving the local MCA method, the concentration of sedo-
heptulose 7-phosphate and sometimes 6-phospho D-
gluconate become uncontrollable resulting in concentrations
higher than what is observed experimentally. The reason
for this is that the respective reactions producing these com-
pounds approach equilibrium; it is known that when a
reaction approaches equilibrium, the concentrations of the
products are no longer controllable [12].

In these cases, the reactions and their metabolites are
effectively uncoupled from the non-equilibrium reactions.
Lack of control may result in the respective metabolites reach-
ing high concentrations in the cytoplasm, and the cytoplasm
consequently becoming glassy and diffusion limited. Exper-
iments support this principle. Recent reports provide
evidence that active metabolism promotes cytoplasmic fluidi-
zation while inactive metabolism results in a glass-like
cytoplasm with limited diffusion in both bacteria [11,13]
and eukaryotes [39].

However, it is not clear that the failure to maintain control
when using the local MCA method reflects poorly on the con-
cept of modularity whereby enzymes use local control. The
failure to obtain control of sedoheptulose 7-phosphate can
also be due to the incomplete nature of the model of metab-
olism used here. It may be that in a more extensive model of
metabolism, such as the inclusion of purine and pyrimidine
biosynthesis pathways branching off of D-ribose 5-phosphate,
control of sedoheptulose 7-phosphate by the local MCA
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method may be possible. We present this possibility because
TKT, the enzyme producing sedoheptulose 7-phosphate is a
key post-translational regulation point into purine synthesis
[40].
2.4. Regulation increases reaction free energies
In the MCA approaches, optimal solutions were selected
based only on their ability to reduce metabolite concen-
trations to physiological levels, as quantified by the
concentration control coefficients (equation (2.2)). In RL
method, the optimal solutions were selected based on both
reducing metabolite concentrations to physiological levels
and maximizing the free energy dissipation rate. It is impor-
tant to note that the RL used here is not a black box
approach—cause and effect can be clearly attributed. In
neither case of RL nor the MCA approaches was information
regarding the regarding the relative distance of any reaction
from equilibrium used in the selection criteria, and in fact,
initially all reactions are equally distant from equilibrium.
Yet, in all cases and in all solutions, when the reaction free
energy changes are compared with the regulation scheme,
the regulated reactions are further from equilibrium than
the unregulated reactions, as shown in figures 3b, 4b and
5b. Furthermore, when the regulation is relaxed, the pre-
viously regulated reactions move closer to equilibrium, and
in fact back to the starting maximum path entropy solution
(figure 1). In the models, it is the act of regulating each reac-
tion that causes the respective reactants to build up and
products to become depleted, thereby causing the free
energy change of the reaction to increase in magnitude.
This observation has wide support in the literature [17,18],
but the cause in many cases has been misinterpreted as
being such that reactions are selected for regulation because
they are far from equilibrium, rather than reactions being
far from equilibrium because they are regulated.

At the heart of the issue of whether regulation causes
reactions to be further from equilibrium is the question of
what constitutes the regulation of enzyme activity. In the
approaches presented here, the vector of reaction activities,
α, directly modulates the thermodynamic force on all reac-
tions. Consequently, the flux across any reaction is also
scaled by α. For the jth reaction, as αj decreases from 1.0
toward 0.0, the flux decreases and the effective free energy
of reaction, DGeff

j ¼ �RgT logajKjQ�1
j , decreases in magni-

tude. Consequently, favourable reactions become less
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favourable and the ratio of reactants-to-products increases
with the decreases in the effective driving force. This
change in the reactant-to-product ratio for favourable
reactions causes the actual reaction free energy,
DGj ¼ �RgT logKjQ�1

j , to increase. This approach to regulat-
ing activity is analogous to adjusting a rheostat up or down.
As the rheostat (α) is turned down, the current decreases and
the potential across the junction increases. Adjusting α down-
ward is a direct cause of significant increases in reactant
concentrations, decreases in product concentrations and
movement of reaction free energy further away from
equilibrium.

By contrast, the role of the enzyme activity could naively
be assumed to be equivalent to gating both forward and
reverse flux through the active site. We tested this interpret-
ation by inferring rate constants from the maximum path
entropy steady-state solution and modulating the forward
and reverse rates linearly by the scalar α. All attempts at reg-
ulating concentrations in this manner failed to bring
concentrations down to physiological levels. While modulat-
ing forward and reverse flux through the enzyme, this
approach has little impact on the reaction thermodynamics
as can be seen from the structure of the differential equations.
For a reaction scheme,

AO
k1

k�1

B, (2:6)

the resulting differential equation for species B with activity
coefficient α1 is,

dnB
dt

¼ a1k1nA � a1k�1nB: (2:7)

In this case, the thermodynamic odds of the reaction are unaf-
fected by change in the activity as indicated in the
relationship

KQ�1 ¼ a1k1nA
a1k�1nB

¼ k1nA
k�1nB

, (2:8)

which is the usual (unregulated) odds of a reaction. Modulat-
ing the kinetics in this way is tantamount to tuning the rate
constants to try to bring metabolite levels down to physio-
logical levels. The fact that this method fails to sufficiently
control metabolite levels supports the hypothesis that metab-
olite levels are controlled through a rheostat-like mechanism
in which the act of regulation itself can push reactions further
away from equilibrium. It should be noted that when reaction
flux is used as a measure for enzyme activity in MCA, it is the
net flux that is used as the measure and not the individual
forward and reverse fluxes, and it is the net flux that changes
when the thermodynamics are modulated. In approximately
70% of allosteric enzymes, regulation impacts KM values (K-
type enzymes), a thermodynamic effect, and in approxi-
mately 30% of cases Vmax is impacted (V-type enzymes),
which is both a thermodynamic and kinetic effect [41].

