
ORIGINAL RESEARCH
published: 07 August 2020

doi: 10.3389/fendo.2020.00534

Frontiers in Endocrinology | www.frontiersin.org 1 August 2020 | Volume 11 | Article 534

Edited by:

Massimiliano Caprio,

Università Telematica

San Raffaele, Italy

Reviewed by:

Enzo Nisoli,

University of Milan, Italy

Francesca Molinari,

Sapienza University of Rome, Italy

*Correspondence:

Thomas Pulinilkunnil

tpulinil@dal.ca

Specialty section:

This article was submitted to

Obesity,

a section of the journal

Frontiers in Endocrinology

Received: 16 March 2020

Accepted: 30 June 2020

Published: 07 August 2020

Citation:

Biswas D, Tozer K, Dao KT, Perez LJ,

Mercer A, Brown A, Hossain I, Yip AM,

Aguiar C, Motawea H, Brunt KR,

Shea J, Legare JF, Hassan A,

Kienesberger PC and Pulinilkunnil T

(2020) Adverse Outcomes in Obese

Cardiac Surgery Patients Correlates

With Altered Branched-Chain Amino

Acid Catabolism in Adipose Tissue

and Heart. Front. Endocrinol. 11:534.

doi: 10.3389/fendo.2020.00534

Adverse Outcomes in Obese Cardiac
Surgery Patients Correlates With
Altered Branched-Chain Amino Acid
Catabolism in Adipose Tissue and
Heart
Dipsikha Biswas 1,2, Kathleen Tozer 1, Khoi T. Dao 1, Lester J. Perez 1, Angella Mercer 1,2,

Amy Brown 1, Intekhab Hossain 1, Alexandra M. Yip 3, Christie Aguiar 2,3, Hany Motawea 1,2,

Keith R. Brunt 2,4, Jennifer Shea 5,6, Jean F. Legare 2,3, Ansar Hassan 2,3,

Petra C. Kienesberger 1,2 and Thomas Pulinilkunnil 1,2*

1Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John,

NB, Canada, 2 IMPART Investigator Team Canada, Saint John, NB, Canada, 3New Brunswick Heart Centre, Saint John

Regional Hospital, Saint John, NB, Canada, 4Department of Pharmacology, Dalhousie University, Dalhousie Medicine

New Brunswick, Saint John, NB, Canada, 5Department of Pathology, Dalhousie University, Saint John, NB, Canada,
6Department of Laboratory Medicine, Saint John Regional Hospital, Saint John, NB, Canada

Background: Predicting relapses of post-operative complications in obese patients

who undergo cardiac surgery is significantly complicated by persistent metabolic

maladaptation associated with obesity. Despite studies supporting the linkages of

increased systemic branched-chain amino acids (BCAAs) driving the pathogenesis of

obesity, metabolome wide studies have either supported or challenged association of

circulating BCAAs with cardiovascular diseases (CVDs).

Objective: We interrogated whether BCAA catabolic changes precipitated by obesity

in the heart and adipose tissue can be reliable prognosticators of adverse outcomes

following cardiac surgery. Our study specifically clarified the correlation between BCAA

catabolizing enzymes, cellular BCAAs and branched-chain keto acids (BCKAs) with the

severity of cardiometabolic outcomes in obese patients pre and post cardiac surgery.

Methods: Male and female patients of ages between 44 and 75 were stratified across

different body mass index (BMI) (non-obese = 17, pre-obese = 19, obese class I = 14,

class II = 17, class III = 12) and blood, atrial appendage (AA), and subcutaneous

adipose tissue (SAT) collected during cardiac surgery. Plasma and intracellular BCAAs

and BC ketoacids (BCKAs), tissue mRNA and protein expression and activity of BCAA

catabolizing enzymes were assessed and correlated with clinical parameters.

Results: Intramyocellular, but not systemic, BCAAs increased with BMI in cardiac

surgery patients. In SAT, from class III obese patients, mRNA and protein expression

of BCAA catabolic enzymes and BCKA dehydrogenase (BCKDH) enzyme activity was

decreased. Within AA, a concomitant increase in mRNA levels of BCAA metabolizing

enzymes was observed, independent of changes in BCKDH protein expression or

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00534
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00534&domain=pdf&date_stamp=2020-08-07
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tpulinil@dal.ca
https://doi.org/10.3389/fendo.2020.00534
https://www.frontiersin.org/articles/10.3389/fendo.2020.00534/full
http://loop.frontiersin.org/people/996773/overview
http://loop.frontiersin.org/people/496131/overview
http://loop.frontiersin.org/people/1001747/overview
http://loop.frontiersin.org/people/929332/overview
http://loop.frontiersin.org/people/170356/overview
http://loop.frontiersin.org/people/202948/overview
http://loop.frontiersin.org/people/202943/overview


Biswas et al. BCAA Catabolism Dictate Surgical Outcomes

activity. BMI, indices of tissue dysfunction and duration of hospital stay following surgery

correlated with BCAA metabolizing enzyme expression and metabolite levels in AA

and SAT.

Conclusion: This study proposes that in a setting of obesity, dysregulated BCAA

catabolism could be an effective surrogate to determine cardiac surgery outcomes and

plausibly predict premature re-hospitalization.

Keywords: BCAA, BCKDH, BCAA metabolism, obesity, subcutaneous adipose, atrial appendage, cardiac surgery

INTRODUCTION

Current estimates suggest that >35% of patients undergoing
heart surgery are obese (body mass index (BMI) >30 kg/m2)
(1). Obesity is causally linked to the development of IR
and T2DM which increases the risk for cardio metabolic
disorders (2–4) as well as susceptibility of re-hospitalization
(5, 6). Predicting relapses of post-operative complications in
obese patients who undergo cardiac surgery is significantly
complicated by persistent metabolic maladaptation associated
with obesity, such as increases in circulating lipids, glucose,
adipocytokines (leptin, insulin, RBP4) and branch chain amino
acids (BCAAs). Epidemiological studies have supported the
association between circulating BCAAs (leucine, isoleucine and
valine) and incidences of obesity (7, 8), insulin resistance (IR)
(9, 10), type 2 diabetes mellitus (T2DM) (11–13). However,
the relationship between systemic BCAAs and cardiovascular
dysfunction (CVDs) are both supported and contradicted
by numerous studies. For instance, circulating BCAAs were
associated with greater prevalence of coronary disease (1, 14,
15), acute heart failure (HF) (16, 17) and cardiometabolic
risk (18), specifically in the setting of T2DM and in most
instances independent of BMI. In contrast, multiple metabolome
wide studies of ischemic heart disease (19, 20) myocardial
infarction (21) and incident coronary artery disease (22, 23)
have failed to attribute elevated BCAAs for driving CVD.
Besides, other groups have reported reduced circulating BCAA
levels following myocardial infarction (24) and during stable
coronary heart disease (25). Interestingly, in rodents (26, 27)

Abbreviations: AA, atrial appendage; ACADSB, short/branched-chain acyl
CoA dehydrogenase; ACAT/SOAT1, acetyl CoA acetyl transferase-1; AHF, acute
heart failure; BAIBA, β-aminoisobutyric acid; BCAA, branched-chain amino
acid; BCKA, branched-chain keto acids; BCAT2, mitochondrial branched-chain
acyl transferase; BCKDH, branched-chain ketoacid dehydrogenase; BCKDK,
branched-chain ketoacid dehydrogenase kinase; BMI, body mass index; CABG,
Coronary Artery Bypass Graft; CRP, c-reactive protein; CVD, cardiovascular
diseases; DBT, dihydrolipoamide branched- chain transacylase E2; DLD,
dihydrolipoamide dehydrogenase; ERAB, endoplasmic-reticulum-associated
amyloid beta-peptide-binding protein; HADHA, hydroxyacyl CoA dehydrogenase
alpha subunit; 3-HIB, 3-hydroxyisobutyrate; HIBCH, 3-hydroxyisobutyryl-CoA
hydrolase; HMGCS, hydroxymethyl glutaryl-CoA synthase; IVD, isovaleryl-CoA
dehydrogenase; KLF15, kruppel-like factor-15; LPL, lipoprotein lipase; LVEDP, left
ventricular end diastolic pressure; NT-proBNP, NT-pro-B-type natriuretic peptide;
OXCT, 3-oxoacid CoA-transferase; PCCB, propionyl-CoA carboxylase; PPM1K,
protein phosphatase Mg2+/Mn2+phosphatase; ROS, reactive oxygen species;
SAT, subcutaneous adipose tissue; STEMI, ST-segment elevation myocardial
infarction; T2DM, type 2 diabetes mellitus; UPLC-MSMS, ultraperformance liquid
chromatography-tandem mass spectrometry.

and humans (28) exogenous BCAA supplementation attenuated
heart failure complications, challenging the dogma that systemic
BCAA elevation is causal for CVD. These inconsistencies in the
association of circulating BCAA levels and CVDs in the absence
of T2DMhave necessitated studies focusing on BCAAsmetabolic
intermediates and tissue specific changes in BCAAs catabolizing
enzymes in driving cardiac pathology.

Alterations in systemic BCAAs is an outcome of their dietary
intake and effective intracellular catabolism (29, 30). BCAAs,
unlike other amino acids, are primarily catabolized in extra
hepatic tissues, such as cardiac muscle (31) and their effective
utilization is critical to maintain normal cardiac function (32).
Reversible transamination by branch chain aminotransferase
(BCAT) initiates BCAA catabolism yielding branched-chain
α-keto acids (BCKAs) followed by oxidative decarboxylation
by branched-chain ketoacid dehydrogenase (BCKDH) (29).
BCKDH is the rate limiting enzyme of the pathway, and its
activity is sensitive to inhibitory phosphorylation by branched-
chain keto acid dehydrogenase kinase (BCKDK) and is positively
regulated by protein phosphatase 1K (PPM1K). Through a
series of enzymatic reactions, BCKAs are converted into either
succinyl CoA, acetyl CoA or propionyl CoA, which serve as TCA
cycle intermediates vital for ATP production. Transcriptional
programming of BCAA catabolism is regulated by Kruppel
like factor 15 (KLF15) (33). Defective BCAA catabolism is
reported in both human and rodent failing hearts (33–35)
along with identification of KLF15 as the key regulator of
cardiac BCAA metabolism (33). Recent studies have also
demonstrated that independent of systemic changes of BCAA,
cardiac tissues are highly susceptible to injury from dysregulated
BCAA metabolism. Indeed, defective BCAA catabolism and
accumulation of BCAAs renders the heart vulnerable to ischemic
and hypertrophic injury (36, 37).

