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Abstract

Maize (Zea mays L.) is one of the major staple food crops of the world. However, high photo-

period sensitivity, especially for tropical germplasms, impedes attempts to improve maize

agronomical traits by integration of tropical and temperate maize germplasms. Physiological

and phenotypic responses of maize to photoperiod have widely been investigated based on

multi-site field observations; however, proteome-based responsive mechanisms under con-

trolled photoperiod regimes, nutrient and moisture soils are not yet well understood. In the

present study, we sequenced and analyzed six proteomes of tropically-adapted and photo-

period-sensitive M9 inbred line at the vegetative 3 stage and proteomes from tropically-

adapted and photoperiod-sensitive Shuang M9 (SM9) inbred line at the vegetative-tasseling

stage. All plants were grown in growth chambers with controlled soil and temperature and

three photoperiod regimes, a short photoperiod (SP) of 10 h light/14 h dark, a control neutral

photoperiod (NP) of 12 h light/12 h dark, and a long photoperiod (LP) of 16 h light/8 h dark

for a daily cycle. We identified 4,395 proteins of which 401 and 425 differentially-expressed

proteins (DPs) were found in abundance in M9 leaves and in SM9 leaves as per SP/LP vs.

NP, respectively. Some DPs showed responses to both SP and LP while some only

responded to either SP or LP, depending on M9 or SM9. Our study showed that the photo-

periodic response pathway, circadian clock rhythm, and high light density/intensity crosstalk

with each other, but apparently differ from dark signaling routes. Photoperiod response

involves light-responsive or dark-responsive proteins or both. The DPs positioned on the

signaling routes from photoperiod changes to RNA/DNA responses involve the mago nashi

homolog and glycine-rich RNA-binding proteins. Moreover, the cell-to-cell movement of

ZCN14 through plasmodesmata is likely blocked under a 16-h-light LP. Here, we propose a

photoperiodic model based on our findings and those from previous studies.
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Introduction

Photoperiod is a daily recurring pattern of light and dark periods [1]. The response or capacity

to respond to photoperiod is termed as photoperiodism [1]. However, photoperiod sensing is

also partially associated with mechanisms regulating the circadian rhythms [2–4].

Maize (Zea mays L.), a major food crops of the world, originated in tropics [5] but evolved

into tropically-adapted photoperiod-sensitive and temperate-adapted photoperiod insensi-

tive germplasms due to post-domestication and breeding selection [6]. However, the high

sensitivity of tropical maize germplasms to photoperiods limits its planting distribution and

production [5, 7]. Photoperiod-sensitive maize lines/hybrids with tropical germplasm are

characterized in part by delayed flowering and/or failure of seed setting under long photope-

riods (LP) [8]. Three models for the effects of photoperiod on maize flowering have been pro-

posed in maize [6, 9, 10], which are framed by several genes-encoded proteins.

Soil conditions such as soil moisture [11] and flooding [12] may affect plant responses to

photoperiod changes. Increasing attempts to improve maize agronomical traits by integration

of tropical and temperate maize germplasm [13, 14] is greatly impeded by the higher sensitivity

of tropically-adapted maize to photoperiod changes [7, 15]. Therefore, it is important to

unravel the molecular mechanisms governing photoperiod sensitivity of maize at different lev-

els. The results based on multi-site field observations and/or on uncontrolled conditions can

not accurately characterize the mechanisms of maize responses to changes in photoperiod fac-

tors. Our previous experiments conducted under controlled conditions in chambers showed

that photoperiod changes can cause a wide variety of phenotypic changes in maize [8]. This

indicates that changes in photoperiod may affect many signaling networks in maize cells,

which should be addressed at the proteome level. For example, why LP conditions lead to a

failure of photoperiod-sensitive maize lines in flowering is not clear. Moreover, the routes of

the photoperiodic effects, light- and dark-responses, high light intensity, and circadian clock

rhythms remain undeciphered.