The hypothesis regarding the cause of regulation found in
textbooks and generally accepted in the literature is that
highly non-equilibrium reactions are selected by nature for
regulation. The reasoning that led to the hypothesis has to
do with the established principle that biological systems acti-
vate metabolites for reactivity by covalently attaching high
potential groups such as coenzyme A and phosphates.
These reactions will then have much higher standard free
energies of reaction than they would otherwise. Hence, mod-
ulating these reactions through regulation would seem a
plausible explanation for the observation that regulated reac-
tions tend to be far away from equilibrium. As far as we
know, there is no direct evidence to support (test) this
hypothesis.

However, the use of activators such as phosphoryl groups
and coenzyme A to drive a reaction will not just result in the
respective reaction being further from equilibrium, but in all
reactions in the pathway being further from equilibrium.
Increased product formation of the activated reaction will
result in increased reactant concentration for the next reac-
tion, and so forth, as the effect propagates down the
pathway until a steady state is reached.
3. Discussion
We have shown that, as a result of the highly favourable
chemical potentials of metabolites in a pathway, many
reaction products may be produced in biologically unreason-
able concentrations, as suggested by Atkinson [42]. We have
also shown that this problem is solved, again as suggested by
Atkinson, by reducing the activity of either the enzyme cata-
lysing the reaction or upstream enzymes. While this role of
regulation has recognized by some in the MCA research com-
munity and elsewhere [15], the wider biological literature
predominantly discusses the notion that enzymes are post-
translationally regulated to specifically control flux or
maintain an energy charge within a narrow range [43–45],
despite a number of exceptions regarding the latter [46,47].
While modulating the enzyme thermodynamics directly
impacts concentrations as well fluxes, modulating fluxes
directly does not necessarily impact concentrations.

If enzyme activities are taken to regulate the reaction ther-
modynamics, the reactions that have the most control of
concentrations can be determined using concentration control
coefficients. All predicted schemes discussed above enforce
regulation on enzymes that are known to be regulation
sites. Nine of these 11 enzymes are known to be sites of
post-translational regulation in glycolysis and the PPP,
either allosterically or through chemical modification (table
1): hexokinase, phospho-fructokinase, glyceraldehyde phos-
phate dehydrogenase, phosphoglycerate kinase, pyruvate
kinase, PDH, G6PDH, TKT and pyruvate carboxylase (elec-
tronic supplementary material). Only the pyruvate
mitochondrial transporter (PYRt2m) and PGL are not
known to be regulated. The regulation assigned to the pyru-
vate transporter was done stochastically by the RL and likely
should be assigned to PYK or PDH, as it was the determinis-
tic MCA approaches. PGL presumably would be hard to
control since it catalyses a highly favourable ring opening
which may only require desolvation in the enzyme active
site. It is worth noting the enzymes that are known to be
regulated but were not indicated as being regulated in this
study. Foremost among these is fructose bisphosphatase
(FBA), an enzyme that is well-known to be regulated in glu-
coneogenesis. Under the limited number of conditions used
in the study of gluconeogenesis herein, levels of fructose 6-
phosphate or other downstream products never rose high
enough to require regulation. Likewise, the products of eno-
lase, phosphoglucose isomerase, PEP carboxykinase



Table 1. The set of enzymes found to be regulated in all analyses along with the associated pathway, the concentration control coefficient, C~nj , of the reaction
summed over all metabolites before any regulation is applied, the method predicting the regulation and the experimental evidence from the literature for
predicted regulation. Abbreviations are the same as in figures 1 and 3. The conditions used in the modelling are described in the Methods section (Metabolic
Models). PC is pyruvate carboxylase and FBP is fructose bisphosphatase; both are observed to be regulated in gluconeogenesis (electronic supplementary
material, table S4).

enzyme pathway C~nj prediction method evidence

HEX1 upper glycolysis 12.4 RL, L-MCA, MCA [17]

PFK upper glycolysis 4.6 L-MCA [17,18]

GAPD lower glycolysis 4.6 RL, L-MCA, MCA [18,48]

PGK lower glycolysis 3.8 RL, L-MCA [18,49]

PYK lower glycolysis 1.7 RL [50–52]

PYRt2m lower glycolysis 1.1 RL —

PDH lower glycolysis 0.6 RL, L-MCA [53]

G6PDH pentose phosphate 16.8 RL, L-MCA [54]

PGL pentose phosphate 16.0 L-MCA —

TKT pentose phosphate 5.0 L-MCA [40]

PC gluconeogenesis 3.7 RL, L-MCA, MCA [55]

modelled and known to be regulated but not observed

PGM lower glycolysis 3.0 — [56]

FBP gluconeogenesis 0.1 — [17,18]
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(electronic supplementary material, figure S2), glucose 6-
phosphatase never rose to the level that these needed to be
regulated, but it would be reasonable to expect that the
respective enzymes may need to be controlled under con-
ditions that were not tested here.

Of the 11 enzymes predicted to be regulated, outsized
roles were played by the branch points of each of the path-
ways, as quantified by the influence of the enzyme activity
coefficients, Cn

j , on the respective reactants or products
(table 1). The summary concentration control coefficient
reports the total influence of the activity of the enzyme on
all metabolites exceeding the experimentally observed
values. The Cn

j values reported in table 1 are consistent
with recent experimental measurements on the effect of
changes in expression levels of glycolytic enzymes on the
concentrations of the same metabolites [5].