We questioned whether BCAA catabolic changes precipitated
by obesity in the heart and adipose tissue, the two important
tissue depots responsible for efficient utilization of BCAAs, can
be reliable prognosticators of adverse outcomes following cardiac
surgery. Our study aimed to clarify the correlation between
cellular BCAAs and their catabolite levels along with the ability
of individual tissues to metabolize BCAAs with the severity of
cardiometabolic outcomes in obese patients pre and post cardiac
surgery. This study also examined if metabolic status of tissue
BCAAs is a robust and definitive predictor of morbidity, post-
operative tissue dysfunction and length of stay in cardiac surgery
patients with obesity.
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RESULTS

Patient Characteristics
Patient characteristics and pre-operative parameters have been
listed in Table 1. Age at the time of surgery ranged from 44
to 75 years and was similar between BMI groups. Patients with
a BMI of 18.5–24.9 kg/m2 were considered as the non-obese
control group (n = 17), patients with a BMI of 25.0–29.9 kg/m2

were classified as pre-obese (n = 19), patients with a BMI
of 30–34.9 kg/m2 were classified as class I obese (n = 14),
patients with a BMI of 35.0–39.9 kg/m2 were classified as class
II obese (n = 17) and patients with a BMI of ≥40 kg/m2

were classified as class III obese (n = 12). Concurrently, the
mean waist circumference was 88.8, 102.19, 110.3, 124.3, and
138 cm for non-obese, pre-obese, and class I-III obese patients,
respectively. Eighty-one percentage of our patient cohort were
males. There was no significant difference between males and
females between the non-obese and pre-obese (males = 30,
females = 6) vs. obese (males = 34, females = 9) groups.
Individuals with current or past smoking history comprised 69%
of non-obese, 55% of pre-obese, 46% of class I obese, 56% of
class II obese and 58% of class III obese patients undergoing
cardiac surgery. Thirty percentage of our patient cohort were
diabetic. In each BMI category, majority of patients were on
beta-blockers, angiotensin-converting enzyme inhibitors and/or
angiotensin receptor blockers for blood pressure management
and taking lipid lowering statins. No significant differences were
observed across the groups. Heart failure in NYHA Class 3
and 4 categories was evident preoperatively in 25% of non-
obese, 35% of pre-obese, 31% of the class I obese, 44% of
the class II obese and 75% of the class III obese patients.
Due to unavoidable circumstances during patient recruitment,
all the parameters listed in Table 1 could not be populated.
All patients underwent elective heart surgery with 55.69%
of cases being isolated CABG surgery, 20.25% isolated valve
surgery, and 24.05% a combination of valve and CABG surgery.
No significant differences were observed between different
BMI groups as described in Table 1. Unadjusted Spearman
correlations between post-operative clinical parameters with the
mRNA and protein expression of BCAA catabolic enzymes
have been summarized in Tables 2–5. Unadjusted Spearman
correlations between pre- and post-operative clinical parameters
with the BCKDH enzyme activity and intracellular BCKAs
and BCAAs have been summarized in Table 6. Only those
parameters that were significantly correlated with the BCAA
enzyme expression and metabolite levels in SAT and AA have
been included in the Tables 2–6. Spearman correlations for non-
normally distributed variables between pre-operative parameters
and with protein and mRNA levels of BCAA catabolic enzymes
also revealed similar correlations (data not shown).

Enzymes Catabolizing BCAAs Are
Downregulated in SAT and Are Associated
With BMI and Insulin Resistance in Obese
Patients Undergoing Cardiac Surgery
Despite strong linkages between BCAA and T2DM, the
relationship between systemic BCAA levels and their ability to

precipitate CVD in obese and diabetic patients is inconsistent
(38). To examine the status of systemic BCAAs and its metabolic
intermediates in our patient cohort, we measured circulating
BCAAs and BCKAs in the plasma of cardiac surgery patients
with different classes of obesity (Figure 1). Our study did not
reveal significant differences in plasma BCAA levels across the
different BMI groups in the cardiac surgery patients (Figure 2A).
To investigate whether tissue specific alterations in the BCAA
catabolic enzymes could be a determining factor specifically
during the progression of obesity in patients undergoing
cardiac surgery, we determined the mRNA and protein levels
of key BCAA catabolic enzymes (Supplementary Figure 1,
highlighted by ∗) in SAT, an important tissue impacting BCAA
catabolism (41). mRNA expression of BCAA catabolic enzymes
in SAT were progressively reduced with increasing severity
of obesity (Figure 2B). Along with the key BCAA catabolic
enzymes, namely, BCAT2 (branched-chain amino transferase
2), ACADSB (short/branched-chain acyl CoA dehydrogenase),
HADHA (hydroxyacyl CoA dehydrogenase, alpha subunit),
BCKDH A and B subunits, the transcriptional regulator
KLF15 was also downregulated in class III obese patients
(Figure 2B). Concomitantly, the inhibitory kinase, BCKDK, was
augmented in the obese patients (compared to non-obese)
whereas, activating phosphatase PPM1K (protein phosphatase
Mg2+/Mn2+ phosphatase) levels were reduced in morbid
obesity (compared to both non-obese and pre-obese patients)
(Figure 2B). Our data indicate that in the SAT of class III
obese cardiac surgery patients, BCAA catabolizing enzymes are
downregulated. Alterations in mRNA expression of enzymes
involved in BCAA metabolism were particularly pronounced
in the obese group when compared to the pre-obese group
of cardiac surgery patients. Protein expression of KLF15 was
reduced in the SAT of obese class I and class II patients
(Figure 2C). Expression of dihydrolipoamide dehydrogenase
(DLD), the E3 regulating enzyme of the BCKDH complex, was
decreased in the pre-obese, class I and class II obese patients.
Furthermore, a decrease in the expression of BCKDH subunit
A was observed in class II obese patients undergoing cardiac
surgery (Figure 2C). A marked increase in BCKDK protein
expression with a corresponding increase in the inhibitory
phosphorylated BCKDH E1 (pBCKDE1) was observed in the
SAT of class I and class II obese patients (Figure 2C). Both
the actual and total BCKDH activity in the SAT depicted a
decreasing trend with increasing obesity, with this reduction
reaching statistical significance in class III obese cardiac surgery
patients (Figure 2D, Supplementary Figure 2A). These findings
highlight the downregulation of mRNA, protein as well as activity
of BCAA catabolic enzymes in the SAT in close proximity to the
heart, of cardiac surgery patients with obesity.

Notably, downregulation of SAT KLF15 (Figure 3A) and
DLD (Figure 3B) and upregulation of SAT pBCKDE1 levels
(Figure 3C) were correlated with BMI; with pBCKDE1 levels
also being positively correlated with hip circumference (Table 2).
However, protein levels of SOAT1/ACAT1 (acetyl CoA acetyl
transferase 1), an important enzyme of the isoleucine degradation
pathway, was found to be positively correlated with BMI
(Figure 3D). Furthermore, mRNA levels of PPM1K was
negatively correlated with BMI (Figure 3E) as well as with
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TABLE 1 | Patient characteristics and metabolic parameters.

Parameter Non-obese Pre-obese Obese class I Obese class II Obese class III Statistical analysis

n = 17 n = 19 n = 14 n = 17 n = 12

BMI 18.5–24.9 kg/m2 25–29.9 kg/m2 30–34.9 kg/m2 35.0–39.9 kg/m2
≥40.0 kg/m2

Demographic data

Male/Female 11/6 19/0 11/3 14/3 9/3

Age (years) 64.25 (6.49) 62.6 (7.27) 65.23 (6.01) 64.75 (5.56) 62.0 (8.81) ns across groups

Smoker (n) 11 (69) 11 (55) 6 (46) 9 (56) 7 (58)

Medications ns across all groups∧

Blood pressure-lowering (n) 8 (50) 13 (65) 8 (62) 12 (75) 10 (84)

Beta blocker (n) 8 (50) 9 (45) 4 (31) 9 (45) 6 (50)

ACE inhibitor (n) 12 (75) 9 (45) 8 (62) 10 (63) 7 (59)

Angiotensin receptor blocker (n) 0 (0) 3 (15) 2 (16) 5 (32) 3 (25)

Lipid lowering (n) 10 (63) 14 (70) 9 (69) 11 (69) 9 (75)

Parameters of obesity

BMI (kg/m2 ) 22.83 (1.24) 27.76 (1.48) 31.68 (1.12) 37.03 (1.61) 43.74 (3.73) N vs. PO: ****

N vs. OI: ****

N vs. OII: ****

N vs. OIII: ****

PO vs. OI: ****

PO vs. OII: ****

PO vs. OIII: ****

OI vs. OII: ****

OI vs. OIII: ****

OII vs. OIII: ****

Waist circumference (cm) 88.80 (9.17) 102.19 (7.84) 110.3 (6.29) 124.3 (8.83) 138.0 (12.76) N vs. PO: ***

N vs. OI: ****

N vs. OII: ****

N vs. OIII: ****

PO vs. OI: ns

PO vs. OII: ****

PO vs. OIII: ****

OI vs. OII: **

OI vs. OIII: ****

OII vs. OIII: **

Hip circumference (cm) 97.25 (4.05) 102.03 (3.83) 108.4 (5.96) 118.3 (10.03) 132.0 (10.54) N vs. PO: ns

