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Abstract
Background: Visualization tools allow researchers to obtain a global view of the interrelationships
between the probes or experiments of a gene expression (e.g. microarray) data set. Some existing
methods include hierarchical clustering and k-means. In recent years, others have proposed
applying minimum spanning trees (MST) for microarray clustering. Although MST-based clustering
is formally equivalent to the dendrograms produced by hierarchical clustering under certain
conditions; visually they can be quite different.

Methods: HAMSTER (Helpful Abstraction using Minimum Spanning Trees for Expression
Relations) is an open source system for generating a set of MSTs from the experiments of a
microarray data set. While previous works have generated a single MST from a data set for data
clustering, we recursively merge experiments and repeat this process to obtain a set of MSTs for
data visualization. Depending on the parameters chosen, each tree is analogous to a snapshot of
one step of the hierarchical clustering process. We scored and ranked these trees using one of
three proposed schemes. HAMSTER is implemented in C++ and makes use of Graphviz for laying
out each MST.

Results: We report on the running time of HAMSTER and demonstrate using data sets from the
NCBI Gene Expression Omnibus (GEO) that the images created by HAMSTER offer insights that
differ from the dendrograms of hierarchical clustering. In addition to the C++ program which is
available as open source, we also provided a web-based version (HAMSTER+) which allows users
to apply our system through a web browser without any computer programming knowledge.

Conclusion: Researchers may find it helpful to include HAMSTER in their microarray analysis
workflow as it can offer insights that differ from hierarchical clustering. We believe that HAMSTER
would be useful for certain types of gradient data sets (e.g time-series data) and data that indicate
relationships between cells/tissues. Both the source and the web server variant of HAMSTER are
available from http://hamster.cbrc.jp/.
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Background
The high dimensionality and exploratory nature of micro-
array data analysis has led to the application of several
unsupervised data clustering techniques to aid in the vis-
ualization of gene expression data. Three popular meth-
ods are hierarchical clustering (HC) [1], k-means [2], and
self-organizing maps (SOM) [3] (others have previously
compared these systems [4]). Implementations of these
methods can be found in TreeView [1], Cluster [5], and
GENECLUSTER [3]; in more general statistical tools such
as R [6]; or on-line, as part of public microarray repositor-
ies such as NCBI's Gene Expression Omnibus (GEO) [7].
Among these, the most popular is hierarchical clustering
(HC), which builds a tree by recursively combining the
two most similar objects.

In this work, we describe a scheme primarily for visualiza-
tion based on minimum spanning trees. Unlike the clus-
tering methods described above, a minimum spanning
tree (MST) is more naturally defined as a graph structure.
As motivation for our work, we generalize the types of
microarray clustering and visualization tools available to
researchers in Figure 1. We classify the methods into three
broad categories. Clustering schemes such as k-means and
self-organizing maps separate the objects under consider-
ation (i.e., experiments or probes) into independent clus-
ters (Figure 1 (left)). An example of this would be a data
set of tumor and normal tissue samples from patients.
Hierarchical clustering produces a binary tree called a den-
drogram, as shown in Figure 1 (center). This technique is
useful if the relationship between samples resemble a
hierarchical structure. The last example in the figure
presents a minimum spanning tree. Unlike the dendro-
gram, the graph is unrooted and hierarchical relationships
are not necessarily implied. While others have used MSTs
for clustering (as we outline below), we believe that such
a method would also be ideal for visualizing data with a
gradient structure (such as time-series data). Experiments
based on cell differentiation would also benefit since

MSTs permit direct associations between samples from
mixed levels of differentiation without forcing every sam-
ple to be at the same level (as hierarchical clustering
would). This paper describes our techniques for achieving
this, as well as a system called "HAMSTER" (Helpful
Abstraction using Minimum Spanning Trees for Expres-
sion Relations) which embodies our ideas. Our main aim
is to depict a microarray data set as a set of MSTs, instead
of a single MST. These MSTs are individually scored and
ranked to aid users. HAMSTER is released as open source
under the GNU General Public License (GPL). In addi-
tion, we also provide a web server version called HAM-
STER+ [8] that encapsulates the local version within a set
of tools for selecting parts of the data set. This web server
allows users to evaluate HAMSTER without performing
any local software installation. Both systems are covered
in this paper, but our focus is on the local version, which
we describe by first comparing and contrasting MSTs with
a related technique, hierarchical clustering.

Hierarchical Clustering (HC)
A microarray data set can be represented as a two-dimen-
sional data table of n experiments and m probes. Even
though we focus on visualizing experiments, the methods
we describe are equally applicable to probes. Of course,
issues such as computation time may be significantly dif-
ferent since the number of probes is usually many times
larger than the number of available experiments.

Hierarchical clustering (HC) forms a tree called a dendro-
gram, in either a bottom-up (agglomerative) or top-down
(divisive) fashion. In bottom-up construction, each exper-
iment is initialized as being in its own cluster and these
clusters form the leaves of the dendrogram. Recursive
pairing of clusters grows the dendrogram upwards, until
only a single cluster remains. Each merge step adds an
internal node to the dendrogram.

Types of clustering and visualization methods for microarray dataFigure 1
Types of clustering and visualization methods for microarray data. The three possible clustering and visualization 
techniques for microarray data (from left to right): as independent clusters, as a dendrogram, and as a minimum spanning tree 
(MST).
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The calculations performed by HC requires two steps. The
first is to calculate the distance matrix d which assigns the
level of dissimilarity between every pair of experiments.
Some common metrics that are used include Euclidean
distance and Pearson correlation coefficient (converted to
a distance by subtracting from 1). We illustrate this with a
sample data set in Table 1 and the corresponding distance
matrix d as Figure 2 using Euclidean distance. The distance
matrix is calculated once and thereafter never updated. In
the second step, as clusters are formed, the dissimilarity
between two clusters of experiments is calculated by the
linkage type chosen by the user. Three common linkages
are single, average, and complete, which represent the
shortest distance, average distance, and longest distance
between pairs of experiments (from different clusters).