Hexokinase, the entry point into the model and entry
point into upper glycolysis and the PPP, had the largest role
with Cn

j ¼ 12:4, meaning that hexokinase effectively had
100% control over 12.4 reactions. It is worth noting that
both the RL and unrestricted MCA methods achieved suc-
cessful control by regulating hexokinase, which is again
consistent with recent experimental observations of glycolysis
[5]. In the experimental studies, increased expression of hex-
okinase lead to increases in downstream phosphorylated
compounds, including fructose 1,6-bisphosphate, sedoheptu-
lose 7-phosphate, sedoheptulose 1,7-bisphosphate and 6-
phosphogluconate, just as predicted here. Not surprisingly,
increased levels of these metabolites due to increased hexoki-
nase expression were correlated with a decrease of glycolytic
rate, as one would expect if cytoplasmic solubility were
adversely affected.

Likewise, G6PDH, the entry point into the PPP, had effec-
tively 100% influence over 16.8 reactions, although this value
is only seen this high when the PFK activity is set to 0.0 such
that the PPP acts cyclically and three circuits around the cycle
are made for each glucose metabolized. Likewise, for lower
glycolysis the main control point, GAPD, is the entry into
the pathway which is also where upper glycolysis and PPP
converge. No regulation was needed for the TCA cycle
under the conditions studied.

While the predictions align well with known sites of post-
translational regulation, the predictions offer no information
on whether the regulation would be due to allosteric inter-
actions or chemical modification as might be inferred from
more complex and expensive approaches that utilize (and
require) absolute metabolite concentrations, fluxes inferred
from isotope labelling studies, MS proteomics analyses and
detailed kinetic models that include explicit enzyme binding,
catalysis and product release [2]. The regulation predictions
provided here, however, were done purely in silico with the
optional use of absolute metabolite concentrations, if available.
Although the regulatory effector cannot yet be inferred from
this approach, it would seem reasonable to assume that con-
trol of metabolite concentrations would be due to allosteric
regulation since allosteric interactions work on a faster time-
scale than post-translational modifications. It is likely that
post-translational modifications act to redirect flux when
either degradation of enzyme would be too slow, or when
degradation and later resynthesis of the enzyme would be
too costly [57], which is not the scenario addressed here.

Both MCA approaches were based only on adjusting the
activities of enzymes that would have the most influence on
reducing concentrations to physiological values. Only the
RL approach rewards regulation schemes for maximizing
the entropy production rate (equation (4.22)). Even though
the RL and MCA methods have different aims, both maxi-
mized the energy dissipation rate, dE/dt, a principle
alluded to by Lotka [58]. Furthermore, while the unrestricted
MCA approach and the RL performed similarly, the local
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MCA approach did not always find a solution, which could
reflect the incompleteness of the metabolic network that is
modelled, or may simply indicate that modular regulation
to this degree is insufficient. In addition, in at least one case
the local MCA approach did not produce solutions with the
highest energy dissipation rates. However, the set of enzymes
predicted by the local MCA approach covers many more of
the enzymes known to be classically regulated, as shown in
table 1. The local MCA approach selects enzymes whose
immediate products exceed physiological values. Since
these same products will likely exceed physiological values
in many other conditions as well, the local MCA approach
may simply cover more of the set of enzymes requiring con-
trol in many different scenarios. It would be reasonable to
expect, however, that the unrestricted MCA approach
would be more accurate under any specific condition since
it results in a more favourable free energy dissipation rate.

Consequently, we have shown how post-translational
regulation results in the emergence of the general principle
of maximal, entropy production rate for metabolism, and
we can now also include the principle of maximization of
the energy production rate, dE/dt, for pseudo-steady-state
phenotypes. When these principles are used to make predic-
tions, each prediction must also take into account the
physico-chemical constraints on the system, such as the
inherent constraints on the maximal rates of enzymes and
thermodynamic costs and benefits, not simply metabolite
solubilities [57]. These additional physicochemical constraints
can explain the observed upper limit to free energy
dissipation in microbial systems [59].

The observation of an upper limit to free energy dissipa-
tion is related to the concept of maintaining the adenylate
energy charge ratio. The adenylate energy charge rule
widely found in textbooks was defined in terms of concen-
trations as [(ATP) + 0.5 (ADP)]/ [(ATP) + (ADP) + (AMP)].
It was proposed that the role of regulation of enzyme activi-
ties is to maintain values of the energy charge between 0.75
and 0.90. There are many known exceptions where the aden-
ylate charge falls below 0.75 yet the cells remain viable
[46,47]. This proposed rule can no longer be regarded as a
rule but as an emergent property, just as the maximization
of energy production rates is an emergent property due to
natural selection.

There is a nuanced but very important distinction
between the concepts of whether the purpose of regulation
is to literally maintain an energy charge or whether the
energy charge measurement is an emergent property. The
former concept associates a free will to the cell in deciding
its fate—if the cell finds that the energy charge is getting to
low for demand, it cranks up the supply from energy gener-
ating pathways to alleviate this. The role of thermodynamics
is replaced by choice. The consequence of assigning free will
to individual cells has led to the application of social theory
and game theory to cells. The terms bet hedging strategies,
cooperators, cheaters, non-cooperators, altruistic cells, etc., are
commonly used in the literature. An unintended consequence
of the application of these terms to cells has been that the
anthropomorphic language frames and limits our thinking.