Proteomics provides a complementary approach to genomics technologies by en masse
interrogation of biological phenomena at the protein level [16]. Our previous study found that

tropically-adapted M9 and Shuang M9 (SM9) inbred lines were photoperiod-sensitive and did

not develop growth points at the stem apex, flowering and seed setting under the influence of

an LP of 16 h day light under controlled air humidity and soil conditions at a constant temper-

ature of 28˚C [8]. Therefore, we conducted the present study on the proteome profiles of M9

and SM9 inbred lines by using the isobaric tag for relative and absolute quantitation (iTRAQ)

to explore the endogenous protein networks governing the photoperiodic effects.

Materials and methods

Maize inbred lines and growth conditions

In this study, we used two photoperiod-sensitive inbred maize lines, M9 and SM9 [8]. The pre-

vious study under controlled conditions indicated that the photoperiodic effects on maize

started early at the vegetative 3 (V3) [8].

The methods for the plantation and management of maize were as described in our previ-

ous study [8]. Briefly, the used soil was arable layer topsoil from the experimental field of Hai-

nan Institute of Tropical Agricultural Resources, Sanya, Hainan, China. The arable layer

topsoil was fully mixed together with the organic fertilizer (Haide Institute of Tropical Agricul-

tural Resources Ltd. Hainan) in a ratio of 1:3, in which the final major effective nutrient con-

tent was 502.697 mg/kg for the available phosphorus, 2030 mg/kg for the available potassium,

and 580 mg/kg for the alkaline-hydrolyzable nitrogen. The soil was then potted for planting
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maize, 14 kg per pot (which was of a 29 cm inner diameter at the top, 22.5 cm inner diameter

at the bottom and 23.5 cm in height). The potted soil was irrigated by spraying local well water

to obtain a moisture level of 95% before sowing maize seeds. The maize seed-planted pots were

placed in the growth chamber with a constant room temperature of 28 ± 0.5˚C. Photoperiods

of the chambers were set up as a short photoperiod (SP) of 10 h light/14 h dark, a control neu-

tral photoperiod (NP) of 12 h light/12 h dark, and LP of 16 h light/8 h dark for a daily cycle,

respectively. NL-S600/230GN2A plant fill light ballasts (Newlight Electronics Co., Ltd.) were

used as a light source, which provided light of intensity 13.71 cd/m2. The luminous intensity

on the surface on the uppermost leaves was 13.71 cd/m2. The water content of the soil in the

pots was controlled within the range of 65%–70% by spraying with water.

Leaf tissue materials

Leaf tissues from maize lines at the V3 and vegetable-tasseling (VT) stages were collected; the

entire third leaf at the V3 for M9 and the uppermost leaves at VT stage for SM9 were sampled

2 h after light exposure. The sampled leaves were immediately frozen in liquid nitrogen.

Protein preparation

For each treatment, the equal weights of leaf samples from three individual plants were mixed

and powdered by grinding in liquid nitrogen. For protein extraction, the powered leaf materi-

als were digested for 5 min in a buffer at pH 8.5 containing 7 M urea, 2 M thiourea, 4%

CHAPS, 40 mM Tris-HCl, 1 mM PMSF and 2 mM EDTA. After that, the DTT was added up

to a final concentration of 10 mM. The resulting suspension was sonicated for 15 min at 200

W followed by centrifugation for 15 min at 30,000 g at 4˚C. Then, a 5-fold volume of pre-

cooled acetone containing 10% (v/v) TCA was mixed with the resulting supernatant followed

by incubation overnight at −20˚C. The incubated mix was then centrifuged for 15 min at

30,000 g at 4˚C. The precipitate was washed three times with pre-cooled acetone, air-dried at

room temperature, and then re-dissolved in a solution composed of 7 M urea, 2 M thiourea,

4% NP-40, and 20 mM Tris-HCl at pH 8.0–8.5. The solution was sonicated for 15 min at 200

W and centrifuged for 15 min at 30,000 g at 4˚C. DTT was added to the supernatant to obtain

a 10 mM solution, which was then incubated for 1 h at 56˚C to reduce disulfide linkages in the

proteins. Subsequently, 55 mM IAM (final concentration) was added and incubated for 1 h in

the dark at room temperature followed by adding a 5-fold volume of pre-cooled acetone and

incubating for 2 h at −20˚C. The samples were centrifuged for 15 min at 30,000 g at 4˚C. The

pellet was air-dried for 5 min at room temperature, dissolved in 500 μL of 0.5 M TEAB

(Applied Biosystems, Milan, Italy), and treated by sonication for 15 min at 200 W. The solu-

tion after sonication was centrifuged for 15 min at 30,000 g at 4˚C. The supernatant was trans-

ferred to a tube and then assayed for concentrations and quality of proteins.