Applying HC to the data set of Table 1 using single linkage
is shown in Figure 3, including the final dendrogram (bot-
tom-right). In every case, the four experiments are shown
along the bottom and internal nodes are indicated as
smaller circles. In a dendrogram, every experiment is con-
nected to exactly one internal node.

One important property of dendrograms which we will
return to later is that the two branches of each internal
node can be flipped without any lost in the definition of
hierarchical clustering. This gives flexibility in the order in
which experiments are shown, but it also can cause prob-
lems since a dendrogram could imply an order which is
not present. In our example, the positions of nodes A and
B can be inverted and the dendrogram would still repre-
sent the data of Table 1.

Minimum Spanning Trees (MSTs)
A graph is a concept in computer science which represents
information as a set of nodes and edges, such that each
edge indicates some relationship between its two associ-
ated nodes (for our purposes, we disallow edges which
connect a node to itself). An undirected graph G(V, E) is
composed of a set of vertices V and a set of edges E, with
no direction on any of the edges. A spanning tree for G is a
connected graph with the same vertices but only |V| - 1
edges and no cycles. In a connected graph, each node can
be reached from any other node, by following a series of
edges. If the edges in the original graph are weighted, a

spanning tree whose edges have the minimal total weight
is called a minimum spanning tree (MST). We denote a min-
imum spanning tree of G as GM (V, EM), such that EM ⊆ E.

Several algorithms exist for calculating MSTs, including
Prim's algorithm [9] and Kruskal's algorithm [10]. Prim's
algorithm starts from an arbitrary node and extends the
MST a node at a time in a greedy manner by selecting
neighboring edges with the lowest weight. Instead of add-
ing nodes, Kruskal's algorithm adds edges. It organizes the
dissimilarity matrix d as a sorted list and adds edges, start-
ing from the one with the lowest edge weight, if they con-
nect two previously disconnected components. If all edge
weights in G are unique, then the MST produced is
unique, regardless of the algorithm employed. These algo-
rithms and a description of MSTs are described in books
on graph theory [11,12].

MST construction refers to the selection of nodes or edges.
If this procedure is coupled with the Euclidean distance
measure for determining edge weights, then some authors
have referred to the MSTs as EMSTs (Euclidean Minimum
Spanning Trees) [13]. We do not make such a restriction

Table 1: Sample microarray. 

Probe 1 Probe 2

A 2 1
B 2 2
C 1 3
D 4 4

Sample microarray of four experiments (A, B, C, and D) and two 
probes.

Sample distance matrixFigure 2
Sample distance matrix. The distance matrix d for the 
sample microarray of Table 1. Distances are calculated using 
Euclidean distance.
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Sample hierarchical clusteringFigure 3
Sample hierarchical clustering. The hierarchical cluster-
ing process, including the final dendrogram, for the sample 
data set of Table 1 using Euclidean distance and single linkage.
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since several other dissimilarity metrics are equally impor-
tant to microarray data.

In this work, we have selected Kruskal's algorithm, which
we illustrate by extending our earlier example.

In Figure 4, we show the distances of Figure 2 in sorted
order. The resulting MST is shown in Figure 5 such that
each node is an experiment and the lengths of edges indi-
cate the level of dissimilarity between experiments.

Dendrograms and MSTs
In our example, the dendrogram produced from HC
appears similar in structure to the MST. As observed by
others [14], this property can be summarized as follows:

Property 1 Bottom-up hierarchical clustering using single
linkage generates a dendrogram which is equivalent in struc-
ture to a minimum spanning tree generated using Kruskal's
algorithm.

The reason for Property 1 is straightforward. Hierarchical
clustering using single linkage recursively chooses the
smallest dissimilarity between two clusters. On the other
hand, Kruskal's algorithm sorts the edge weights in
decreasing order and adds edges to G only if they connect
two separated clusters. So, if the dendrogram from hierar-
chical clustering is treated as a more general graph, the
connections added to both graph representations are the
same. If there were identical dissimilarities (edge
weights), additional tie-breaking rules (based, for exam-
ple, on node labels) would be required.

Basically, Property 1 implies that the same groups of
nodes are connected, whether they are graph components
in an MST or sub-trees in a dendrogram. Despite Property
1, dendrograms are visually very different from MSTs and
it is this difference that HAMSTER aims to leverage.

Some of the differences between dendrograms and MSTs
are as follows. A dendrogram has an orientation, so that
users can examine it from the root node down to the
leaves. MSTs have no obvious starting point and need to
be examined as a whole. The most important difference is
that dendrograms introduce internal nodes to connect
clusters together while MSTs do not. In an MST, experi-
ments are connected directly to each other, allowing users
to examine the MST for hubs and neighborhoods. For
example, in Figure 5, it can be seen that experiment B is a
central node, in the sense that it is the nearest neighbor of
A, C, and D. This point cannot be easily seen from the cor-
responding dendrogram.