On the other hand, viewing the energy charge as an emer-
gent property assigns no such choice to the cell. Instead, the
energy state of the cell is a function of the external nutrients
and environment. If an isolated cell is in an energy-rich
environment, the energy charge will be high. Otherwise,
the energy charge drops and turning up the energy generat-
ing pathways has no beneficial effect (unless, of course, there
are alternate pathways that process alternate nutrients that
are in abundance in the environment). For tissues and other
communities of cells, the energy state of the community is
the important criterion, and specific individual cells may be
programmed off or on despite favourable thermodynamics
at the individual level.

The increased application of physical concepts is trans-
forming biology into a quantitative, physical science based
less on pure observation and increasingly on fundamental
principles. The model-based predictions of enzyme activities
presented in this paper advance both the practice and theory
of biology. The ability to predict from simulation or infer the
free energy changes and control coefficients (in addition to
fluxes) for each reaction allows the use of control theory
and machine learning to analyse and explore the operations
of the cell. In synthetic biology, the development of cell
lines often requires additional circuits and can result in
unforeseen consequences or lower cell growth rates. Simu-
lation of cells with engineered or deleted circuits will allow
prediction of the effects in place of difficult trial and error
in experiments.

Finally, it is important to understand the principles behind
post-translational regulation because regulation of metabolism
is precisely what controls a cell’s energetic behaviour. From
bacterial growth and reproduction, to developing cells or
even halting the growth of cancer cells, regulation plays the
central role. Learning how cells regulate and control them-
selves is essential for designing new organisms that have an
intended purpose (synthetic biology), developing new strat-
egies to target and control microbial and metabolic diseases
(medicine) and understanding design principles of biology
(fundamental science). Currently, no other experimental or
computational approach has been shown to identify points
of regulation in metabolism in a rapid manner.
4. Methods
4.1. Convex optimization approach for obtaining

metabolic steady state
For a reversible chemical reaction, the reaction is described by the
chemical equation

nA,1nA þ nB,1nB O
k1

k�1

nC,1nC þ nD,1nD, (4:1)

where A, B, C, D represents the molecular species, the concen-
trations are given by ni, i = {A, B, C, D}, and νi,j represent the
unsigned stoichiometric coefficients for each molecular species i
in the forward and reverse reactions j = {1,− 1}.

The law of mass action may be formulated in terms of chemi-
cal kinetics or thermodynamics. With respect to chemical
kinetics, the law of mass action is expressed by the rate or net
flux, Jnet,1, of the reaction where the forward and reverse rates
are proportional to the respective reactants

Jnet,1 ¼ k1n
nA,1
A nnB,1B � k�1n

nC,1
C nnD,1

D : (4:2)

In this formulation, k1 and k−1 represent the rate constants of the
forward and the reverse reaction, respectively. On the other
hand, the thermodynamic expression of the reaction uses the
change in free energy, G, with respect to the extent of a reaction,
ξ. The ratio of the respective reactants and products are



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200656

12
combined to form the reaction affinity, A1 =−∂G/∂ξ1, such that,

eA1=RgT ¼ K1
nnA,1A nnB,1B

nnC,1C nnD,1
D

¼ K1Q�1
1 , (4:3)

where K1 = k1/k−1 is the equilibrium constant and Q1 is the reac-
tion quotient. Also, the analogous equation for the reverse
reaction is the reciprocal,

eA�1=RgT ¼ K�1
nnC,1C nnD,1

D

nnA,1A nnB,1B

¼ e�A1=RgT : (4:4)

Note that equation (4.2) is a purely kinetic description of the law
of mass action, while equations (4.3) and (4.4) are purely thermo-
dynamic expressions. This results from the fact that the latter
equations do not contain any information on the time depen-
dence of the reaction. These formulations, however, are not
mutually exclusive. Time dependence and thermodynamics can
both be described in a single equation by factoring the opposing
rate from each term of equation (4.2),

Jnet,1 ¼ k�1nCnC,1nDnD,1
k1nAnA,1nBnB,1

k�1nCnC,1nDnD,1

� �
� k1nAnA,1nBnB,1

k�1nCnC,1nDnD,1

k1nAnA,1nBnB,1

� �

¼ k�1nCnC,1nDnD,1 (K1Q�1
1 )� k1nAnA,1nBnB,1 (K�1Q�1

�1), ð4:5Þ

where K1 and K−1 are the equilibrium constants and Q1 and Q−1

are the reaction quotients for reaction 1 and −1, respectively.
Equation (4.5) describes the forward and reverse reactions as
being functions of the time independent odds of the reaction
and the rate of change of the odds.

Given a metabolic model with Z reactions, M metabolic
species, and N total particles, we formulate the flux through
each reaction using equation (4.5). In this work, the largest
values of Z and M in a pathway are 29 and 47, respectively.
If we assume the rate of change of the odds are equal and
independent of concentrations, then the coupled reactions
occur on the same timescale. Under these assumptions,
the resulting equation for the jth reaction is the Marcelin
equation [22]

Jnet,j ¼ c j(K jQ�1
j )� c j(K�jQ�1

�j ), (4:6)

where cj represents the time dependence of the reaction
odds, which at the time was thought to be identical for the
forward and reverse reactions. Because the exponential
family of distributions are always log-concave when counts
are greater than or equal to zero, the energy surface on
which the reactions occur is convex. This is achieved by
expressing the reactions as functions of the reaction affinities
via equations (4.3) and (4.4)

Jnet,j ¼ c j(eAj=RgT)� c j(e�Aj=RgT): (4:7)