Peptide labeling and strong cation exchange chromatography (SCX)

fractionation

Protein sample of 100 μg was mixed with Trypsin Gold (Promega, Madison, WI, USA) at a

ratio of 30 (protein):1(trypsin) and digested for 16 h at 37˚C. The trypsin-hydrolysate peptide

mixture was dried by vacuum centrifugation and reconstituted in 0.5 M TEAB for peptide

labeling with the 8-plex iTRAQ reagent (Applied Biosystems) according to the manufacturer’s

instructions (http://www.absciex.com.cn/Documents/Downloads/Literature/mass-

spectrometry-4375249C) but with minor modifications.

Briefly, 1 U of the 8-plex iTRAQ reagent was thawed and reconstituted in 24 μL of isopro-

panol. The peptides were labeled with the isobaric tags and incubated for 2 h at room
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temperature. The labeled peptide mix was pooled, dried by vacuum centrifugation, and recon-

stituted in 4 mL buffer A at pH 2.7 containing 25 mM NaH2PO4 and 25% ACN. The mix was

loaded onto a 4.6 × 250 mm Ultremex SCX column containing 5-μm particles (Phenomenex)

equipped in an LC-20AB high-performance liquid chromatography (HPLC) pump system

(Shimadzu, Kyoto, Japan). Gradient elution during HLPC was conducted for 10 min with

buffer A, for 27 min with 5–60% buffer B (25 mM NaH2PO4, 1 M KCl in 25% ACN, pH 2.7),

and then for 1 min with each concentration of 60 to 100% gradient buffer B, respectively,

where a flow rate of elution was controlled at 1 mL/min. The last elution was performed with

100% buffer B. The eluant for each elution was collected every 1 min and monitored for con-

tents of peptides by measuring the absorbance at a wavelength of 214 nm, The peptides col-

lected in 20 fractions were desalted separately with a Strata-X C18 column (Phenomenex), and

then vacuum-dried.

HPLC coupled to Electrospray Ionization (ESI) Mass Spectrometry (MS)

The twenty vacuum-dried fractions were re-suspended in buffer A containing 5% ACN and

0.1% FA and centrifuged for 10 min at 20,000 g. The final concentration of the peptide in the

supernatant was adjusted to 0.5 μg/μL. A 10-μL aliquot of supernatant was loaded by using an

autosampler onto a 2-cm C18 trap column in an LC-20AD nanoHPLC (Shimadzu, Kyoto,

Japan). The peptides were loaded onto a 10-cm analytical C18 column that was packed in-

house and had an inner diameter of 75 μm, where loading was for 4 min at 8 μL/min. Elution

was set at 300 nL/min starting from 2 to 35% buffer B containing 95% ACN and 0.1% FA then

followed by elution for 5 min with 60% buffer B, for 2 min with 80% buffer B, for 4 min with

80% buffer B, and for 1 min with 5% buffer B, respectively. The whole process took about 35

min.

Data acquisition of peptide MS was performed on a TripleTOF 5600 System (AB SCIEX,

Concord, ON, Canada) equipped with a Nanospray III source (AB SCIEX, Concord, ON, Can-

ada) and a pulled quartz tip emitter (New Objectives, Woburn, MA, USA). The parameters for

data acquisition were: 2.5 kV for ion spray voltage, 30 psi for the curtain gas, 15 psi for the neb-

ulizer gas, and 150˚C for an interface heater temperature. The mass spectrometer was operated

for TOF MS scans under a reflection mode at a resolution ratio of�30,000. For IDA, when

MS accumulated and reached 250, and only top 2+ to 5+ charge-state ions of>120 cps were

then scanned. Total cycle time was 3.3 s. The Q2 transmission window was at an efficiency of

100% at 100 Da, and then run at a pulsing frequency of 11 kHz for each scanning and detected

by suing a TDC detector of a 40-GHz detecting frequency. Four time-bins were summed and

translated into the available data. A 35 ± 5 eV of sweeping collision energy setting was applied

to all precursor ions for collision-induced dissociation. Dynamic exclusion was set for 1/2 of

the peak width (15 s).