Previous Applications of MSTs
In bioinformatics, MSTs have been used in areas ranging
from depicting the sequence repetitions in part of the C.
elegans genome [15] to showing the shapes of disease clus-
ters (e.g., cases of the West Nile virus) on a map [13]. In
the latter case, the authors showed that the disease clusters
are allowed to form arbitrary shapes, as determined by
distances between objects, instead of circles as implied by
Euclidean distance-based methods.

As for microarray data, our application of MSTs is most
related to the work on data clustering by researchers at the
Oak Ridge National Laboratory/University of Georgia.
Initially, they proved that MSTs have the desirable prop-
erty that all "good" clusters must consist of nodes that
form a connected subgraph of the MST [16]. The sufficient
condition of "good" proposed is that if a cluster of nodes
from a graph G is split into two non-empty halves C1 and
C2, the nearest neighbor of any node in G\C1 is in C2. Their
main idea is to construct an MST from the genes in a
microarray data set and then apply clustering algorithms
on the MST instead of the original data. In essence, the
problem of clustering the original data is converted to a
simpler tree-partitioning problem. They incorporated
their ideas into a system dubbed EXCAVATOR (EXpres-

Sample sorted list of distances for Kruskal's algorithmFigure 4
Sample sorted list of distances for Kruskal's algo-
rithm. The sorted list of distances from d of Figure 2. Edges 
which are not used for MST construction are crossed out.
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2.829
3.162
3.606
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Sample MSTFigure 5
Sample MST. The MST corresponding to the sample data 
set of Table 1. Edge lengths indicate the dissimilarity between 
experiments.

A
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sion data Clustering Analysis and VisualizATiOn
Resource) [17]. Since then, they have also built CUBIC for
clustering regulatory binding sites using MSTs where the
vertices are k-mers and the dissimilarity between k-mers is
calculated using the Hamming distance [18,19]. More
recently they investigated parallelizing MST construction
where the number of vertices is as high as one million
[20]. Varma and Simon [2004] have used MSTs for feature
(gene) selection for two-class microarray clustering [21].
In many microarray-based studies, the number of genes
that are up/down-regulated are typically very small. Their
aim is to use MSTs to select the genes which are most per-
tinent to the study. Instead of examining all combinations
of genes, they only evaluated the subset of genes obtained
by removing a single edge at a time from the MST. After-
wards, the experiments are clustered using hierarchical
clustering and this gene subset.

Magwene et al. [2003] presented a method for identifying
the time-index of biological samples by combining an
MST with a data structure called a PQ-tree [22]. Assuming
that changes in the transcriptome are "smooth and con-
tinuous", the samples should form a single path. Devia-
tions from the path (branches) are checked recursively
using the PQ-tree.

Results
Previous works used MSTs for data clustering since they
afford more efficient clustering. Our primary aim, how-
ever, is to use MSTs for microarray visualization. Rather
than breaking MSTs into components to form clusters, all
of our MSTs remain connected.

Based on this underlying premise, there are three main
results in this paper. Instead of a single MST, we build sets
of MSTs for a single microarray data set and show how
they are similar to dendrogram construction. This observa-
tion is an extension to our earlier discussion where we
showed how dendrograms are similar MSTs, with the
internal nodes of dendrograms being the most notable
difference. We then propose three schemes which score
and then rank the MSTs in a set to help users select the
important MSTs. Finally, we describe a publicly available
system called HAMSTER that embodies these ideas and
which we also demonstrate with real data. These three
results are covered in the sections below.

Set of MSTs
A set of MSTs is constructed using HAMSTER by recur-
sively merging the most similar experiments in the origi-
nal microarray data set of n experiments and m genes. To
facilitate the discussion below we distinguish between the
microarray and the MST views used by HAMSTER. Clus-
ters of experiments are formed from the microarray with
dissimilarities (or distances) and linkages between clus-

ters, similar to hierarchical clustering. The abstract MST-
view of these clusters has nodes and edge weights between
them. This separation emphasizes that experiment merg-
ing is done on the microarray data set and one possible
interpretation of the set of MSTs is that it allows users to
interpret the relationships between clusters as a connected
graph.

Figure 6 outlines the procedure used by HAMSTER. There
are two phases, which we call build-mst and layout-
mst.

The MSTs are constructed by build-mst as follows. Ini-
tially, each of the n experiments in the data set is itself a
cluster. The first MST (MST 0) is obtained by directly
applying Kruskal's algorithm. Then, the two most similar
clusters in the microarray data set are combined and an
MST of n-1 nodes is created from it (again, using Kruskal's
algorithm) and designated as MST 1. This process contin-
ues until MST n-1 is formed (n MSTs in total), which
would have a single node that encompasses all of the
experiments and no edges. As with hierarchical clustering,
edge weights between composite clusters are calculated
through the user's selection of linkages.

The main difference between our work and what others
have done previously with MSTs is the application of
Kruskal's algorithm n times. While each merge changes

Work flow of HAMSTERFigure 6
Work flow of HAMSTER. HAMSTER receives a microar-
ray data set as input and, through experiment merging, pro-
duces a set of n images (where n is the number of initial 
experiments in the data set). There are two phases to HAM-
STER, as separated by the dashed line: build-mst and 
layout-mst.
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the number of clusters, Kruskal's algorithm does not make
use of information such as the number of experiments
within each cluster.

We describe build-mst in further detail using Algorithm
1. The build-mst system constructs a priority queue of
potential clusters in order to efficiently locate the next
merge. When a cluster is formed, its dissimilarity with all
other clusters must be calculated and inserted into the
queue. The priority queue of dissimilarities is imple-
mented as a heap and Kruskal's algorithm sorts these dis-
similarities to build the MSTs [11].