A vector of Z reaction fluxes J = [J1,…, JZ]
T can be determined

from the M by Z stoichiometric matrix S and the M chemical
potentials. The stoichiometric matrix consists of elements γi,j,
which are the signed stoichiometric coefficients for chemical
species j in reaction i. The time dependence of the vector of
counts n = [n1,…, nM]T of chemical species is

dn
dt

¼ SJ

¼ S(KQ� � K�Q), (4:8)

where SJ is the matrix multiplication between S and J,
KQ� ¼ [K1Q�1

1 , . . . , KZQ�1
Z ]T is the vector of thermodynamic

odds for the forward reactions, and K�Q ¼ [K�1
1 Q1, . . . ,

K�1
Z QZ]

T is the vector of thermodynamic odds for the reverse
reactions. Without any constraints applied, equation (4.8) will
converge to an equilibrium solution, whether the equation is
solved using ordinary differential equations or optimization
methods. To obtain a non-equilibrium steady-state, non-equi-
librium boundary conditions must be applied. In this case,
the non-equilibrium boundary conditions consist of boundary
metabolite values representing the reactants and products
of the overall chemical process that are held fixed. If there
are MV variable species and MB =M −MV boundary (fixed)
species such that n ¼ [n1, . . . , nMV , nMVþ1, . . . , nM]T, then the
stoichiometric matrix will contain a non-singular submatrix
and equation (4.8) will have unique solutions only if MV ≤
Z. The vector of counts n can be split into subvectors
nV ¼ [n1, . . . , nMV ]

T and nB ¼ [nMVþ1, . . . , nM]T such that
n ¼ [nTVn

T
B]

T. Likewise, the stoichiometric matrix can also be
split along the rows representing metabolites to separate the
entries for the variable metabolites from those for the bound-
ary metabolites such that S ¼ [STVS

T
B]

T where SV is an MV by Z
matrix and SB is MB by Z. The time dependence of each of the
chemical species is given by

dn
dt

¼
dnV
dt
dnB
dt

2
4

3
5 ¼ SV

SB

� �
(KQ� � K�Q): (4:9)

The optimization problem is to find nV satisfying

jjSV(KQ� � K�Q)jj22 ¼ 0:0, (4:10)

subject to the MB boundary conditions. The optimization is
carried out with a nonlinear least-squares approach using
the Levenberg–Marquardt method [60,61], and solves for
the concentrations of the chemical species which makes up
the reaction quotient, Q. When SV(KQ

− − K−Q) = 0.0, the
optimization has found a kinetic steady state as well as a
thermodynamically balanced state such that the net thermo-
dynamic driving forces on all the reactions are equal for
linear pathways, or for branched pathways, the net thermo-
dynamic driving forces are proportional to the
stoichiometry. If one is only interested in the thermodynamic
properties, fluxes and concentrations at steady state, then
there is no need to solve for the rate constants. Otherwise,
rate constants can be back-calculated and used to solve for
the non-equilibrium transient trajectories using, for example,
equation (4.2). Setting j = 1, equation (4.2) can be solved for
k±1 as follows:

J1,net ¼ k1n
nA
A nnBB (1� K�1Q�1

�1):

Rearranging,

k1 ¼
J1,net

nnAA nnAB (1� K�1Q�1
�1)

and

k�1 ¼ K1

k1
: (4:11)

The kinetically accessible energy surface is not necessarily
convex because of the introduction of the rate constants—
each reaction now has its own time dependence.

The predicted concentrations from the optimization
follow the multinomial Boltzmann distribution in which the con-
centration of each species is proportional to its standard chemical
potential, m�

i , adjusted for aqueous solution at pH 7.0,

ni / e�m�
i =kBT , (4:12)

subject to the constraints of the reaction stoichiometries and
the non-equilibrium boundary conditions. The boundary con-
ditions consist of fixed concentrations of environmental
nutrients such as glucose and waste products such as CO2, as
well as some cofactors. Because the concentrations are distribu-
ted as a function of their standard chemical potentials in
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aqueous solution, the concentrations of highly hydrophilic
charged species may be orders of magnitude above physiological
values. For instance, concentrations of ATP or acetyl CoA may be
of the order of 10M or more. Such high concentrations would
make the cytoplasm highly viscous such that diffusion would
be slowed down significantly, and cellular activity would
come to a halt. However, as we shall show, the concentrations
can be brought into alignment with physiological values
using enzyme activities determined from MCA [62–64].
rg/journal/rsif
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4.2. Metabolic regulation: a metabolic control theory
approach

Regulation is applied to reactions by changing the scalar valued
activity of the jth enzyme, αj ∈ [0.0, 1.0], where activity values of
0.0 and 1.0 represent complete reaction regulation and no
enzyme regulation, respectively. The activity for each reaction j
is represented by a multiplier to the net reaction flux Jj such that,

Jj ¼ aj(KjQ�1
j � K�jQ�1

�j ), (4:13)

and likewise,

dn
dt

¼
dnV
dt
dnB
dt

2
4

3
5 ¼ SV

SB

� �
[a � (KQ� � K�Q)], (4:14)

where ° represents the Hadamard element-wise product. Since
any reaction may be regulated, the state of the system can be
described by the activity vector, α, steady-state fluxes, J, and
steady-state metabolite concentrations n. Because the latter two
state variables can be determined from a fixed set of activities
via the optimization routine, system states can be defined
simply by the activity vector α instead of the tuple (α, J, n).