For each protein sample, the HLPC-MS analysis was technically repeated three times.

Peptide analysis, protein identification and quantitation

Raw data files acquired from the Orbitrap were converted into MGF files using Proteome Dis-

coverer 1.2 (PD 1.2, Thermo) [5600 msconverter], and blasted against the database containing

Z. mays sequences (136770 sequences) to identify proteins as the 2+ and 3+ charge states of the

peptides by using the Mascot 2.3.02 search engine (Matrix Science, London, UK). In Mascot

2.3.02, an automatic decoy database search was performed by choosing the decoy checkbox to

both generate random peptide sequences and test raw spectra of the sequences against the real

database. Additionally, only peptides with significance scores of� 20 at the 99% confidence
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interval were counted as identified to reduce the probability of false identification. Each pro-

tein was identified by at least one unique peptide.

Each protein was quantified based on the intensity of reporter groups from at least two

unique peptides, weighted and normalized by the median ratio in Mascot 2.3.02. Quantifica-

tion of each protein was represented by the mean of signal intensity of reporter groups from

three technical repeats of HPLC-MS analysis. The mean of the intensity of reporter groups for

each protein was transformed by logarithm with 2 as the base, which was used for identifying

differential proteins (DPs) in abundance between samples as a cut-off of a fold of> 1.2 with a

p-value of< 0.05.

Functional annotation and categorization of proteins

The proteins were annotated using the Gene Ontology (GO) categorization by using pro-

tein2go and go2protein programs against the non-redundant protein database (NR; NCBI;

http://www.geneontology.org.). The Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (http://www.genome.jp/kegg/) and the Cluster of Orthologous Groups (COG) of pro-

teins database (http://www.ncbi.nlm.nih.gov/COG/) were used to classify and group the iden-

tified proteins.

Results

Proteins identified in M9 and SM9 in response to different photoperiods

The two tropically-adapted and photoperiod-sensitive maize inbred lines, M9 and SM9, were

characterized by the arrested development of the tassels at the V9 stage under an LP of 16 h

light (Fig 1A), and failed to tassel and silk at the VT stage under an LP (Fig 1B). Because the

qualities of the proteins extracted from M9 line at the VT stage and SM9 line at the V3 stage

were poor, we sequenced six proteomes from leaf tissues of the M9 line at the V3 stage and the

SM9 line at the VT stage grown under SP, NP, and LP (Fig 2A), respectively. The supplemen-

tary S1–S4 Figs respectively show the statistical information on the identified proteins, the dis-

tribution of protein mass in the protein profile, the distribution of the peptide segment length,

and the percentage of the peptide of different lengths in the peptide repertoires. The number

of peptides contained in the identified proteins and the matching error distribution of the pep-

tides are shown in S5 and S6 Figs respectively. The distribution of abundance and differential

abundance fold of proteins are shown in S7 Fig.

Consequently, a total of 4,395 proteins were identified (S1 Table; S1 Fig). The amino acid

sequences of the identified proteins were listed in S2 Table.

Prevalent categories of proteins based on GO

Regarding biological process by the Gene Ontology (GO) categorization of the entire prote-

ome, we found two prevalent categories: metabolic process with 25.45% of and cellular process

with 21.30% of the total proteins were found (Fig 2B).

Regarding the cellular component, there were the three most prevalent categories: the cell

and cell part each comprised of 24.4% of the proteins while the organelle contained 21.72% of

the proteins (Fig 2C). Regarding the molecular function, two dominant categories, catalytic

activity (46.00% of the proteins) and binding (40.6% of the protein) were revealed (Fig 2D).