Algorithm 1: Pseudocode depicting the merging scheme
of build-mst. Translating the description of the n MSTs
into images is performed by layout-mst (not shown
here).

Data: Microarray data set X (n experiments × m
probes)

Result: n MSTs ( )

1 C ← initializeClusters(X)

2 D ← calculateDistances(X)

3 PQ ← buildPQueue(D)

4  ← buildMST(C, PQ)

5 for i ← 1 to n-1 do

6 C ← mergeClusters(C)

7 PQ ← updatePQueue(PQ)

8  ← buildMST(C, PQ)

9 end

The output of build-mst is a set of MSTs such that each
edge in the MST also has an edge weight and every node
has an attribute (color and shape). Edge weights are nor-
malized out of 1.0 for each MST and are used to indicate
the relative distance between nodes when the MST is
drawn. As for attributes, a user has the option of assigning
them to the experiments of the data set, which are then
passed along as merging progresses. If two clusters with
the same attributes are merged, then the associated MST
node obtains the same attributes; otherwise, it is assigned
default attributes. Creating a graphical MST from this
information is done by the layout-mst phase, which

lays out the graph by compromising between the dis-
tances between nodes (the edge weights) and minimizing
the number of node overlaps.

We illustrate this process by continuing our earlier exam-
ple. The four MSTs produced from the microarray data set
of Table 1 using Euclidean distance and single linkage are
shown in Figure 7.

By comparing Figure 3 with Figure 7, we can see that the
set of MSTs is analogous to taking snapshots at each itera-
tion of the hierarchical clustering process. At each step, the
corresponding images show the relationship between the
clusters.

Scoring and Ranking MSTs
While some users may be satisfied with the set of images
produced by our method, others may require further guid-
ance by having each image scored individually. This is
analogous to users having to decide where to cut a den-
drogram to give meaningful sub-trees. We investigated
several scoring schemes for the purpose of MST ranking
and implemented three: gap-based, ANOVA, and normal-
ized association.

The gap-based and ANOVA schemes are based on the idea
that the dissimilarities in the distance matrix can be sepa-
rated into two disjoint groups: those that are within a clus-
ter (intra-cluster) and those that are between clusters
(inter-cluster). Starting from all of the distances in the
inter-cluster group, the merging process used by HAM-
STER moves distances from this group to the intra-cluster
group until the former is empty and only a single cluster
remains. Since distances are chosen in increasing order,
these schemes determine the point at which many small
distances are in the intra-cluster group and many large dis-
tances are in the inter-cluster group.

The gap-based scheme reports on the difference in dis-
tance between the largest intra-cluster distance and the
smallest inter-cluster distance. The score is given a value of
0 when either groups are empty. In contrast, the ANOVA

G GM M i0 1
…

−

GM 0

GMi

The MSTs created though experiment mergingFigure 7
The MSTs created though experiment merging. Ini-
tially, the number of clusters is equal to the number of exper-
iments. Successive merging of the n experiments produces n 
MSTs with the last one having a single node and no edges. 
MSTs are numbered from 0 by HAMSTER.

A

B C

D

AB C

D

ABC

D

ABC
D
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scheme calculates the analysis of variance between the
means of the two groups. The score is the F-statistic, which
is the variation between the two groups divided by the var-
iation within the groups. In both cases, a large score indi-
cates an MST whose two groups of distances are well-
separated. The third scoring scheme is the normalized

association ( ), which makes direct use of the clusters
created through merging and has proven itself in prob-
lems related to image segmentation [23]. In a weighted,
undirected graph, the association A between two clusters
X and Y is the sum of the dissimilarities (or linkages)
between two clusters:

The sum of all dissimilarities within a cluster X is denoted
as A(X, X) and the sum of all dissimilarities which have at
least one experiment in X is A(X, Z), where Z is the set of

all clusters. From this definition, we can see that A(X, X) ≤

A(X, Z). The normalized association ( ) for an MST is
the sum of the proportions of dissimilarities across all
clusters:

The normalized association measures how well the exper-
iments within a cluster are associated with each other, rel-
ative to other experiments. In the case of HAMSTER,
because every experiment has a dissimilarity to every
other cluster, the largest normalized association is the triv-
ial case of one cluster containing all experiments. Further-
more, the normalized association monotonically
increases with each iteration. To correct this, we multiply
Equation (2) by the number of clusters (|Z|). This
increases the score if there are more clusters.

These scoring schemes are used to evaluate MSTs but are
actually calculated by examining the effect merging has on
the underlying distance matrix. The scoring schemes are
all normalized so that they are percentages of the highest

score. As a starting point for users, we suggest the gap-
based scheme as it is the most familiar to people who
employ hierarchical clustering. As suggested earlier, in a
dendrogram like Figure 3, clusters are formed by cutting it
horizontally to form many trees. Examining the gaps is
analogous to assessing the point where such a cut should
be made.

Implementation
We describe our implementation of HAMSTER and, in
less detail, its web server variant called HAMSTER+. The
HAMSTER system and access to HAMSTER+ are both avail-
able at http://hamster.cbrc.jp/.

HAMSTER is open source and distributed under the GNU
General Public License (version 3 or later). The two parts
of the HAMSTER system represent two separate executa-
bles (build-mst and layout-mst). The source code is
written in C++ and documented in-line such that Doxy-
gen [24] could be used to produce documentation for
users who would like to extend HAMSTER's features (See
additional files 1 and 2: build-refman.pdf and lay
out-refman.pdf, respectively.). The software was suc-
cessfully compiled using Autotools and v4.3.2 of the g++
compiler running under Linux.