In MCA, the sensitivity of a concentration ni to the activity αj
of enzyme j is defined as the concentration control coefficient Cn

i,j
(equation (2.2)). Concentration control coefficients can be used to
determine how much to reduce the activities of an enzyme to
bring the predicted concentrations into alignment with physio-
logical values observed from experimental metabolomics
assays. The detailed calculation is described in the electronic sup-
plementary material. If concentrations ni for a metabolite i have
not been measured, then target values are assumed to be
1.0 mM, which ensures that concentrations stay reasonable
even for metabolites whose concentrations have not been
measured. When predicted values exceed the measured or
target values, regulation is applied to reactions by changing
the scalar valued activity of the jth enzyme, αj.

Which reaction to regulate is determined from examining the
concentration control coefficients with regard to the metabolites
whose concentrations are higher than is observed in experiment.
We denote the set of such metabolites as M0 ¼ {ij~ni . ni}. An
activity is then selected to be reduced based on the influence
that the activity has on these concentrations

Cn
j ¼

X
i[M0

max (Cn
i,j, 0:0): (4:15)

Because activities are reduced from initial values of 1.0 (full
activity), only Cn

i,j . 0:0 are considered in the sum so that
reduction in activity correlates with reduction in concentration.
A component cost function, Li, is defined as the division of the
predicted concentrations or counts to the measured concen-
trations or counts, Li ¼ log (~ni=ni). In order to determine the
point where steady-state metabolite levels are ‘in calibre’, we
use a stopping criteria function that returns a positive scalar if
any Li > 0.0 and returns zero once Li≤ 0.0 for all i. We define
this cost function as follows:

L ¼
XM
i¼1

max (Li, 0:0): (4:16)

The maximum of Li or zero is used because the model only pre-
dicts metabolite populations that are free in solution, but the
experimentally measured concentrations are, in principle, those
that are both enzyme-bound and free in solution. Thus, concen-
trations from predictions are assumed to be ‘in calibre’ with
experimental data if the predicted concentrations are less than
or equal to experimentally measured concentrations (Li ≤ 0.0).

In practice, the activity that reduces the cost function, L, the
greatest amount is chosen for regulation and is again determined
using MCA. In MCA, the concentration control coefficient for
metabolite i due to control by reaction j is defined by equation
(2.2). Consequently, the change in concentration or counts due
to a change in activity of reaction j is

d ~ni ¼ C~n
i,j
daj

aj
~ni: (4:17)

For metabolite i with predicted concentration ~ni, we define
the change in concentration d~ni due to a change in the
jth enzyme activity, dαj, as d~ni(a, daj) :¼ ~ni(a1, . . . ,aZ)�
~ni(a1, . . . ,aj � daj, . . . , aZ). Given a target concentration of ni,
the estimated change in the costs, denoted by ΔLi,j, of the ith
metabolite due to a change dαj in activity αj of reaction j is:

DLi,j :¼ log
~ni(a1, . . . , aZ)

ni
� log

~ni(a1, . . . , aj � daj, . . . , aZ)
ni

¼ log
~ni(a)
ni

� log
~ni(a)� d~ni(a; da j)

ni

¼ log
~ni(a)

~ni(a)� d~ni(a; daj)

¼ � log
~ni(a)� d~ni(a; da j)

~ni(a)

¼ � log 1� d~ni(a; da j)
~ni(a)

� �

¼ � log 1� C~n
i,j
da j

a j

� �
: (4:18)

The change in total costs over all metabolites due to a change in
activity of reaction j is calculated by summing over metabolites
that are out of ‘calibre’ with respect to the experimentally
observed concentrations. We calculate the total cost as follows:

DL j ¼
X
i[M

DLi,j

¼
X
�i[M

log 1� C~n
i,j
da j

a j

� �
, (4:19)

where M represents the set of reactions able to be regulated or
controlled. Finally, the question of which enzymes should be
allowed to be control points must be addressed. Two approaches
were taken with MCA: an unrestricted control approach in which
any enzyme could be a regulator for any metabolite, and a
restricted approach in which only enzymes whose immediate
products exceeded the target values could be considered as
a regulator. We refer to the latter as a local-control approach
(MCA local) since an enzyme’s immediate products (and poss-
ibly other metabolites) are being controlled. Regulation is then
applied at the reaction maximizing,

arg max
j[{1, ..., Z}

(DL j): (4:20)

Once a reaction j is chosen, the activity αj is changed by an appro-
priate amount (electronic supplementary material). When all
metabolite values are brought into agreement with experimental
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observations, rate constants can be determined, if desired, using
equation (4.11). Alternately, the influence of the activities can
directly be incorporated into the rate constants. For example,
given j = 1, the resulting rate constant is

k1 ¼
J1,net

a1nA(1� K�1Q�1
�1)

: (4:21)

However, there is an important conceptual difference between
solving mass action rate laws with parameters based on the
approach provided by equation (4.11) compared to equation
(4.21). While the former assumes regulation is needed to bring
concentrations under control, the latter assumes no regulation
is needed and control is hardwired into rate constants. The
advantages of the former are twofold: (1) under different nutrient
conditions, enzyme activities can be altered to control metabolite
concentrations; and (2) enzyme activities are adjusted away from
the maximal entropy distribution only enough to bring concen-
trations into alignment with observed values, resulting in a
more favourable total free energy of the system. A lower total
free energy also would reduce the cost of replicating of metab-
olism. The actual balance between these two approaches will
likely be a middle ground between the reliance on activity coeffi-
cients as opposed to rate constants. It is unlikely that enzymes
can evolve such that the ideal rate constants, i.e. those implied
by equation (4.11), are possible for every reaction. Instead, rate
constant values will be limited by constraints due to the physics
of the catalytic process.