Functional classification of the protein repertoires by the Cluster of Orthologous Groups

(COG) indicated six largest functional groups: general function prediction; posttranslational

modification, protein turnover, chaperons; energy production and conversion; translation,

ribosomal structure and biogenesis; carbohydrate transport and metabolism; and amino acid
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transport and metabolism; and two smallest functional groups of nuclear structure and cell

motility (Fig 3).

A manual search of GO categorization in the protein repertoires using the keywords the

biotic and abiotic stresses, photoperiodism and circadian rhythm, growth and development,

and flowering, indicated the major groups of the proteins associated with biological processes

of cadmium (264 proteins); salt/water/desiccation (156 proteins); signaling (110 proteins);

light (109 proteins); cold (108 proteins); oxidative stress (82 proteins); photosynthesis (69 pro-

teins); growth (64 proteins); embryo (63 proteins); seed and hormones (44 proteins each) (Fig

4). Some of these proteins were found to be associated with multiple biological processes (S3

Table).

DPs responding to photoperiod changes

We compared the relative abundance of the proteins in the same maize inbred line under dif-

ferent photoperiod conditions in LP vs. NP, and SP vs. NP (S1 Table). In the M9 leaves at the

Fig 1. Tassel development al state at V9 stage (A) and, tasseling and silking of tropically-adapted and photoperiod-sensitive

maize inbred lines M9 and SM9 (B) at VT stage under different photoperiods. LP, long photoperiod of 16 h light/8 h dark for a daily

cycle; NP, neutral photoperiod of 12 h day light/12 h dark; SM9, Shuang M9; SP, short photoperiod of 10 h light/14 h dark; V3, vegetable 9

stage; VT, vegetable-tasseling stage.

https://doi.org/10.1371/journal.pone.0174003.g001
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V3 stage, there were 401 DPs (9.1% of total protein number), in which 37 were co-regulated by

LP and SP (S4 Table), 223 and 141 were only regulated by LP (S5 Table) and SP (S6 Table),

respectively.

In the SM9 leaves at the VT stage, there were 425 DPs (9.7% of total proteins). In these pro-

teins, 38 were co-regulated by LP and SP (S7 Table), whereas 254 and 133 were only regulated

by LP (S8 Table) and SP (S9 Table), respectively.

The photoperiod responsive and signaling DPs of interest

As shown in Fig 4, larger groups of DPs were those associated with cadmium stress (181 DPs),

salt/water/desiccation stress (102 DPs), cold stress (70 DPs), oxidative stress (53 DPs), and

wounding stress (17 DPs) (Fig 4).

Of the identified five classes of the photoperiod-related DPs, there were 69 light-responsive,

26 heat shock proteins (HSPs), 11 high light intensity-responsive, 6 UV-responsive, 4 photope-

riodism processes-related, 3 circadian-responsive, and 2 antenna-related proteins (Fig 4).

There were 30 embryo-related, 25 seed-related, 18 pollen-related, 17 hormone-related, 10

flower-related, eight inflorescences/regulation of timing of the transition from vegetative to

reproductive phase, 6 sex-related, and 4 megagametogenesis-related proteins (Fig 4).

Fig 2. Extracted proteins, and GO-based categorization of biological processes and activities the identified proteins. Proteins from

M9 leaves at V3 stage and from SM9 leaves at VT stage under LP, NP and SP (A). GO categorization (B, C, and D). GO, Gene Ontology;

LP, long photoperiod of 16 h light/8 h dark for a daily cycle; NP, neutral photoperiod of 12 h day light/12 h dark; SM9, Shuang M9; SP, short

photoperiod of 10 h light/14 h dark; V3, vegetable 3 stage; VT, vegetable-tasseling stage.

https://doi.org/10.1371/journal.pone.0174003.g002
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Forty-five DPs were related to the signaling processes. The expression abundance of all

these DPs was shown in S10 Table.