HAMSTER makes use of other external software or librar-
ies which must be downloaded and installed separately,
as shown in Table 2. The Boost library for C++ is required
and must be both installed and compiled according to the
instructions in the accompanying README file. If Graph-
viz [25] is absent, then only Graphviz source files are pro-
duced. The Open MPI library is also optional but, if
properly installed, can be used to distribute the work of
layout-mst across multiple CPUs.

The features available from HAMSTER are described next,
with a summary in Table 3. Options to both executables
are provided on the command-line and in a configuration
file called either build-mst.cfg or layout-mst.cfg.
Command-line options take priority over the configura-
tion file. To obtain a list of available options, use the
option --help.

A

A X Y d x y
x X y Y

( , ) ( , ).
,

=
∈ ∈
∑ (1)

A

A Z A z z
A z Z

z Z
( ) .( , )

( , )=
∈
∑ (2)

Table 2: Additional software and libraries used by HAMSTER. 

Software Minimum Version Purpose System Required?

Boost library [32] 1.39.0 Used extensively Both Yes
Graphviz (neato) [25] 2.20.2 MST layout and generation layout-mst No
Open MPI [26] 1.2.7 Parallel processing of MST layout layout-mst No

The software and libraries that are used by HAMSTER, as well as their version and purpose. Only the first is required to compile the software; the 
others are optional. Graphviz is required to generate images while Open MPI improves the execution time of layout-mst by distributing work 
across processors.
Page 7 of 18
(page number not for citation purposes)

http://hamster.cbrc.jp/


Source Code for Biology and Medicine 2009, 4:8 http://www.scfbm.org/content/4/1/8
Running build-mst
The filename of the input microarray data file is required
without any option flags. The format of the microarray
data for HAMSTER is a tab-separated file with row and col-
umn labels included. All other values in the data file must
be either floating point values or the string NULL to indi-
cate a missing expression level. While our description of
HAMSTER focuses on the experiments, in practice, the sys-
tem can also be applied to the probes as well by transpos-
ing the data file.

An optional tab-separated file can be provided with the -
-attr option which describes each experiment's
attributes. Every experiment and every node in each MST
has two attributes: a shape and a color. The set of accept-
able shapes and colors are defined by Graphviz with a few
options listed in the README file. If a cluster consists of a
mix of attributes, then the MST node which represents it
obtains the default attribute of a "gray ellipse".

Four dissimilarity measures and four types of linkages are
provided by build-mst, as summarized in Table 3. The
four dissimilarity metrics are: Euclidean distance, Manhat-
tan distance, Pearson correlation coefficient, and Spear-
man rank correlation coefficient. The latter of these two
are converted to dissimilarity measures by subtracting
from 1. The four available linkages are: single, average,
complete, and centroid. The last linkage calculates the
centroids of the two clusters and then the dissimilarity
between them. The type of dissimilarity between centroids
is typically the Euclidean distance, but the user can specify
others using --centroid. Additional distance and link-
age measures can be added by modifying
vect_dist.cpp and cluster_link.cpp, respec-
tively.

The software archive includes a sample configuration file,
the sample data set of Table 1 as sample.data, and its
corresponding attribute file called sample.attr. A sam-
ple application of build-mst would be:

build-mst sample.data --attr sam
ple.attr

A summary of the merging process (summary.txt) is
produced which shows information about each merge
step.

Running layout-mst
After build-mst has calculated the MSTs, the layout-
mst system generates the images. The only required argu-
ment is the summary created by build-mst. All other
files are assumed to be in the same directory. Additional
options are available which can be used to change the size
or resolution of the images. The following command
would use layout-mst with the sample data and default
options:

layout-mst summary.txt

The layout of the images is performed externally by
Graphviz. The result from this example is a series of
images similar to the MSTs of Figure 7. Actual images may
differ since the exact placement of nodes is determined by
Graphviz, which is executed independently for each MST.
An option (--fixedpos) is available which lays out
each MST using the previous MST's node positions as
starting points in order to minimize the visual differences
between them.

Since these images are generated independently, lay
out-mst is also able to make use of MPI (Message Pass-
ing Interface) to distribute the workload to multiple
CPUs. Details on how to do this is shown in the README
file. The system has been tested with Open MPI v1.2.7
[26], but other libraries that follow the MPI standard
should work.

Either --fixedpos or MPI can be used, but not both.
This is because enabling MPI distributes the workload
across multiple processors, while fixing the positions of

Table 3: Summary of the features of HAMSTER. 

Program Feature Options

build-mst Dissimilarities Euclidean, Manhattan, Pearson correlation, and Spearman correlation
build-mst Linkages Single, Average, Complete, and Centroid
build-mst Centroid linkage types Euclidean, Manhattan, Pearson correlation, and Spearman correlation
layout-
mst

Colors and shapes Same as Graphviz

layout-
mst

File formats PNG, SVG, and Postscript; additional formats supported by Graphviz available by modifying the source 
code

The features currently offered by HAMSTER, with the relevant system indicated in the first column.
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nodes requires layout-mst to process the MSTs in sequen-
tial order.

A final time-savings measure that can be used with MPI is
the --percent option which indicates the percentage of
images to generate, starting with the ones corresponding
to the MSTs with the highest scores.

Web Server - HAMSTER+

HAMSTER+ adds a wrapper around the local version of
HAMSTER and is also available from http://ham
ster.cbrc.jp/. Further details about HAMSTER+are pro-
vided in an on-line tutorial. Its main features are:

• No user login or local software installation is
required.