N vs. OI: **

N vs. OII: ****

N vs. OIII: ****

PO vs. OI: ns

PO vs. OII: ****

PO vs. OIII: ****

OI vs. OII: **

OI vs. OIII: ****

OII vs. OIII: ****

Metabolic parameters

Hypertension (n) 8 (50) 12 (60) 7 (53.8) 11 (68.75) 10 (83.33)

Triglycerides fasting (mmol/L) 1.28 (0.43) 1.45 (1.40) 1.55 (0.41) 2.09 (0.88) 1.63 (0.57) ns across groups

HDL cholesterol fasting (mmol/L) 1.40 (0.30) 1.23 (0.38) 1.18 (0.28) 1.09 (0.4) 1.16 (0.44) ns across groups

Cholesterol fasting (mmol/L) 4.33 (0.83) 4.18 (1.49) 3.66 (0.58) 4.03 (0.9) 3.88 (1.08) ns across groups

LDL cholesterol fasting (mmol/L) 2.36 (0.82) 2.196 (1.06) 1.77 (0.56) 2.08 (0.73) 1.86 (0.78) ns across groups

(Continued)
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TABLE 1 | Continued

Parameter Non-obese Pre-obese Obese class I Obese class II Obese class III Statistical analysis

n = 17 n = 19 n = 14 n = 17 n = 12

NYHA Classification

1 (n) 2 (12.5) 6 (30) 2 (15.4) 1 (6.3) 0 (0)

2 (n) 7 (43.8) 5 (25) 4 (31) 5 (31.2) 1 (8.3)

3 (n) 3 (18.8) 4 (20) 3 (23) 7 (43.7) 6 (50)

4 (n) 1 (6.3) 3 (15) 1 (7.7) 2 (12.5) 3 (25)

Diabetes mellitus type 2 (n) 2 (12.5) 8 (40) 4 (30.77) 4 (25) 6 (50)

Glucose random blood (mmol/L) 6.07 (3.43) 7.85 (3.63) 7.77 (3.38) 7.49 (2.62) 8.85 (2.98) ns across groups

Procedure ns across all groups#

Isolated CABG 9 (52.94) 14 (73.68) 8 (57.14) 9 (52.94) 4 (33.33)

Isolated valve 2 (11.7) 3 (15.78) 3 (21.42) 3 (17.64) 5 (41.66)

Combined 6 (35.29) 2 (10.52) 3 (21.42) 5 (29.41) 3 (25)

Other 4 (23.53) 0 (0) 1 (7.14) 1 (5.88) 2 (16.78)

Data are expressed as mean (standard deviation) for continuous variables and number (percent of population) for categorical values, as described previously [70]. One-way ANOVA

followed by a Tukey post hoc test was performed for the statistical analysis. ∧Chi square goodness of fit test was performed for statistical analysis of the medications for our patient

cohort (p= 0.965, Chi square= 7.362); #Chi square goodness of fit test was performed for statistical analysis of the surgery procedures (p= 0.395, Chi square= 8.394). N, non-obese;

PO, pre-obese; OI, obese class I; OII, obese class II; OIII, obese class III; ns, non-significant; **P < 0.01, ***P < 0.001, ****P < 0.0001.

TABLE 2 | Unadjusted Spearman’s correlations for protein expression data of BCAA pathway enzyme in SAT from cardiac surgery patients.

Variable BCKDH pBCKDE1α BCKDK KLF15 SOAT1 DLD ERAB

Parameters of obesity

Waist circumference −0.29786 0.49228 −0.03234 −0.23354 0.35835 0.03727 −0.12754

0.2021 0.0275 0.8923 0.2509 0.0722 0.8566 0.5347

Hip circumference −0.41444 0.38728 −0.15495 −0.20212 0.57250 0.01710 −0.23358

0.0692 0.0916 0.5142 0.3221 0.0022 0.9339 0.2508

Metabolic parameters

Fasting Insulin −0.42857 0.62198 −0.23956 −0.12331 0.21805 0.05414 −0.31128

0.1263 0.0176 0.4094 0.6045 0.3557 0.8207 0.1816

Blood chemistry

Hemoglobin 0.01627 −0.19779 −0.26823 0.17462 –0.49633 −0.14312 −0.01437

0.9442 0.3901 0.2397 0.3837 0.0085 0.4764 0.9433

Leukocytes 0.09165 0.28195 0.04420 –0.38113 0.09253 −0.06993 0.17132

0.6928 0.2156 0.8491 0.0498 0.6462 0.7289 0.3929

Erythrocytes 0.03774 −0.19206 –0.56344 −0.14240 −0.28694 −0.28938 −0.11856

0.8710 0.4043 0.0078 0.4786 0.1467 0.1432 0.5559

Leucine −0.29772 −0.42732 −0.07706 0.35744 0.02686 –0.54959 0.25310

0.3473 0.1659 0.8119 0.1453 0.9157 0.0181 0.3109

Echocardiography/angiography

Left ventricular end diastolic pressure −0.15339 0.35666 0.25031 −0.09719 0.45599 0.28779 −0.18129

0.5185 0.1227 0.2871 0.6367 0.0192 0.1540 0.3754

Data for each correlation are expressed as Spearman’s r (top) followed by P-value (bottom, italic), denoted in bold when P < 0.05.

parameters of obesity, like hip and waist circumference (Table 3).
Similarly, reduced ACADSB and HADH mRNA levels were also
correlated with increased hip circumference (Table 3), suggesting
that in the SAT, BCAA catabolic enzymes are downregulated in
the setting of obesity.

Obesity induces IR (42) and intraoperative IR and could
influence cardiac surgery outcomes either due to increased risk
of T2DM or independent of the patient’s diabetic state (43).

We examined whether the BCAA catabolic enzyme defects are
associated with fasting blood glucose and fasting insulin levels as
well as HbA1c and HOMA-IR, markers of IR, in obese patients.
Our findings demonstrated a correlation between HOMA-IR
(Figure 3F), fasting insulin (Table 2) and increased inhibitory
phosphorylation of BCKDH E1 subunit (pBCKDE1) in SAT of
obese patients. Alternatively, PPM1K mRNA levels tended to
negatively correlate with HbA1C% in the SAT (Figure 3G); while
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TABLE 3 | Unadjusted Spearman’s correlations for mRNA expression data of BCAA pathway enzyme in SAT from cardiac surgery patients.

Variable BCKDHA BCKDHB BCKDK PPM1K KLF15 ACADSB HADHA

Parameters of obesity

Waist circumference −0.12793 −0.05028 0.15152 –0.52108 −0.20358 −0.33819 −0.19137

0.5005 0.7919 0.4241 0.0032 0.2806 0.0676 0.3111

Hip circumference −0.30234 −0.09455 −0.01758 –0.63693 −0.21468 –0.52436 –0.45478

0.1044 0.6192 0.9266 0.0002 0.2546 0.0029 0.0116

Metabolic parameters

Triglycerides fasting 0.00556 0.32102 0.19422 –0.40957 −0.16174 −0.03270 0.10235

0.9767 0.0837 0.3038 0.0246 0.3932 0.8638 0.5905

Cholesterol fasting 0.07142 0.44899 0.15975 0.12237 0.16242 −0.01268 0.11927

0.7076 0.0128 0.3991 0.5194 0.3912 0.9470 0.5302

LDL cholesterol fasting 0.14597 0.37784 0.14709 0.29684 0.22675 0.02715 0.19539

0.4415 0.0395 0.4380 0.1112 0.2282 0.8868 0.3008

Blood chemistry

Blood urea −0.06442 –0.44494 −0.20508 −0.02452 −0.11458 0.08805 0.07056

0.7352 0.0138 0.2770 0.8977 0.5466 0.6436 0.7110

Leucine −0.17370 0.13233 −0.08959 –0.42845 −0.38331 −0.13883 0.09267

0.3961 0.5193 0.6634 0.0290 0.0532 0.4988 0.6525

Data for each correlation are expressed as Spearman’s r (top) followed by P-value (bottom, italic), denoted in bold when P < 0.05.

TABLE 4 | Unadjusted Spearman’s correlations for protein expression data of BCAA pathway enzyme in AA from cardiac surgery patients.

Variable BCKDH pBCKDE1α BCKDK BCAT2 KLF15 PPM1K DLD HIBCH SOAT1 ERAB

Metabolic parameters

Triglycerides fasting −0.12310 0.51291 −0.25201 −0.12151 −0.29003 0.11418 –0.41398 −0.28352 −0.28352 0.04824

0.5491 0.0074 0.2142 0.5460 0.1422 0.5707 0.0318 0.3260 0.3260 0.8112

hsCRP 0.20000 0.53636 −0.02727 −0.22727 –0.70000 0.13636 0.00909 −0.67857 −0.53571 0.51818

0.5554 0.0890 0.9366 0.5015 0.0165 0.6893 0.9788 0.0938 0.2152 0.1025

Blood chemistry

Blood urea 0.41684 0.10815 0.25394 0.43324 −0.29881 0.41094 0.21632 0.22442 0.42244 −0.04675

0.0341 0.5990 0.2106 0.0240 0.1300 0.0332 0.2785 0.4405 0.1324 0.8169

Hemoglobin 0.39904 0.11886 0.10413 −0.02141 −0.11835 −0.07615 −0.11835 0.37749 0.36424 −0.24434

0.0434 0.5631 0.6127 0.9156 0.5566 0.7058 0.5566 0.1833 0.2004 0.2193

Leukocytes −0.18745 0.45220 –0.45322 −0.26599 −0.10017 –0.45198 –0.53565 –0.56044 –0.56923 −0.08307