Discussion

In the present study, we sequenced only six proteomes from three photoperiods of which three

proteomes were from the M9 inbred line at the V3 stage and three from SM9 inbred line at the

VT stage respectively. GO categorization can show more information on biological processes

and intracellular location. Therefore, our analysis of the proteome-based responsive mecha-

nisms under controlled photoperiod regimes, nutrient and moisture soils was based on GO

categorization of some of the DPs.

The process of flowering is closely related to sex differentiation [17, 18]. We found that sex

differentiation related DPs were mago nashi homologs; expansions B1, B3, B10, and B11; and

pollen allergen Lol p 1. In these DPs, the maize pollen allergens function in pollen germination

in the stigma [19] not in vegetative or female floral tissues [20]. The mago nashi protein func-

tions in splicing and nuclear export of mRNAs [21]. The M9 and SM9 inbred lines usually

flower at the VT stage under LP of 12 h light, but fail to grow out both tassels and silks at the

VT stage under LP of 16 h light [8]. Interestingly, no DPs related to gynoecium development

were found in either M9 or SM9 line (Fig 4; S10 Table). These results suggest that these DPs

are closely involved in sex differentiation under photoperiodic effects. Moreover, failure in

development and growth of the female silks and later silking under LP conditions are likely

associated with the expression regulation of male differentiation-associated proteins because

Fig 3. COG-based classification of functions and/or metabolism the identified proteins. The identified proteins were

from M9 leaves at V3 stage and from SM9 leaves at the VT stage under LP, NP and SP. COG, Cluster of Orthologous

Groups; LP, long photoperiod of 16 h light/8 h dark for a daily cycle; NP, neutral photoperiod of 12 h day light/12 h dark;

SM9, Shuang M9; SP, short photoperiod of 10 h light/14 h dark; V3, vegetable 3 stage; VT, vegetable-tasseling stage.

https://doi.org/10.1371/journal.pone.0174003.g003
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the empirical observation in the field is that tasseling is always before silking at a predictable

time during maize growth.

The determination for flowering is also associated with regulation of transition from vegeta-

tive to reproductive phase (RTVR) [22–25]. Photoperiod pathway is one of the multiple

genetic pathways involving multiple genes that control the floral transition in plants [22].

These pathways are coordinated at different levels [25]. We found 8 DPs related to RTVR (S10

Table). These results suggest that overly sensitive variations in the RTVR-related in response

to photoperiod will not ensure a sharp transition from vegetative to floral stage under LP.

Maize inflorescence stems from the differentiation of primary shoot apical meristem

(SAM) [26, 27]. In Arabidopsis, SERRATE is required for the development of early juvenile

leaves, but it suppresses inflorescence development [28] by coordinately regulating SAM activ-

ity via a microRNA gene-silencing pathway [29]. Guanine nucleotide-binding proteins

(known as G proteins) play important roles in the transmission of hormones and red and blue

light-induced signals from membrane receptors to different effectors [30]. In SAM-related

DPs (S10 Table), the expression of SERRATE RNA effectors were down-regulated in M9

Fig 4. The number of proteins of interest and DPs in the protein repertoires from maize inbred lines M9 and SM9 under different

photoperiods. The statistics were based on manual searching from GO categorization instead of simple annotation description of proteins

in terms of the key items such as “photoperiodism”, “flower”, “cold”, and “salt/water/desiccation”. Some proteins involved multiple biological

processes; therefore, the statistical figures may overlap. The boldface figures in the circles indicate the number of proteins under the items.

The italics figures in the small circles represent the number of DPs. DPs, differential proteins in abundance; GO, Gene Ontology.

https://doi.org/10.1371/journal.pone.0174003.g004
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under SP but did not significantly change in either M9 or SM9 under LP. The expression of

the guanine nucleotide-binding protein subunit beta-like protein A was up-regulated in M9

under SP and down-regulated in SM9 under LP (S10 Table). Combined together, these find-

ings clearly suggest that under LP the expression of SERRATE RNA effector molecules sup-

press late inflorescence development. Moreover, the suppressed expression of guanine

nucleotide-binding protein subunit beta-like protein A not only impairs red and blue light sig-

naling but also interferes with the flowering-required balance of phytohormones in maize.