• Support of microarray data from NCBI's Gene
Expression Omnibus (GEO) in their Simple Omnibus
Format in Text (SOFT) [7]. GEO data sets (GDS) can
be referred to by their unique accession number and
downloaded from NCBI's ftp server.

• The web interface allows experiments to be selected
from the microarray data set.

• 559 experiments have been manually classified into
87 categories for the purpose of assigning initial
attributes to them.

• Seven GEO platforms that encompass 19.3% of the
275,665 experiments in GEO (as of January 6, 2009)
have been mapped to Gene Ontology categories [27].
This allows the probes of the microarray data to be
selected based on gene functions.

• The MST images and their respective Graphviz
sources can be browsed and downloaded.

• Each data set to be processed is assigned a unique
URL that users can send to collaborators or use later
for viewing. We recommend that users concerned
about privacy to use the local version instead.

Testing
We report on the expected running time of HAMSTER on
various GEO data sets and then examine the output from
both hierarchical clustering and HAMSTER for three of
these data sets. For the first data set we consider all aspects
of HAMSTER, including its similarity (and dissimilarity)
with hierarchical clustering and the results from MST scor-
ing. As for the remaining two data sets, we direct our atten-
tion to data sets which involve a gradient of sample
categories which we believe make them suitable for visu-
alization using MSTs. Since hierarchical clustering is not
part of HAMSTER, we have chosen to use the agnes func-
tion of the cluster library for R to create the dendro-
grams [6,28]. We employ varies types of linkages in our
examples to illustrate the possibilities with HAMSTER.

Execution time of HAMSTER
Table 4 presents the results from applying HAMSTER to
six data sets from GEO. The table shows the dimensions
of the data set in the second and third columns. In these
experiments, we use the entire data set, irrespective of any
additional information. For example, GDS596 contains
158 experiments of two sets of replicates. Thus, it would
be more appropriate to apply the system to only 79 of the
experiments. Nevertheless, the purpose of these results is
to demonstrate the execution time of HAMSTER. Two of
the data sets (GDS1962 and GDS2771) are currently the
two largest data sets (in terms of number of experiments)
in GEO. As the table shows, typical data sets are usually
much smaller.

All of our experiments were run on an otherwise idle 2.4
GHz Intel Core 2 Quad CPU (Q6600) with 8 GB RAM.
Running times are reported as seconds and averaged
across 5 trials.

Table 4: Dimensions of GEO test data and running time and memory usage of build-mst. 

Data set size Execution of build-mst

Data set Experiments Probes Elapsed time (s) Memory usage (MB)

GDS596 158 22283 23.28 201.391
GDS1962 180 54681 66.65 383.980
GDS2765 13 45101 1.03 28.305
GDS2771 192 22283 33.03 276.352
GDS3069 12 22283 0.52 25.000
GDS3216 12 22810 0.56 25.758

The dimensions of the GEO test data are expressed as the number of experiments and the number of probes. The execution time of build-mst 
is reported in seconds, averaged across 5 trials, for a 2.4 GHz Intel Core 2 Quad CPU (Q6600) with 8 GB RAM. The maximum memory usage was 
not more than 400 MB for the largest data set.
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The running time and memory usage of build-mst are
shown as the last two columns of Table 4. The longest
time is associated with GDS1962, which takes just over 1
minute. As expected, the running time is more dependent
on the number of experiments than the number of
probes, as shown by comparing the results of GDS596
with GDS2765. As for memory, the data set that gave the
peak memory usage was GDS1962 at almost 400 MB.

In these experiments, we did not consider the running
time of HC since it would not be comparable to the time
required by HAMSTER. HC produces a single dendrogram
while HAMSTER creates n distinct MSTs. As for the lay
out-mst system, the number of samples equals the
number of images that need to be generated. We execute
layout-mst using MPI while varying the number of vir-
tual processors from 1 to 8. These results are shown in Fig-

ure 8. The maximum running time is just over 5 minutes,
which decreases as the number of virtual processors
increase. This decrease levels off after 4 virtual processors
since this is also the number of cores present in our sys-
tem. In other results (not shown), disabling MPI gave per-
formance close to the results for 1 processor. Thus, the
overhead of using MPI in our implementation appears to
be negligible.

GDS2765: Effect of Creatine on Mice
As an example, we apply both HAMSTER and hierarchical
clustering to the data set GDS2765, where researchers
investigated the effect creatine has on the expression level
of brain tissue in mice [29]. There are 13 samples in total
and only two classes: untreated/control (7 samples) and
creatine-treated (6 samples) mice. In this example, we
have chosen Euclidean distance and single linkage for

Running time of layout-mst as a function of the number of processorsFigure 8
Running time of layout-mst as a function of the number of processors. The running time for six different data sets 
from NCBI GEO are shown after averaging across 5 trials. The system used is a 2.4 GHz Intel Core 2 Quad CPU (Q6600) with 
8 GB RAM and the number of virtual processors range from 1 to 8. The files generated were Portable Network Graphics files 
(PNG) at a resolution of 300 dots per inch (DPI). (Higher resolutions require more time.)
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both so that hierarchical clustering is directly comparable
to the corresponding MSTs. We should emphasize that in
both cases, the methods are not provided with informa-
tion about the experiment type (untreated or treated),
except in the sense that we chose the color associated with
each experiment based on its type (untreated in red;
treated in blue).