The code implementing the MCA framework is available in
the electronic supplementary material.

4.3. Exploring regulation: a reinforcement learning
approach

The MCA method for bringing the predicted concentrations in
alignment with observed concentrations is a deterministic
approach based on an assumption that metabolite concentrations
depend linearly on the enzyme activities. It is feasible that the
assumption of linearity used in the MCA analysis (electronic sup-
plementary material) results in sub-optimal regulation. Optimal
regulation has been hypothesized, based on empirical data, as
regulation that maintains a high energy charge, defined in
terms of ATP, ADP and AMP [6]. A less ad hoc definition of opti-
mal regulation would be the maximization of the entropy
production rate, which has also long been hypothesized as an
objective of biological systems [58,65]. Neither of these concepts
are addressed in the MCA approaches discussed above. For
steady-state systems, the entropy production rate (EPR) is the
negative of dG/dt defined in equation (2.4) [33,34],

EPR ¼ �dG
dt

¼ RgT
XZ
j

aj[rj logKjQ�1
j � r�j logKjQ�1

j ]: (4:22)

Given a goal of maximizing the EPR, it is not clear which MCA
protocol above, if either, would maximize the entropy pro-
duction rate. On one hand, the unrestricted MCA method uses
less regulation and therefore often results in higher reaction
fluxes, which would increase the EPR (equation (4.22)). On the
other hand, entropy is maximized when the value of the argu-
ment of the logarithms are distributed as uniformly as
possible, which is the opposite of what occurs when a minimal
set of enzymes are chosen to be regulated. In order to explore
the regulation space more completely to investigate these
issues, we utilize a machine learning method that avoids the lin-
earity assumption by directly testing multiple future states and is
directly rewarded for maximizing the EPR.

Specifically, we use an RL framework which can address
decision problems that are otherwise combinatorially intractable.
Even a small metabolic network may have of the order of 20–50
reactions. To explore the state space fully using the deterministic
MCA approach, of the order of 100–500 decisions need to be
made as to which reaction to regulate depending on the state of
the system. The search space is then approximately between
20100 and 50500, a numbermuch too large to tackle byan exhaustive
search or Monte Carlo approach.

In our framework, optimal regulation of a metabolic network
requires that the EPR be maximized while satisfying a stopping
criteria: L = 0.0. A diverse set of reaction regulation schemes rep-
resented by enzyme activity values, {α1,…, αZ}, satisfy the
stopping criteria, but each scheme results in a different EPR
(figures 3c–5c, grey dots). Thus, we use a hybrid optimization-
RL approach to iteratively search for the best regulation
scheme. (A hybrid simulation-RL approach can also be used.)
In this framework, the agent iteratively learns how to navigate
a state space, S, by using different possible actions from an
action space, A. States correspond to the value of enzyme activi-
ties while actions correspond to regulating a specified reaction.
We therefore define the state space S as the subset of RZ using
range of each enzyme activity, [0.0, 1.0]Z, and the action space
as the set of reactions, A = {1, 2,…, Z}. We also define a subset
of S where learning terminates, ST = {s∈ S|L(s) = 0.0}.

Because regulating the jth enzyme results in a deterministic
step-size, Δαj, the resulting state is given by the following set of
enzyme activities: {α1,…, αj− Δαj,…, αZ}. The goal of RL is to
learn an optimal policy, π* : S→A, which results in a regulation
scheme that maximize some defined notion of rewards,
R :S� A� S ! R. In other words, learning the optimal policy
corresponds to learning the regulation scheme for the chemical
reaction network that results in the largest reward.

Each reaction that is regulated results in a scalar valued
reward, or feedback, from the environment based on an
action/regulation (figure 2) that indirectly defines optimal regu-
lation schemes. Each regulation decision alters the steady-state
metabolite concentrations, which are obtained from optimization
or simulation of equation (4.14), and used to calculate rewards
using a loss function, Λ, specified by

L ¼ log
XM
i

~ni
ni

 !
: (4:23)

The formulation of Λ emphasizes regulation of reactions that
affect metabolites which are furthest from being in calibre with
experimental measurements.

We define the environmental feedback, or reward function
R as:

R(s, a, s0) ¼
L(s)�L(s0)

h , L(s0) = 0:0

EPR(s0)þ L(s)�L(s0)
h , L(s0) ¼ 0:0:

(
(4:24)

Intermediate rewards are calculated by the reduction in Λ scaled
by a positive factor η. Once a terminal state is found, the final
reward consists of the final change in the scaled loss function
as well as the entropy production rate calculated at the final
state, EPR(s0) + (Λ(s)−Λ(s0))/η. Thus, the agent aims to both
increase the value of EPR(s) for st∈ ST while satisfying the con-
straint L = 0.0 and regulating as many reactions as is necessary.

Learning is conducted by iteratively updating the current
policy function, π : S→A, that determines the agent behaviour.
The policy function determines which reaction j∈Z should be
regulated based on the current enzyme activities, {α1,…, αZ} ∈
S. Here, we use an n-step SARSA algorithm [31] to perform
fitted value function iteration. An optimal policy is therefore
learned by iteratively updating the value function, V : S ! R,
which is defined as the expected rewards to be received by fol-
lowing a fixed policy from a specified state, Vπ(st) = Eπ[rt:t+n|st].
In an n-step algorithm, the value function is meant to predict
the discounted reward, rt:t+n, for n future steps. The n-step
reward experienced by the agent is defined as rt : t+n = rt + γrt+1
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+ · · · + γn−1rt+n−1 + γnV(st+n), where γ∈ [0.0, 1.0] is the discount
factor. Each reward, rt = R(st−1, a, st), represents the feedback
from moving into state st from st−1 after taking some action a.
The first n steps represent the rewards experienced, while the
term V(st+n) represents the future rewards. Once a terminal
state is less than n steps away, the n-step reward is truncated to
the appropriate length.