Reportedly, the expression of catalase 1 persisted at a low level in a UV light-independent

way during maize development [31]. Moreover, only catalase 3 expression was under the influ-

ence of a circadian rhythm in maize leaves [32]. In this study, a photoperiodism-related DP,

catalase isozyme 1 (S10 Table) was found to respond to the abscisic acid stimulus signaling

pathway (S3 Table) and was down-regulated under LP. These results suggest that catalase iso-

zyme 1 is photoperiod-responsive, and its expression might be partially dependent on the

intensity and the type of light. ZCN14 is the most favored candidate for possessing FLOWER-
ING LOCUS T (FT) function [33], which is transported by plasmodesmata from the leaves into

SAM to regulate flowering [34]. ZCN14/HEADING DATE 3B was up-regulated in the M9 line

under LP and down-regulated in the SM9 line (S10 Table), suggesting that its expression varies

with photoperiods depending on the inbred lines and tissues of maize. Photoperiodism should

also be associated with plant responses to red, far-red light/blue, and UV-B light. These light

species-responsive processes involved DPs are located in the inner cell wall, plasma membrane,

chloroplast envelope, thylakoid, and nucleus (S10 Table). Some of these DPs were common

players for responses to different light species (S3 Table). Among these DPs was that diphos-

phate kinase 2 was down-regulated (S10 Table), which responds to the auxin signaling path-

way (S3 Table).

Mechanisms of circadian rhythm and photoperiodism are correlated but not exactly similar

in plants [2]. The circadian rhythm-related DPs were distributed in ribosome, peroxisome,

plastoglobule, vacuole, and chloroplast envelope, chloroplast, cell wall, plasma membrane, and

nucleolus (S3 Table). Of these DPs, glycine-rich RNA-binding proteins were probably the link-

ages between circadian rhythm and photoperiodism by governing the export of photoperiodic

mRNAs from the nucleus by abscisic acid signaling pathway (S3 Table).

We found three proteins that were sensitive to the absence of light or darkness. These pro-

teins included the electron transfer flavoprotein-ubiquinone oxidoreductase located in the

mitochondria; protein translocase subunits SECA1 and SECA located in chloroplast envelope,

chloroplast stroma, and plasma membrane; and a glutamate dehydrogenase located in the

mitochondria (S3 Table). These proteins are obviously different from light-responsive DPs,

suggesting that dark signaling seems to be independent of the other light signal transmission

routes. Our results showed that glutamate dehydrogenase was significantly up-regulated under

SP but down-regulated under LP in M9 at the V3 stage. However, its expression was not signif-

icantly altered in SM9 at the VT stage with photoperiods (S3 Table). Therefore, the suppressed

expression of glutamate dehydrogenase under LP probably elicits a unique photoperiod

response, which interferes with the normal flowering process in both M9 and SM9 lines. These

results clearly indicate that both light- and dark-responsive proteins in some maize lines have

a combined effect on the photoperiodic response.

There were 11 DPs that sense high light intensity and are located in the inner cell wall/

plasma membrane, chloroplast thylakoid membrane, and plastoglobule, cytosol, nucleus, plas-

tid and mitochondrion (S3 and S10 Tables). These DPs differed from those that sense red, far-

red, blue and UV-B light (S3 and S10 Tables), suggesting that the transmission of high-light

density signals is clearly different from signaling pathways transmitting light species.
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In the DPs related to the flowering processes (S3 Table), the 3’(2’),5’-bisphosphate nucleo-

tidase was located in the chloroplast. This nucleotidase was found to be involved in the jasmo-

nic acid- and abscisic acid-mediated signaling processes but negatively controlled signal

transduction (S3 Table). Glutamate-cysteine ligase B was expressed in the chloroplast and

responds to jasmonic acid stimuli (S3 Table). The poly(rC)-binding protein and alpha-galacto-

sidase are known to positively regulate flower development, which was found to be up-regu-

lated in both M9 and SM9 under LP but down-regulated in these two maize lines under SP.