0.3592 0.0204 0.0201 0.1799 0.6191 0.0179 0.0040 0.0371 0.0336 0.6804

Erythrocytes 0.20058 0.13247 −0.22557 −0.14790 −0.17448 –0.42445 −0.17448 0.17181 0.15639 −0.16226

0.3259 0.5189 0.2679 0.4616 0.3841 0.0273 0.3841 0.5570 0.5934 0.4187

Neutrophils −0.14660 0.35314 –0.39801 −0.15777 −0.14035 –0.42624 –0.46476 −0.34476 −0.31382 −0.08714

0.4748 0.0768 0.0440 0.4319 0.4850 0.0266 0.0146 0.2274 0.2746 0.6656

Leucine 0.15828 0.11902 0.36074 0.32541 −0.31095 0.48967 0.29442 0.17857 0.03571 0.06612

0.5440 0.6491 0.1549 0.1876 0.2091 0.0391 0.2356 0.7017 0.9394 0.7944

Alanine –0.50399 0.05150 −0.40343 −0.28306 0.15289 −0.25310 −0.40186 −0.46429 −0.64286 −0.26136

0.0391 0.8444 0.1083 0.2550 0.5447 0.3109 0.0983 0.2939 0.1194 0.2948

Glycine −0.26274 0.06753 −0.33272 −0.22532 0.14677 −0.10129 −0.08992 –0.89286 –0.92857 0.49302

0.3083 0.7968 0.1919 0.3687 0.5611 0.6892 0.7227 0.0068 0.0025 0.0376

Aspartic acid −0.00736 0.10429 −0.12025 −0.37810 −0.02376 −0.00930 −0.21694 –0.82143 −0.75000 −0.06508

0.9776 0.6904 0.6457 0.1218 0.9254 0.9708 0.3872 0.0234 0.0522 0.7975

Echocardiography/angiography

Left ventricular end diastolic pressure −0.31188 −0.05780 −0.23818 −0.19370 0.24368 −0.22472 −0.15717 –0.58639 −0.27215 0.23609

0.1291 0.7838 0.2516 0.3431 0.2303 0.2697 0.4432 0.0352 0.3684 0.2456

Data for each correlation are expressed as Spearman’s r (top) followed by P-value (bottom, italic), denoted in bold when P < 0.05.
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TABLE 5 | Unadjusted Spearman’s correlations for mRNA expression data of BCAA pathway enzyme in AA from cardiac surgery patients.

Variable BCKDHA BCKDHB BCKDK BCAT2 PPM1K KLF15 ACADSB HADHA

Parameters of obesity

Waist circumference 0.48526 0.16822 0.26366 0.30504 0.20736 0.08522 0.41851 0.55045

0.0066 0.3742 0.1592 0.1012 0.2715 0.6544 0.0214 0.0016

Hip circumference 0.44783 0.23117 0.33437 0.17108 0.35039 0.14349 0.43137 0.50167

0.0131 0.2190 0.0709 0.3660 0.0577 0.4494 0.0173 0.0047

Metabolic parameters

hsCRP 0.41769 0.50048 0.56385 0.18615 0.20923 −0.14846 0.22308 0.17692

0.0377 0.0108 0.0033 0.3730 0.3155 0.4788 0.2838 0.3975

Blood chemistry

Blood urea 0.38698 0.41601 0.41685 0.03165 0.16808 −0.24877 0.12216 0.02430

0.0346 0.0222 0.0219 0.8681 0.3746 0.1850 0.5202 0.8986

Echocardiography/angiography

Left ventricular end diastolic pressure −0.16139 −0.31241 −0.11453 −0.01531 –0.43118 −0.21834 −0.18098 −0.16598

0.4213 0.1126 0.5695 0.9396 0.0247 0.2739 0.3663 0.4080

Data for each correlation are expressed as Spearman’s r (top) followed by P-value (bottom, italic), denoted in bold when P < 0.05.

TABLE 6 | Unadjusted Spearman’s correlations (p < 0.05) for intracellular BCAA and BCKAs content and BCKDH enzyme activity in AA and SAT from cardiac surgery

patients.

Variables (AA) KIV/Valine KIC/Leu KMV/Ile BCKA/BCAA KMV KIV Actual activity

BMI −0.4486 −0.4841 −0.6037 −0.5256 −0.4052 – –

0.032 0.019 0.002 0.009 0.049

Waist Circumference −0.3687 −0.4142 −0.4384 −0.4523 −0.3927 – −0.4109

0.083 0.049 0.036 0.030 0.058 0.022

Hip Circumference – −0.5114 −0.5258 −0.4892 −0.4648 – −0.3616

0.013 0.009 0.002 0.022 0.046

Length of Stay – –0.4043 −0.4757 –0.3508 −0.4106 – –

0.055 0.021 0.08 0.046

NYHA −0.4877 – – – – −0.4555 –

0.040 0.049

Valine Isoleucine Leucine BCAA Actual activity

HDL −0.4320 −0.4511 −0.4405 −0.4137 –

0.039 0.031 0.035 0.049

Random Blood Glucose 0.3507 0.3474 0.3575 0.3405 −0.4261

0.082 0.075 0.093 0.070 0.015

Variables (SAT) Actual activity Total activity KIV KIC KMV BCKAs

Random Blood Glucose −0.3330 –0.2922 – – – –

0.044 0.079

Length of Stay −0.3775 −0.4892 – – – –

0.021 0.002

Creatinine – – – −0.4226 −0.4638 –0.3955

0.039 0.022 0.056

P-T BCKDH −0.4585 −0.4179 – – – –

0.028 0.047

BCKDH – – –0.4506 – – –

0.079

DLD 0.3814 – −0.5081 – – –

0.072 0.044

Data for each correlation are expressed as Spearman’s r (top) followed by P-value (bottom, italic), denoted in bold when P is approaching significance.
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FIGURE 1 | Experimental layout of UPLC-MS analysis of systemic and intracellular BCAA and BCKA measurements in the plasma, atrial appendage and

subcutaneous adipose, tissue, BCAA catabolic enzyme mRNA and protein quantification and BCKDH enzyme activity measurements in heart and subcutaneous

adipose tissue from non-obese, pre-obese, and obese patients undergoing cardiac surgery.

both the actual and total BCKDH activity tended to be negatively
correlated with the random blood glucose levels (Figure 3H).

Correlation of BMI With Increased mRNA
Expression of BCAA Catabolizing Enzymes
as Well as Elevated Intramyocellular
BCAAs in AA of Patients With Obesity
Undergoing Cardiac Surgery
We next wanted to investigate whether changes in BCAA
catabolic enzyme expression in the SAT could influence systemic
and AA BCAA catabolism in our patient cohort. We found that
total BCKAs in the SAT trended to increase in the pre-obese
and class I obese patients but remained unaltered in patients
with class II and class III obesity (Supplementary Figure 2B).
Total plasma BCKAs showed a decreasing trend with the
severity of obesity, with class II obese patients showing the most
pronounced change (Figure 4A). Intramyocellular BCKA levels
are augmented in the failing hearts of mouse and human (33, 34).
We therefore reasoned that the reduced systemic BCKA levels
might signify an increased uptake and increased catabolism
in the non-adipose depots, such as cardiac muscle and thus
investigated the intracellular BCKA and BCAA levels in the AA
from the cardiac surgery patients. Our UPLC MS data revealed
that total intracellular BCAA levels were significantly increased
with obesity in AA (Figure 4B). BCKAs were elevated in the
AA of pre-obese patients while it was decreased in class II and
III obese patients (when compared to the pre-obese patients)
(Figure 4C). To ascertain whether changes in BCKAs were an
outcome of altered expression of BCAA catabolic enzymes, the
mRNA and protein expression of the BCAA catabolic enzymes
was measured in AA. Increases in the mRNA levels of ACADSB,

BCAT2, HADHA and both the A and B subunits of BCKDH
suggested that BCAA catabolism is upregulated in the AA of
obese cardiac surgery patients and particularly pronounced
in class III obesity (Figure 4D). This observation was also
supported by augmented PPM1K mRNA levels in class III obese
patients (when compared to pre-obese patients) (Figure 4D).
Increase in KLF15 mRNA levels was observed in class I obese
patients but it remained unaltered in class II and III obesity
(Figure 4D). BCKDK mRNA expression, remained unaltered
in the class I obese patients, decreased in class II obesity and
increased in the class III obese group (when compared to the pre-
obese patients) (Figure 4D). We observed a negative correlation
between intramyocellular leucine (Supplementary Figure 3A),
isoleucine (Supplementary Figure 3B) and total BCAAs
(Supplementary Figure 3C) with BCKDHB mRNA levels
in the AA. Increased BCAT2 mRNA expression in the
AA was also correlated with reduced KIV/Val ratio
(Supplementary Figure 3D) suggesting an increased mRNA
expression of BCAA metabolizing enzymes drives BCAA
catabolism in the AA tissues of patients with obesity undergoing
cardiac surgery.

Although pBCKDE1 protein levels were increased in the
AA tissues of obese patients (Supplementary Figure 4A), they
did not correlate with BMI (Figure 5A). BCKDH protein levels
were lower in the pre-obese group (Supplementary Figure 3A)
but remained unaltered in the class I obese compared
to non-obese patients. Moreover, DLD protein levels were
unchanged between the non-obese and pre-obese patients
(Supplementary Figure 4A) but decreased in the class I obese
patients and did not correlate with BMI (Figure 5B). KLF15
protein levels remained unaltered in class I obese patients
(Supplementary Figure 4A). Mitochondrial BCAT2 positively
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FIGURE 2 | BCAA catabolic enzyme expression and BCKDH enzyme activity is decreased in the SAT of cardiac surgery patients with severe obesity. (A) Free plasma

BCAA levels measured by UPLC MSMS in the non-obese (n = 8), pre-obese (n = 6) and class I obese (n = 7), class II obese (n = 6) and class III obese (n = 6) cardiac

surgery patients. (B) Quantification of ACADSB, BCAT2,HADHA, PPM1K, KLF15, BCKDHA, BCKDHB, and BCKDK mRNA expression corrected to β-actin and

SDHA (39) and expressed as fold change in the SAT of non-obese (n = 6), pre-obese (n = 6) and obese class I (n = 6), class II (n = 6) and class III (n = 6) cardiac

surgery patients. (C) Representative immunoblot and densitometric analysis of KLF15, pBCKDE1a, BCKDH, BCKDK, and DLD protein levels in the SAT of non-obese

(n = 3), pre-obese (n = 3), class I obese (n = 4) and class II obese (n = 3) cardiac surgery patients. (D) Total and actual BCKDH enzyme activity corrected to protein

levels, measured at Vmax (t = 15min) in the SAT of non-obese (n = 7), pre-obese (n = 9), class I obese (n = 9), class II obese (n = 9) and class III obese (n = 8).