In Figure 9, the dendrogram for GDS2765 shows at least
two groups - the five controls on the far left, followed by
five treated samples. Four of the treated samples appear as
one such group in the center. As with the example dendro-
gram of Figure 3, there is no significance in the fact that
these four samples are in the center, since they can be
swapped with the sub-tree at the far left and the dendro-
gram is still valid. Turning our attention to the MSTs, MST
0 (Figure 10) shows that the 7 control samples (in red) are
similar to each other and group together in the center.
This is in contrast to the 6 treated samples (in blue) which
are spread across three different areas. The four treated
samples on the left correspond to the aforementioned
group of experiments at the center of the dendrogram.
There are some differences between MST 0 and the den-
drogram, though. In the center of MST 0, GSM115535 is
similar to four other experiments, as indicating by the four
edges emanating from it. If we compare this to the den-

drogram (the second from the left sample), we note that
this is not as evident. This is because an MST can have a
node connected to any number of other nodes. In a den-
drogram, though, the structure is restricted to recursive,
pair-wise relationships.

As we advance to MST 6 (Figure 11), we note that four of
the treated samples have merged to form node 5 and four
of the control samples have merged to form node 4.
Merged nodes in HAMSTER are represented by successive
integer numbers, starting from 0. MST 6 has a high nor-
malized association score of 97.78. The highest scoring
MST is MST 9 (Figure 12). In this figure, only three exper-
iments remain by themselves and all other experiments
have merged into node 8. The node has the default color
and shape attributes since it has a mix of both attribute
types.

We conclude this example with a graph comparing the
various scoring schemes in Figure 13. We show all three
scoring schemes as well as the original normalized associ-
ation which does not multiply the score by the number of
clusters. As reported earlier, the original normalized asso-
ciation grows monotonically, while the modified one
now peaks in the middle. The remaining two scoring

Dendrogram for GDS2765Figure 9
Dendrogram for GDS2765. The dendrogram was con-
structed using Euclidean distance and single linkage. The con-
trol samples are in red; the treated ones are in blue.
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MST 0 for GDS2765Figure 10
MST 0 for GDS2765. The first MST generated using HAM-
STER using Euclidean distance and single linkage. The con-
trols and treated samples are colored red and blue, 
respectively, similar to Figure 9. Its normalized association 
score is 0.
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schemes (Gaps and ANOVA) grow steadily and peak after
the half-way point.

The different peaks in this graph show that there are mul-
tiple ways in evaluating how well the experiments of a

data set cluster, regardless of the clustering method. We
suggest that users try the scheme which is most suitable
for their needs, based on the definitions given earlier.

GDS3069: Various brain tumors
Our next sample data set is GDS3069 which was used to
analyze 12 primary brain tumors based on their histolog-
ical diagnoses [30]. Unlike the previous data set of two
distinct categories, this one has a gradient of 5 categories
with overlaps between them. Also, the number of samples
per category varies greatly - for example one category has
only one sample. The categories and the coloring that we
have chosen are: high grade glioblastoma (red), high
grade gliosarcoma (yellow), high grade glioblastoma/
gliosarcoma (violet), low grade oligodendroglioma
(green), and low grade anaplastic mixed glioma (blue).
Euclidean distance and average linkage have been selected
for this analysis.

In the dendrogram of Figure 14, the four consecutive high
grade glioblastoma samples (red) appear to be similar.
However, upon closer inspection of the tree, we notice

MST 6 for GDS2765Figure 11
MST 6 for GDS2765. The node colors correspond to 
those of Figure 10. So far, control and treated samples have 
not yet mixed within any node. The normalized association 
score is 97.78.
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MST 9 for GDS2765Figure 12
MST 9 for GDS2765. The colors of the nodes correspond 
to those of Figure 10. The node with the default attributes 
(gray ellipse) contains experiments with different attributes. 
The normalized association score is 100.
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Comparison of scoring schemes for GDS2765Figure 13
Comparison of scoring schemes for GDS2765. A com-
parison of the scoring schemes available to HAMSTER corre-
sponding to the MSTs of Figures 10, 11, and 12. All schemes 
represent scores as a percentage of the maximum to facilitate 
easy comparisons. The iteration of HAMSTER is shown on 
the horizontal axis. As a comparison, the dashed line indi-
cates the result from applying the original definition of nor-
malized association [23] prior to the multiplication by the 
number of clusters.
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that the first two samples (GSM215423 and GSM215425)
are grouped together in the same sub-tree, while the third
(GSM215422) is combined with the four samples to its
right at an earlier step.

In the first MST (Figure 15), the high grade glioblastoma
samples (red) are separated into two groups. However, the
edges between the nodes within these two groups are rel-
atively short, an indication that the samples are similar to
each other in terms of expression level. Longer edges indi-
cate a high level of dissimilarity, and for this data set,
occurs between the two high grade gliosarcoma (yellow)
samples. This example demonstrates the use of MSTs for
data sets where the sample categories can be placed on a
scale.

GDS3216: Whole seedling roots response to salinity stress: time-
course
The presence of a scale is more obvious in our final exam-
ple since this data set is associated with a time-course
experiment (GDS3216). The experiment examines the
effect salinity has on A. thaliana seedling roots [31]. Six
time points are available with two replicates each: 0 hours
(control), 0.5 hours, 1 hour, 4 hours, 16 hours, and 32
hours. We chose Manhattan distance and average linkage
this time. The samples are colored according to the colors
of the spectrum. In other words, these 6 time points are
colored red, orange, yellow, green, blue, and violet for the
control to the 32 hours time points, respectively. At first
glance, the dendrogram and MST 0 appear similar (top of
Figure 16 and Figure 17). In both cases, we would expect

Dendrogram for GDS3069Figure 14
Dendrogram for GDS3069. This data set reports on the expression levels of 12 primary brain tumors, divided into 5 cate-
gories. The colors assigned to them are: high grade glioblastoma (red), high grade gliosarcoma (yellow), high grade glioblast-
oma/gliosarcoma (violet), low grade oligodendroglioma (green), and low grade anaplastic mixed glioma (blue). Euclidean 
distance with average linkage has been selected.
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replicates to be adjacent to each other. Then, the experi-
ments would be ordered based on time. For an MST, oth-
ers have shown that a chain of experiments would be
formed, ordered by the time-index [22].