The expression of alpha-galactosidase was not altered in M9 with photoperiodic changes but

down-regulated under SP and up-regulated under LP in SM9 (S10 Table). The actin-related

protein 4, which involves the processes of long-day photoperiodism, flowering, and pollen

sperm cell differentiation (S3 Table), was up-regulated only in SM9 under LP (S10 Table). Glu-

cose-6-phosphate isomerase, which is known to positively regulate flower development, glycol-

ysis, and gluconeogenesis (S3 Table), was down-regulated in both M9 and SM9 under LP (S10

Table). The copper transport protein ATOX1 involves DNA methylation and gene silencing

(S3 Table) and was up-regulated in both M9 and SM9 under LP (S10 Table), suggesting that its

role in enhancing the expression of some flowering-promoting genes, such as ATOX1 gene, is

likely suppressed by methylation-induced gene silencing under LP. The findings of these DPs

can also be suggestive of a signaling route for failure in flowering under LP.

The intercellular and supracellular communications in plants are accomplished by channels

of plasmodesmata, which are associated with biological information vectors/signals such as

phytohormones, reactive oxygen species (ROS), environmental stimuli [35], and photoperiod

and light intensity [34]. The locations of plasmodesmata-related DPs were ascribed to the

Golgi apparatus and the extracellular region, plasmodesmata, cell wall, envelope and stroma of

chloroplasts, nucleolus, mitochondrion, cytosol, plasma membrane, vacuole, and cytoplasmic

microtubule (S3 Table). The alpha-1,4-glucan-protein synthase and actin-7 with positive roles

in transportation of plasmodesmata were down-regulated in both M9 and SM9 under LP (S10

Table), suggesting that the transport of the FT-like protein ZCN14 from the leaves into SAM

through plasmodesmata was probably blocked under LP.

Long day and/or high light intensity can stimulate overproduction of ROS [36–38]. High

levels of ROS can inhibit flowering [39], which mainly occurs in the chloroplast and mitochon-

drion of plants [40–42]. HSPs are very sensitive to extracellular stimuli [43]. The ROS-

responding DPs found in this study included several HSPs and antioxidant peroxidase (S10

Table). The seed setting involves megagametogenesis and the development of the zygotes and

embryos. Interestingly, many abiotic stresses-responsive DPs were observed in our study (Fig

4), which justify the photoperiod changes affecting stress tolerance in plants observed in previ-

ous studies [36, 37, 44]. DPs related to these processes included antioxidant enzyme proteins:

L-ascorbate peroxidase 1 and superoxide dismutase [Mn] 3.4 (S10 Table). These DPs are dis-

tributed in the plant-type cell wall, cytosol, membrane/plasma membranes, vacuole, chloro-

plast, and mitochondrion (S10 Table). Therefore, the likely excessive ROS produced under LP

damages various flowering processes by affecting megagametogenesis, zygotes and embryos.

All the processes discussed above are associated with one or more signaling pathways of

phytohormones (S3 Table), suggesting that all photoperiodic effects on maize can be attributed

to changes in the coordinated regulation of these hormones.

Conclusions

Based on our findings and evidence from previous studies, we propose a model that outlines

and shows protein roadmaps and echoing routes in responses of maize to photoperiod changes

(Fig 5). Our model emphasizes: (1) the biological processes of photoperiodic flowering
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signaling, photoperiod response, circadian rhythm, and high light density response could

crosstalk with each other thorough a group of light-sensing proteins that may be clustered in

the cell wall and/or plasma membrane; (2) signals of high light density likely occur under LP

transmit; (3) the cell-to-cell movement of FT-like ZCN14 from the leaves into SAM through

plasmodesmata is blocked under LP; (4) signaling of darkness is mediated by glutamate dehy-

drogenase, apparently independent of the other light signal transmission routes; and (5)

changes in expression of the mago nashi homolog and the glycine-rich RNA-binding protein

with photoperiods make an impact on splicing and nuclear export of mRNAs, and/or for

RNA/DNA secondary structure unwinding; therefore, controlling the response of RNA/DNA

to photoperiod changes.
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