Statistical analysis was performed using a two-way ANOVA followed by a Tukey’s multiple comparison test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 as

indicated (40).

Frontiers in Endocrinology | www.frontiersin.org 9 August 2020 | Volume 11 | Article 534

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Biswas et al. BCAA Catabolism Dictate Surgical Outcomes

FIGURE 3 | Downregulated BCKDH enzyme activity and expression of BCAA catabolic enzymes in the SAT of obese patients are associated with BMI and markers of

insulin resistance. Linear regression of (A) KLF15, (B) DLD, (C) phosphorylated BCKDE1a, (D) SOAT1 protein expression in the SAT of non-obese (n = 7), pre-obese

(n = 7), class I obese (n = 8) and class II obese (n = 6) cardiac surgery patients and (E) PP1MK mRNA expression in the SAT of non-obese (n = 6), pre-obese (n = 6),

class I obese (n = 6), class II obese (n = 6) and class III obese (n = 6) cardiac surgery patients correlated with BMI. Linear regression of (F) pBCKDE1α protein levels

in the SAT of non-obese (n = 7), pre-obese (n = 7), class I obese (n = 8) and class II obese (n = 6), (G) PP1MK mRNA levels in the SAT of non-obese (n = 6),

pre-obese (n = 6), class I obese (n = 6), class II obese (n = 6) and class III obese (n = 6) and (H) Total BCKDH enzyme activity in the SAT of non-obese (n = 7),

pre-obese (n = 9), class I obese (n = 9), class II obese (n = 9) and class III obese (n = 8) correlated with HOMA-IR,HbA1c% and random blood glucose levels,

respectively, in the SAT of cardiac surgery patients. Statistical analysis was performed using one-way ANOVA; followed by a Tukey’s multiple comparison test;

p < 0.05 was considered significant.
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FIGURE 4 | Intramyocellular BCAAs and BCAA catabolic enzyme mRNA expression are increased in the AA tissues of cardiac surgery patients with severe obesity.

(A) Free plasma BCKA levels measured by UPLC MSMS in the non-obese (n = 9), pre-obese (n = 10) and class I obese (n = 10), class II obese (n = 8) and class III

obese (n = 10) cardiac surgery patients. Intracellular (B) BCAAs and (C) BCKAs measured by UPLC MSMS in the AA of non-obese (n = 5), pre-obese (n = 5), class I

obese (n = 5), class II obese (n = 5) and class III obese (n = 5) cardiac surgery patients. (D) Quantification of ACADSB, BCAT2,HADHA, PPM1K, KLF15, BCKDHA,

BCKDHB, and BCKDK mRNA expression corrected to YWHAZ and PPIA levels (39) in the AA of non-obese (n = 6), pre-obese (n = 6) and obese class I (n = 6), class

II (n = 6) and class III (n = 6) cardiac surgery patients. Statistical analysis was performed using a two-way ANOVA followed by a Tukey’s multiple comparison test;

*p < 0.05, **p < 0.01, ****p < 0.0001 as indicated (40).

correlated with BMI (Figure 5C), signifying an increase in BCAA
catabolism in the AA of obese patients despite downregulation
of KLF15, in the AA tissues of obese patients with underlying
cardiovascular defects. mRNA levels of BCKDH, ACADSB and
HADHA positively correlated with BMI (Figures 5D–F), as

well as with hip and waist circumference (Table 5). Since the
mRNA expression of BCAA catabolizing enzymes did not always
reflect in changes in protein content, we determined BCKDH
enzyme activity in the AA tissues of obese cardiac surgery
patients. Both the actual and total BCKDH activity in the
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FIGURE 5 | Increased mRNA expression of BCAA catabolic enzymes and altered BCKA to BCAA levels in the AA of cardiac surgery patients with obesity are

associated with BMI. Linear regression of (A) pBCKDE1α, (B) DLD, and (C) BCAT2 protein expression in the AA tissues of non-obese (n = 7), pre-obese (n = 7), class

I obese (n = 8) and class II obese (n = 6) cardiac surgery patients correlated with BMI. Linear regression of (D) BCKDHA, (E) HADHA, and (F) ACADSB mRNA

expression in the AA tissues of non-obese (n = 6), pre-obese (n = 6), class I obese (n = 6), class II obese (n = 6) and class III obese (n = 6) cardiac surgery patients

correlated with BMI. (G) Linear regression of the intramyocellular BCKA to BCAA ratio of non-obese (n = 5), pre-obese (n = 5), class I obese (n = 5), class II obese

(Continued)
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FIGURE 5 | (n = 5) and class III obese (n = 5) cardiac surgery patients correlated with BMI. Statistical analysis was performed using one-way ANOVA; followed by a

Tukey’s multiple comparison test; p < 0.05 was considered significant. (H) Total and actual BCKDH enzyme activity corrected to protein levels, measured at Vmax

(t = 15min) in the AA of non-obese (n = 8), pre-obese (n = 7), class I obese (n = 6), class II obese (n = 9) and class III obese (n = 8). Statistical analysis was

performed using a two-way ANOVA followed by a Tukey’s multiple comparison test; p < 0.05 was considered significant.

AA remained unchanged across all obese groups (Figure 5H,
Supplementary Figure 4B) suggesting that unlike SAT wherein
the BCKDH enzyme activity decreased in the severely obese
patients, the activity was maintained in the AA tissues.

Ratio of specific and total BCKAs to BCAAs in the AA trended
to decrease (Supplementary Figure 3B) and correlated with BMI
(Figure 5G), waist circumference as well as hip circumference
(Table 6), suggesting that increased BCAA levels in the AA is
associated with the severity of obesity.

Taken together, our data suggests that mRNA expression of
BCAA metabolizing enzymes decreased in SAT and increased
in AA in cardiac surgery patients with obesity. Within SAT, the
decrease in mRNA expression of BCAA catabolizing enzymes
corresponded with reduced BCKDH enzyme activity signifying
inhibition of BCAA catabolic activity. Within AA, the increased
expression of BCAA catabolizing enzymes was accompanied by
increased intracellular BCAA levels and reduced BCKA levels
without any decrease in BCKDH activity. Our findings agree with
a recent in vivo isotope tracing study in mice demonstrating a
shift in BCAA catabolism from adipose tissue towardmuscle with
IR progression (44).

BCAA Catabolic Alterations in SAT and AA
Correlates With Markers of Tissue
Dysfunction and Influence Post-operative
Outcomes
To examine whether the altered BCAA flux in the heart and
adipose induces hepatic toxicity and cardio-renal injury,
we determined correlations between changes in BCAA
catabolic enzyme expression and tissue damage markers in
the cardiac surgery patients. We found a positive correlation
of intramyocellular ratio of BCKAs to BCAAs (Figure 6A),
BCAT2 mRNA (Figure 6B) as well as ACADSB mRNA levels
(Table 6) with post-operative troponin, a cardiac tissue damage
marker. In our study, we found a strong negative correlation
of HDL with increasing intramyocellular levels of all three
individual BCAAs as well as total BCAAs (Table 6). In our study,
BCKDHB mRNA expression in the AA tissue (Figures 6C,D)
and intramyocellular valine (Table 6) positively correlated
with both the pre as well as post-operative creatinine levels, a
critical renal damage marker. A negative correlation was also
established between the post-operative creatinine levels and
the total and actual BCKDH activity (Table 6). Furthermore,
mRNA levels of both the A and B subunits of BCKDH and
BCKDK as well as protein levels of BCKDHA, BCAT2, and
PPM1K were also positively correlated with blood urea levels
(Tables 4, 5), suggesting that the impairment in kidney function
post-surgery may be influenced by altered BCAA flux in the
heart. Our data also revealed a negative correlation between
HIBCH (3-hydroxyisobutyryl-CoA hydrolase), SOAT1 and

ERAB/HADHII (endoplasmic-reticulum-associated amyloid
beta-peptide-binding) protein expression and circulating
glycine levels (Table 4), known to regulate lipid homeostasis
and cholesterol transport (45). Increased mRNA expression
of BCAA catabolic enzymes in the heart was also found to
be detrimental for proper cardiac function, where PPM1K
mRNA levels and HIBCH (3-hydroxyisobutyryl-CoA hydrolase)
protein levels were negatively correlated with left ventricular
end diastolic pressure (LVEDP) (Tables 4, 5). Furthermore, c-
reactive protein (CRP) levels were positively correlated with
mRNA expression of both the subunits of BCKDH as well as
BCKDK in the AA tissues of the patients (Table 5). Decreased
BCKAs and the corresponding increase in BCAA levels in
the AA was also correlated with the severity of heart failure,
based on the NYHA classification, which was also evident
with increased length of stay of the patients following cardiac
surgery (Table 6). Interestingly increased levels of HIBCH and
SOAT1, protein involved in BCAA degradation significantly
correlated with lower leucocyte counts and moreover lower
leucocyte and neutrophil counts correlated significantly with
increased PPM1K, BCKDK and DLD proteins (Table 3)
questioning the likely role for BCAAs in the regulation of blood
cell turnover.