Learning the value function implicitly improves the policy.
The relationship between the value of a state and the policy is
given by an ϵ-greedy policy, which is defined as:

p(s) ¼
arg max

a[A
(R(s, a, s0)þ gV(s0)), j � 1

random choice, j , 1,

8<
: (4:25)

where ξ is a uniform random number between 0.0 and 1.0. As the
value function is better estimated, the policy determines reac-
tions to regulate that lead to the greatest cumulative reward.
Exploration is imposed by randomly choosing reactions to regu-
late, allowing the policy to escape local minima. As the agent
learns, ε is slowly annealed to reduce exploration and fluctu-
ations in the value function. During each training episode, we
begin at the state s = {1.0,…, 1.0}, such that all enzyme activities
are unregulated. Trajectories through state space are stopped
when the stopping criteria L = 0.0 is satisfied. This condition
requires that all reactions have cost function values at or below
zero before the RL ends and the predictions are in calibre with
the experimental values.

Finally, the state value function is estimated by using a neural
network implemented in PyTorch [66] with a single hidden layer
and hyperbolic tangent activation functions. Updates to the
value function are performed by optimizing the neural network
using stochastic gradient descent. This is done by backpropagat-
ing the squared loss between the predicted value and the n-step
reward, [V(st)− rt : t+n]

2. The code implementing this framework
is available in the electronic supplementary material.

4.4. Model training
Prediction of network regulation was performed using a trained
neural network to estimate the value function. Network weights
were adjusted using stochastic gradient descent with a learning
rate, lr∈ {10−4, 10−5, 10−6}. Each algorithm learned and generated
data using an ϵ-greedy policy with initial ϵ = 0.5 or 0.2 depend-
ing on the size of the pathway. ϵ was annealed by dividing by a
factor of two every 25 learning episodes.

For each pathway, 10 agents are trained for each different
value of n∈ {2, 4,…, 12} and each learning rate. The resulting
average of 10 RL runs for the glycolysis–PPP–TCA pathway
(electronic supplementary material, figure S1) show the mean
reward for the 350 training episodes. Optimal regulation is pre-
scribed by analysing the agent with the largest cumulative
reward averaged over the last 50 terminal states.

4.5. Metabolic models
The three metabolic models consisted of either the 10 reactions in
gluconeogenesis or the 28 reactions of glycolysis, the PPP, the
TCA cycle and the NADH-dependent L-glutamine:2-oxoglutarate
amidotransferase (GOGAT) reaction. The largest model consisted
of 47 metabolites, of which 20 were fixed boundary species and 27
were allowed to vary. The number of variable metabolites (27)
was less than the number of reactions (29) due to one cycle of
eight reactions but only seven intermediate species, and also
because the GOGAT reaction, which maintains a defined
number of species in the TCA cycle, had two fixed species (gluta-
mate and glutamine) and shared a variable species with the TCA
cycle (2-oxoglutarate). Without the GOGAT reaction, the concen-
trations of metabolites in the TCA cycle could have a range of
values as long as they maintain consistent values in forward
and backward thermodynamic odds KQ−1 solutions of equation
(4.14). The fixed boundary metabolites were such that the entire
system was non-equilibrium: β−D�glucose ¼ 1mM,
L-glutamate ¼ 9:6� 10�02 mM, L-glutamine ¼ 3:81mM, ADP =
5.6 × 10−01 mM, ATP = 9.6 mM, orthophosphate = 20 mM,
NADH= 8.3 × 10−02 mM, NAD+ = 2.6 mM, H2O ¼ 55:5 M,
CO2 = 0.1 mM, and coenzyme A= 1.4 mM. The complete model
and submodels are available as computational notebooks in Jupy-
ter and Python (electronic supplementary material).

Standard free energies of formation of metabolites in aqu-
eous solution as well as equilibrium constants were determined
using the eQuilibrator software, version 0.1.8, [67] using
pH = 7.0 and ionic strength i = 0.15.

4.6. Data
The metabolomics data used in this study were from E. coli
studies by Bennett et al. [24] and Park et al. [25]. Briefly, E. coli
cells were grown in isotope-labelled media and then extracted
in organic solvent containing unlabelled internal standards in
known concentrations. Metabolites were extracted in cold solvent
and analysed using chromatography-MS, and concentrations
relative to the known standard concentrations were obtained
using peak ratios of the labelled samples to unlabelled standards.

If no experimental data are available, the analysis is carried
out using estimates of metabolite concentrations (electronic sup-
plementary material). For this purpose, we use an estimate of
1.0 mM for each metabolite that is variable. For fixed metabolites
that form the boundary conditions, specific values are required
that induce appropriate non-equilibrium boundary conditions.

Standard free energies of reaction were calculated using
eQuilibrator and the eQuilibrator API [67]. eQuilibrator uses
well-curated gold standard data on the thermodynamics of reac-
tions from the National Institute of Standards and Technology
[68], which is the basis for subsequently adjusting reference
free energies for pH and ionic strength. For reactions for which
experimental data are not available, free energies are estimated
using reliable reaction comparison methods [69] or electronic
structure calculations [70].

Data accessibility. Links to the code repository and computer notebooks
containing the code used in the study are provided in the electronic
supplementary material.
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