The images show that the replicates are generally adjacent
to each other in both the dendrogram at the top and MST
0. It seems that the dendrogram gives a better view of the
time-series data set than the MST. The colors indicate that
the experiments in the dendrogram are ordered by time-
index, with the exception of GSM184931 at the far right.
In the MST, we have a gradient split into two parts. The
first six experiments appear at the top and the last six at

the bottom, with GSM184932 (green) lying away from
this latter group. Rather than connected end-to-end, a red
experiment is connected to a violet one.

However, as suggested earlier, there are many possible
permutations to a dendrogram that would be valid. In the
dendrogram of the top of Figure 16, we can swap the
branches at the three internal nodes indicated in red to
form the dendrogram below it. These swaps have moved
GSM184931 (green) to the far left and GSM184925 (red)
to the far right. GSM184933 (blue) has also shifted to the
right side of its sub-tree. While three pairs of replicates
remain together (yellow, orange, and violet) since they are

MST 0 for GDS3069Figure 15
MST 0 for GDS3069. The nodes of the first MST have been colored in the same way as Figure 14. Euclidean distance with 
average linkage has been selected.
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part of their own sub-tree, these swaps have shown that a
different dendrogram could easily have been generated. It
appears that the agnes function for R uses the order of
the experiments in the original data sets to determine the
final dendrogram leaf order. The reason why the top den-
drogram is produced is that the experiments appear in
time-index order in the original GEO data file. This would
be a useful feature if the natural ordering of the data is
both known a priori and is valid for visualization.

To emphasize this point, suppose we have a time-course
experiment with three samples at time points T1, T2, and
T3. If the expression levels are such that T1 and T2 are the
most similar, but T2 and T3 are the most dissimilar, then
the MST to the left of Figure 18 would be generated. How-
ever, hierarchical clustering implementations such as
agnes would produce the dendrogram on the right since
T1 and T2 are part of the same sub-tree and their relative
order is determined by the order of the experiments in the

Dendrogram for GDS3216Figure 16
Dendrogram for GDS3216. The study associated with this data set measured the response A. thaliana seedling roots have 
to salinity in a time-course experiment. The nodes are colored according to the colors of the spectrum: 0 hours/control (red), 
0.5 hours (orange), 1 hour (yellow), 4 hours (green), 16 hours (blue), and 32 hours (violet). Manhattan distance with average 
linkage has been chosen. The top dendrogram is the default one produced by agnes. By swapping the branches at the internal 
nodes indicated in red in this dendrogram, the one below is produced.
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data file. This is not a property specific to agnes since the
definition of hierarchical clustering does not give prefer-
ence to either of the two parts of each sub-tree. It is for this
reason that MSTs are more suitable for presenting time-
series data.

Conclusion
In this paper, we have described a system called HAM-
STER which allows users to visualize the experiments of a
gene expression data set as a set of minimum spanning
trees (MSTs). In addition, we also describe three scoring
schemes which help users judge the quality of these MSTs.

Our results show that MSTs offer a view of microarray data
that is related to, but still different from the dendrograms
that have been used for data visualization and clustering
by others. The creation of a set of MSTs in this manner is
absent from previous works with MSTs. This feature
allows users to visualize microarray data in terms of den-
drograms by presenting relationships between sub-trees.
Through examples, we show that MSTs are particularly
useful for microarray studies with gradient-based data
(such as time-course studies).

The HAMSTER system implements the above procedure as
an open-source, GPL licensed software that makes use of
other tools, including Graphviz and (optionally) Open

MST 0 for GDS3216Figure 17
MST 0 for GDS3216. The nodes of the first MST have been colored in the same way as Figure 16. Manhattan distance with 
average linkage has been selected.
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MSTs and time-series dataFigure 18
MSTs and time-series data. An example with a time-
series data set of three samples (T1, T2, and T3) where the 
dissimilarity between T1 and T2 is the smallest, but between 
T2 and T3 is the largest. This phenomenon is depicted well 
by the MST (left), but not by the dendrogram (right) since T1 
and T2 are part of the same sub-tree and could be re-
ordered depending on the hierarchical clustering implemen-
tation.
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MPI. In addition, we also introduced a web server called
HAMSTER+ which has been developed to add a wrapper
around HAMSTER that is tailored toward NCBI GEO data.
HAMSTER+ allows users to evaluate HAMSTER without
any local software installation. Both HAMSTER and HAM-
STER+ are available from http://hamster.cbrc.jp/. While
HAMSTER's original intention was to depict microarray
experiments as a set of MSTs, the system is general enough
that it could be used directly for probes if the data set is
transposed. Evaluation of this potential purpose of HAM-
STER is left as future work. Our survey of GEO data has
shown that the number of samples in a microarray data
set is typically less than 200 (see Table 4). While HAM-
STER's running time of 67 seconds for the largest data set
seems acceptable, if data sets were many more times this,
then parallelization of build-mst using MPI is another
possible avenue for future work [20]. It would also be
interesting to explore other aspects of HAMSTER unre-
lated to running time, such as scoring schemes that better
reflect the needs of users.
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