Conversely in SAT, post-operative troponin was negatively
correlated with the ACASB, HADHA and BCKDHB mRNA
levels (Figures 6E–G). We found that increasing levels of pre-
operative liver injury markers, alanine transaminase (ALT)
and aspartate transaminase (AST), are negatively correlated
with HADHA mRNA expression in SAT (Figures 6H,I). BCAA
catabolic enzyme expression was also associated with cardiac
function, where SOAT1 protein positively correlated with LVEDP
(Table 2). Concomitant with the association of dysregulated
BCAA catabolic enzymes in the adipose with cardiac injury,
we also found a positive correlation between BCKDHB mRNA
levels and fasting cholesterol and LDL levels (Table 3). Taken
together, we show that BCAA catabolic enzyme dysregulation in
the SAT and AA tissues of obese patients robustly associate with
adverse cardiometabolic parameters in obese patients undergoing
cardiac surgery.

We next investigated whether the altered BCAA catabolic
enzyme expression in SAT and AA tissues are indicative of
post-operative outcomes in obese patients following cardiac
surgery. The length of stay (LOS) in the hospital following
surgery is an important determinant of post-operative
outcomes. In our study, reduced BCAA catabolism in the
SAT of obese patients was associated with increased LOS.
mRNA levels of KLF15 and PPM1K were inversely correlated
with LOS (Figures 7A,B), while levels of phosphorylated
BCKDH E1a subunit (pBCKDE1a) positively correlated
with LOS (Figure 7C). BCKDHA mRNA expression trended
to be negatively correlated with LOS (Figure 7D) while
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FIGURE 6 | Intramyocellular BCAAs and altered BCAA catabolic enzyme expressions in the SAT and AA tissues are associated with markers of tissue dysfunction in

cardiac surgery patients with increasing obesity. (A) Linear regression of BCKA to BCAA levels in the AA tissues of non-obese (n = 5), pre-obese (n = 5), class I obese

(n = 5), class II obese (n = 5) and class III obese (n = 5) cardiac surgery patients correlated with pre- operative plasma troponin levels. In the AA tissues of non-obese

(n = 6), pre-obese (n = 6), class I obese (n = 6), class II obese (n = 6) and class III obese (n = 6) patients undergoing cardiac surgery, linear regression of (B) BCAT2

mRNA expression were correlated with post-operative plasma troponin levels, (C,D) Linear regression of BCKDHB mRNA levels were correlated with pre and

(Continued)
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FIGURE 6 | post-operative plasma creatinine levels. In the SAT of non-obese (n = 6), pre-obese (n = 6), class I obese (n = 6), class II obese (n = 6) and class III

obese (n = 6) cardiac surgery patients, linear regression of (E) ACADSB, (F) HADHA and (G) BCKDHB mRNA expression correlated with post-surgery plasma

troponin levels, (H,I) HADHA mRNA correlated with (H) plasma ALT and (I) AST levels. Statistical analysis was performed using one-way ANOVA; followed by a

Tukey’s multiple comparison test; p < 0.05 was considered significant.

downregulation of both the actual (Table 6) and total BCKDH
enzyme activity (Figure 7E) in the SAT was correlated with
increased duration of hospital discharge. Moreover, the levels
of the isoleucine derived BCKA, KMV (Table 6) as well as
BCKA/BCAA ratio was negatively correlated with LOS in the
AA (Figure 7F). Longer duration of stay also correlated with
reduced levels of the ratio of KMV/ isoleucine and KIC/leucine
(Table 6), Together, these findings suggest that dysregulated
BCAA catabolism in the SAT and AA is related to a prolonged
LOS post cardiac surgery and likely predisposes to a less favorable
hospital discharge (Figure 7G).

DISCUSSION

Plasma BCAA levels have been widely proposed as biomarkers
of cardio-metabolic diseases (14, 17, 35, 46). However,
several prospective metabolome-wide studies of incident
coronary heart disease (19, 20), coronary artery disease (21–
23) and myocardial infarction (MI) (21) do not support
the paradigm that elevated circulating BCAAs are causally
associated with CVD. We performed this study to determine
if BCAA metabolizing enzymes and intracellular BCAA
content are more definitive predictors of cardiometabolic
health. For the first time in obese patients undergoing
cardiac surgery, our study demonstrated a co-ordinate
regulation of BCAA catabolic enzymes in the heart and
subcutaneous adipose tissue. Moreover, our data indicate
that altered myocellular BCAA content as well as BCAA
metabolic enzyme expression in obese heart and adipose
tissue correlated with worsening adverse outcomes following
cardiac surgery.

Prior studies have reported the importance of white adipose
tissue in modulating whole body BCAA metabolism. Indeed,
downregulation of BCATm and BCKDH in the adipose tissue
has been associated with increased levels of plasma BCAA in
both obese humans (7, 47, 48) and genetic or diet-induced
obesity models of rodents (49–51). In our study, we procured
the SAT surrounding the heart of patients undergoing cardiac
surgery. Interestingly, our data showed that in early stages
of obesity (pre-obese), BCAA catabolizing enzyme expressions
was upregulated in the SAT when compared to the non-
obese patients. However, in the SAT of patients with class
II and class III obesity, mRNA and protein levels of BCAA
catabolic enzymes were markedly downregulated along with
increased levels of pBCKDE1α and BCKDK. Consistently SAT
BCKDH activity was also downregulated suggesting disrupted
BCAA catabolism in the with severe obesity in a setting of
underlying heart disease. Correlation analysis of the BCAA
catabolizing enzymes and BCKDH enzyme activity with BMI
as well as indicators of IR demonstrated robust association in
the SAT. Our findings in the human obese cardiac surgery

patients is supported by a prior study by Lackey et al.,
demonstrating significantly reduced mRNA levels of BCKDH
subunits in the SAT of Pima Indian population with obesity
(52). Contrary to rodent studies demonstrating an increase in
circulating BCAAs due to downregulation of adipose BCAA
catabolic enzymes (41), BCAA catabolizing enzyme expression
remodeling in SAT of obese cardiac surgery patients in our
study did not reflect in changes in plasma BCAA levels. Indeed,
Patterson et al. demonstrated that a relatively lower rate of
leucine release from abdominal subcutaneous adipose tissue of
obese women than in the lean women (53), suggesting that
adipose tissue acts as a sink of circulating BCAAs. Therefore,
it is plausible that decreased levels of BCAT in the SAT is
inadequate to transaminate BCAAs, which coupled with reduced
BCAA catabolic enzyme expression in the SAT might not
trigger changes in intracellular BCKA levels, as observed in
our study.

Tissue specific regulation of BCAA catabolic fate are
reported in murine models of IR (41, 54, 55). Reduction in
systemic BCKA levels in our obese patient cohort prompted
us to investigate BCAA metabolism in the heart. Isotope
labeling studies have demonstrated the increase and decrease
in BCAA oxidative flux in the skeletal muscle and adipose,
respectively, during the progression of IR in obese mouse
models (44) resulting in elevated acyl carnitine accumulation
(54). In our study, intramyocellular BCAAs were augmented
in the pre-obese and obese cardiac surgery patients, while
the BCKAs were only increased in the AA of pre-obese
patients. Contrary to previous reports in human ventricular
appendage from end stage failing hearts (33) and explanted
heart samples from patients with diabetic cardiomyopathy
(34), mRNA expression of BCAA metabolism enzymes in
AA were upregulated in the severely obese patients in our
study. The BCAA catabolic enzyme alterations observed at the
mRNA levels were independent of changes in their protein
expression or BCKDH activity, suggesting a probability of
posttranslational regulation. Correlation analysis of the mRNA
expression of the BCAA catabolizing enzymes in the AA
demonstrated association with BMI. The different observations
in our patient cohort as opposed to prior reports could be
attributed to the type of cardiac tissue procured, stage of heart
failure, and presence of underlying co-morbidities as well as
different treatment modalities the patients are subjected to pre-
and post-surgery.

Moreover, reduced BCKA levels as well as BCKA/BCAA
ratio in the AA was associated with different parameters of
obesity suggesting that increased accumulation of BCAAs in the
AA of cardiac surgery patients with obesity precipitates obesity
related co-morbidities.

Perturbations of BCAA catabolizing enzymes were reported
to be associated with altered expression of the heart failure
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FIGURE 7 | Decreased BCKDH enzyme activity, BCAA metabolic enzyme expressions in the SAT and altered intracellular BCAA levels in the AA are associated with

length of stay following cardiac surgery in obese patients. Linear regression of (A) KLF15, (B) PP1MK mRNA levels, (C) pBCKDE1α, and (D) BCKDHA protein levels

correlated with the length of stay in the hospital following surgery in the SAT of non-obese (n = 7), pre-obese (n = 7), class I obese (n = 8) and class II obese (n = 6)

cardiac surgery patients. (E) Linear regression of total BCKDH activity at Vmax correlated with the duration of stay in the hospital following surgery in the SAT of

non-obese (n = 7), pre-obese (n = 9), class I obese (n = 9), class II obese (n = 9) and class III obese (n = 8) patients undergoing cardiac surgery. (F) Linear regression

of the ratio of intramyocellular BCKA to BCAA correlated with the length of stay following surgery in the AA of non-obese (n = 5), pre-obese (n = 5), class I obese

(n = 5), class II obese (n = 5) and class III obese (n = 5) cardiac surgery patients. Statistical analysis was performed using one-way ANOVA; followed by a Tukey’s

multiple comparison test; p < 0.05 was considered significant. (G) Summary of the tissue specific alterations of BCAA catabolic enzyme expression, BCAA levels and

BCKDH enzyme activity in the SAT and AA tissues of cardiac surgery patients with underlying obesity.
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markers, atrial natriuretic factor (ANF), beta myosin heavy
chain (β-MHC) (33). Our study examined whether tissue
specific alterations of BCAA flux and changes in enzyme
expression in the AA and SAT correlated with the prognosis
and post surgical outcomes of obese patients undergoing cardiac
surgery. Elevated levels of troponin and creatinine are reported
signatures of tissue damage following cardiac surgery (56–
58) which significantly affects the postoperative outcomes in
terms of better prognosis as well as discharge times. Some
of the common complications following cardiac surgery are
the development of acute kidney injury (59) and increases in
transient post-operative liver function tests (60). Alternatively,
pre-operative chronic kidney disease (61) and liver dysfunction
(62) are reported to worsen cardiac surgery outcomes (63).
Our data demonstrated that dysregulated BCAA catabolism
in the AA is correlated with the cardiac and renal damage
markers levels, specifically, post-operative troponin, creatinine,
blood urea and CRP reflecting poorer post-surgical outcomes
likely due to the toxicity of downstream BCAA metabolites that
are not necessarily BCKAs, in the myocyte, liver and kidneys.
Dysregulated BCAA catabolic enzymes in the AA of obese
patients were also associated with an increased propensity for
cardiac failure as indicated by reduction in the LVEDP values.
Reduced HDL-cholesterol levels are associated with incidence
of heart diseases (64) and our findings reflected that increased
BCAA levels in the AA are correlated with marked reduction
in HDL in our patient cohort. Prior reports have shown that
levels of plasma dimethyl glycine and glycine improves risk
prediction in patients with coronary heart disease andMI (45, 65)
and increased plasma glycine levels are protective against the
risk of developing CVD (45, 66). Our findings suggest that
increases in BCAA catabolic enzyme expression in the AA alters
plasma glycine profile making the heart more susceptible to
cardiac injury. Altered BCAA catabolism in the SAT was also
correlated with post-operative troponin, pre-operative hepatic
damage markers, AST, ALT, fasting cholesterol, LDL levels
as well as markers of insulin resistance. Decreased BCAA
catabolic enzyme expression in the SAT was also correlated
with increased LVEDP values and longer discharge times
following surgery. Moreover, cardiomyopathic human hearts
exhibit downregulation of BCAA catabolizing enzyme gene
expression with concomitant upregulation of intramyocardial
BCKAs signifying that defective BCAA catabolism is a metabolic
phenotype of CVDs (33). In addition, systemic BCAA levels
and NT-pro-B-type natriuretic peptide (NT-proBNP) yielded
a stronger prognostic value and robustly predicted adverse
cardiovascular outcomes in patients with ST-segment elevation
myocardial infarction (STEMI) and acute heart failure (AHF)
when compared to NT-proBNP alone (17). Our findings thus
highlight the importance of adequate tissue specific regulation
of BCAA catabolism, the imbalance of which could result in
metabolic inflexibility that may precipitate cardio-renal-hepatic
injury following cardiac surgery in a setting of obesity. Our
study is in agreement with prior reports demonstrating tissue
compartment specific regulation and inter tissue cross-talk
of BCAA metabolizing enzymes and catabolic intermediates
(52, 54, 67).

LIMITATIONS OF THE STUDY

Since this study was solely conducted in humans, we have
highlighted specific limitations of this study. All participants
in this study were cardiac surgery patients stratified according
to their BMIs. To examine if plasma BCAA levels associate
with obesity and its related co-morbidities, non-obese patients
were chosen as controls. Despite control patients having a
healthy BMI, they are undeniably patients, with underlying
chronic cardiac complications, on specific treatment regimen
pre- and post-surgery. The issue of gender differences on
cardiometabolic functional outcome of patients can influence our
interpretation of the presented data. Notably, due to minimal
tissue availability our participant numbers are variable across
different experiments, limiting our ability to examine 3-HIB,
BAIBA and acyl carnitine content in addition to BCAA and
BCKA levels, which might influence intramyocellular BCAA
and BCKA flux. Furthermore, in the presented data correlations
are unadjusted and have been established based on p-value
significance. Lastly the hetero-cellularity of the heart and the
cell specific contributions of BCAAs and BCKAs in our data
interpretation is paramount for predicting CVD outcomes.

CONCLUSION

Taken together, our clinical data suggests that systemic
BCAA levels per se is not adequate to explain the underlying
molecular complexities in the setting of CVD precipitated
by obesity. We propose that interpreting the pathobiology
of BCAA dysmetabolism requires looking beyond systemic
BCAA levels and more so toward tissue specific alterations in
the expression of BCAA metabolizing enzymes and levels of
intracellular BCAAs and BCKAs. We have included different
stratifications of obesity in our study which was important to
address as our results indicate differences between the pre-
obese and class I-III obese groups. An important observation
in this study was that in obese patients undergoing cardiac
surgery intracellular BCAAs and BCAA catabolic enzyme
expression, but not systemic BCAAs, correlated with BMI.
We infer that dysregulation of BCAA catabolizing enzymes
mRNA expression is differentially regulated in multiple tissue
depots highlighting their compartment specific contribution
in driving organ metabolism and function (Figure 7G).
Moreover, poorer cardiac health and surgical complications
following surgery corresponded with dysregulation of BCAA
catabolic enzyme expression at the level of mRNA, protein,
enzyme activity and metabolite (BCAA/BCKA) content in the
myocardium. This study proposes that in a setting of obesity,
dysregulated BCAA catabolism could be an effective surrogate
to determine cardiac surgery outcomes and plausibly predict
premature re-hospitalization.

EXPERIMENTAL METHODS

Clinical Sampling
Human tissue samples were collected from patients undergoing
elective, first-time cardiac surgery (coronary artery bypass graft
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and/or valve surgery) at the New Brunswick Heart Centre in
Saint John, NB, Canada who provided consent to be enrolled, as
part of a previously described study (40), which was part of the
OPOS trial (Trial registration NCT03248921) (68). All patients
met the inclusion criteria and did not fulfill any exclusion criteria,
as described previously (40). Our study cohort included 17 non
obese (M = 11, F = 6), 19 pre-obese (M = 19, F = 0), 14 obese
class I (M = 11, F = 3), 17 obese class II (M = 14, F = 3) and 12
obese class II (M= 9, F= 3) patients.

Sample Collection and Anthropometric
Measurements
Immediately before surgery, a venous blood sample was collected
and plasma was separated and stored at −80◦C for long term
storage. During the surgery, samples of the right atrial appendage
(AA) and thoracic subcutaneous adipose tissue (SAT) were
excised, frozen in liquid nitrogen, and stored at −80◦C until
further processing for quantitative polymerase chain reaction
(qPCR) and immunoblot analysis, as described previously
(40). Anthropometric measurements were done during patient
enrolment for surgery by the Cardiac Surgery Research Team
at Saint John Regional Hospital (SJRH). Weight, height, waist
circumference and hip circumference were measured.

Biochemical Measurements
Measurement of ALT, AST, creatinine, glucose, insulin, troponin
T and HOMA-IR levels in plasma samples were conducted
by the Department of Laboratory Medicine, Saint John
Regional Hospital (SJRH). Clinical data from patients who
participated in the study was retrieved by the Cardiac Surgery
Research Team at SJRH. This included information regarding
demographics (BMI, age, sex), blood cell type, quantity and
morphology (hemoglobin, hematocrit, platelets, leukocytes,
erythrocytes, neutrophils, lymphocytes), electrolytes (sodium,
potassium, chloride), blood lipids (cholesterol, triglycerides,
fasting HDL cholesterol, fasting LDL cholesterol, fasting
non HDL cholesterol), glucose tolerance (HbA1C, random
glucose), cardiac function (pre and post-operative troponin,
ejection fraction, LVEDP, NYHA classification), post-operative
outcomes (length of stay), and co-morbidities (smoking, diabetes,
hypertension, creatinine, urea (blood), renal failure). All studies
were approved by the Research Ethics Board of the Saint
John Regional Hospital, NB, Canada (protocol #2014–2006). A
written informed consent was obtained from all participants,
and all experiments were performed in accordance with relevant
guidelines and regulations.

Tissue Processing, Subcellular
Fractionation, and Immunoblotting
15–20mg of human subcutaneous adipose tissue and atrial
appendage were powdered and homogenized using a tissue
homogenizer (Omni TH, Omni International) in ice-cold lysis
buffer [containing 20mM Tris-HCl, pH 7.4, 5mM EDTA,
10mM Na4P2O7 (567540; Calbiochem, NJ, USA), 100mM
NaF, 1% Nonidet P-40, 2mM Na3VO4, protease inhibitor
(P8340, 10 µl/ml; Sigma, MO, USA) and phosphatase inhibitor
(524628, 10 µl/ml, Calbiochem, NJ, USA)]. BCA protein assay

TABLE 7 | Table of key resources.

Reagent or resource Source Identifier

Antibodies

BCKDHA My Biosource MBS 275832

pBCKDE1α Bethyl Lab A303-567A

KLF15 Novus Biologicals NBP2-24635

DLD Santa Cruz Biotechnology Inc. G-2; sc-365977

SOAT1 Santa Cruz Biotechnology Inc. ACAT-1; sc-69836

BCKDK My Biosource MBS 275719

BCAT2 Cell Signaling Technologies CST 9432

PPM1K GeneTex GTX 105934

ERAB Santa Cruz Biotechnology Inc. 23; sc-136326

HIBCH Santa Cruz Biotechnology Inc. E-11; sc-515355

BCKDHB Santa Cruz Biotechnology Inc. H-6; sc-374630

Secondary antibodies Santa Cruz Biotechnology Inc sc-516102; sc-2357

Chemicals

Leucine- d3 CDN Isotopes D-1973

Softwares

Prism 7 GraphPad N/A

Image Lab 5.0 BioRad N/A

SAS/STAT SAS N/A

qBase+ Biogazelle N/A

Fine chemicals if not noted otherwise are from Sigma.

kit (23255; Pierce, Thermo Fisher Scientific, MA, USA) was
used to determine the protein concentrations. 30–35 µg of
protein was subjected to SDS-PAGE and then transferred
onto nitrocellulose membranes. Proteins were visualized using
a reversible Coomassie stain (24580, Pierce, Thermo Fisher
Scientific, MA, USA) and membranes were incubated with the
primary antibodies which are provided in Table 7. Immunoblots
were developed using theWestern Lightning Plus-ECL enhanced
chemiluminescence substrate (NEL103E001EA, Perkin Elmer,
ON, Canada). Image lab software (Bio-Rad, CA, USA) was used
to perform densitometric analysis. The brightness and contrast of
the blots was uniformly adjusted, and images were cropped using
Image lab software or Microsoft PowerPoint picture tools.

qPCR Analysis
mRNA levels of BCAAmetabolizing enzyme related genes in SAT
and AA tissues were measured by quantitative PCR by employing
optimal reference gene pairs which was validated as previously
described (39). Primer information used for the study are
provided in Table 8. Powdered tissue samples were homogenized
in Ribozol (N580-CA, Amresco, OH, USA). RNA was isolated
as per the manufacturer’s instructions and QIAxcel Advanced
System (Qiagen, Toronto, ON) was used to determine the RNA
quality and quantity. One microgram of RNA of was used to
synthesize cDNA using qScript cDNA supermix (CA101414-
104, Quanta Biosciences). qPCR analysis was performed using
PerfeCTa SYBR green Supermix Low ROX (Quanta Biosciences,
MA, USA) and a ViiA7 real-time PCR machine (Thermo Fisher
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TABLE 8 | Details of specific primers and targets used in real-time qPCR experiments.

Primer Gene name /chromosome location Sequence 5′-3′ Product size (bp) Tm (◦C) GenBank ID

h-BCAT2-Fa Branched chain amino acid transaminase

2/ 19q13.33

CGCTCCTGTTCGTCATTCTCT 134 59.1 NM_001190.4

h-BCAT2-Ra CCCACCTAACTTGTAGTTGCC 57.7

h-PPM1K-Fa Protein phosphatase Mg2+/Mn2+

dependent 1K/ 4q22.1

ATAACCGCATTGATGAGCCAA 90 57.5 NM_152542

h- PPM1K-Ra CGCACCCCACATTTTCCAAG 59.2

h-ACADSB-Fa acyl-CoA dehydrogenase short branched

chain/ 10q26.13

GATGGCAAATGTAGACCCTACC 76 57.6 NM_001609

h-ACADSB-Ra AAGGCCCGGAGTATCACGA 60.0

h-HADHA-Fa hydroxyacyl-CoA dehydrogenase

trifunctional multienzyme complex subunit

alpha/ 2p23.3

CTGCCCAAAATGGTGGGTGT 134 61.1 NM_000182

h-HADHA-Ra GGAGGTTTTAGTCCTGGTCCC 59.7

h-KLF15 -Fb KLF15 Kruppel like factor 15/ 3q21.3 CGGCTGGAGGTTCTCGCGCTCTG 199 69.56 NM_014079

h- KLF15 -Rb AGGCTGGGGTTCAGGGCGCTTTC 69.45

h-BCKDHA-Fa branched chain keto acid dehydrogenase

E1 alpha polypeptide/ 19q13.2

CTACAAGAGCATGACACTGCTT 102 58.7 NM_000709

h-BCKDHA-Ra CCCTCCTCACCATAGTTGGTC 59.5

h- BCKDHB-Fa BCKDHB branched chain keto acid

dehydrogenase E1 subunit beta/ 6q14.1

TGGAGTCTTTAGATGCACTGTTG 109 57.5 NM_183050

h- BCKDHB-Ra CGCAATTCCGATTCCAAATCCAA 59.2

h- BCKDHK-Fa BCKDK branched chain ketoacid

dehydrogenase kinase/ 16p11.2

GACTTCCCTCCGATCAAGGAC 116 59.0 NM_005881

h- BCKDHK-Ra CTCTCACGTAGGCCCTCTG 58.2

aPrimers reported by Jang et al. (69).
bPrimers were designed in the current study.

Scientific, CA, USA) as detailed previously (39). qBase+ software
(Biogazelle) was used to quantify mRNA expression (39).

BCKDH Enzyme Activity Measurements
BCKDH activity in the AA and SAT were measured as described
previously (70). Briefly, 60–70mg of powdered AA and 75–80mg
of powdered SAT samples were homogenized in 300 µl of ice
cold extraction buffer (50mM HEPES, 3% Triton, 2mM EDTA,
5mM DTT, 0.5mM thiamine pyrophosphate (TPP), 1mM α-
chloroisocaproate, 50mM potassium fluoride, 2% bovine serum,
0.1mM N-tosyl-L-phenylalanine choloromethyl ketone (TPCK),
0.1 mg/mL trypsin inhibitor, 0.02 mg/mL leupeptin (pH 7.4
at 4◦C). Insoluble materials were pelleted by centrifugation at
21,200 g for 10min at 4◦C and the supernatant was removed
carefully and transferred. Following tissue extraction, the
supernatant was divided into two parts; one for BCKDH activity
assay and one for protein estimation. For complete precipitation
of the proteins, 27% cold poly-ethylene glycol 6000 (PEG-6000)
was added to the supernatant (final concentration of PEG-6000
was 9%) and incubated for 20min on ice. Precipitated proteins
were pelleted by centrifugation at 21,200 g for 10min at 4◦C and
supernatant was completely removed using vacuum. Precipitated
proteins can be frozen at this point at −80◦C for assay within
72 h. Precipitated proteins were resuspended in 60 µL of
suspension buffer (25mM HEPES, 0.1% Triton X-100, 0.2mM
EDTA, 0.4mM TPP, 1mM DTT, 50mM potassium chloride and

0.02 mg/mL leupeptin, pH 7.4). Following resuspension of the
precipitate, it is divided into two parts; for the actual BCKDH
assay and for total BCKDH.

Measurement of Actual BCKDH Activity
Twenty microliter of suspension buffer was added to 20 µl of the
resuspended precipitate; which was then mixed with the assay
buffer (60mM potassium phosphate, 4mMMgCl2, 0.8mM TPP,
0.8mM CoA, 2mM NAD, 0.2% Triton X-100, 4mM DTT and
10 U/mL pig heart dihydrolipoamide dehydrogenase (E3). E3
and MgCl2 was added to the assay mixture just prior to the
assay and pre-warmed to 30◦C. Absorbance was recorded at
340 nm for 15min at 37◦C using Synergy H4 hybrid multimode
plate reader (Biotek) to establish a baseline and reaction was
initiated with 50mM alpha ketoisovalerate (final 1mM) and
kinetic measurement was performed for 30 min.

Measurement of Total BCKDH Activity
Twenty microliter of resuspended precipitate was mixed with 20
µl of suspension buffer containing 2mMMnCl2 and 2,000 U/mL
of lambda phosphatase. This was further mixed with the assay
buffer and the reaction mixture was incubated for 30min at 37◦C
(for dephosphorylation of BCKDH). Following incubation, the
reaction mixture was centrifuged at 8,000 g for 3min to remove
insoluble particles. Absorbance to establish the baseline was
measured for 15min, following which the reaction was initiated
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with the substrate (50mM α-ketoisovalerate (final 1mM) and
kinetic measurement was done at 340 nm for 30 min.

Plasma and Tissue BCAA and BCKA
Measurements
Plasma/Tissue (BCAA and BCKA Extraction)
Twenty microliter of plasma sample, or 40–50mg of powdered
atrial appendage tissue or 50–70mg of powdered subcutaneous
adipose tissue 120 µl of internal standard (ISTD; 4µg/ml in
H2O) containing leucine-d3 (CDN Isotopes, D-1973), 40 µl of
MilliQ water, 60 µl of 4M perchloric acid (VWR, CA71007-
908) were combined and vortexed. Proteins were precipitated via
a 2min sonication followed by ice bath for 10min, twice and
centrifuged (13,000 RPM, 15min, 4◦C) and the protein pellet
was rinsed with 60 µl of 1M perchloric acid, vortexed and
protein precipitated as described above. The new supernatant
was combined with the first portion. The sample was split into
two 150 µl portions for BCAAs and BCKAs. For BCAAs, 150 µl
of extract was neutralized with 60–75 µl of 2M KOH (VWR,
CABH9262-500G) to a pH of 6–10, vortexed and centrifuged
(13,000 RPM, 5min, 4◦C). The supernatant was transferred to a
new tube. For the plasma samples, the precipitate was rinsed with
100 µl of MilliQ water (18Ω), vortexed and centrifuged (13,000
RPM, 5min, 4◦C). Supernatants were frozen, freeze dried and
reconstituted in 60 µl of 50:50 Methanol (MeOH) water (VWR,
CAMX0486-6) to yield 4µg/ml of internal standard. Samples
were derivatized as per the BCAA and BCKA derivatization
protocol below as per a prior study (71–74).

BCAA Derivatization and Quantification
Ten microliter of reconstituted extract was transferred to an
autosampler vial and was combined with 70 µL of Borate Buffer
(Waters, 186003836) from Waters AccQ-Tag Derivatization Kit
(target pH: 8–10) and vortexed. Twenty microliter of AccQ-Tag
Derivatization Agent (Waters, 186003836) was added, vortexed
and let stand for 1min. Samples were derivatized (55◦C, 10min)
and vortexed. Derivatized samples were quantified with a Waters
Acquity UPLC, Xevo-µ Tandem Mass Spectrometer and an
AccQ-Tag Ultra RP Column 130 Å, 1.7µm, 2.1mm, 100mm
column using multiple reaction monitoring (MRM) and internal
standard calibration (72, 73).

BCKA Derivatization and Quantification
25–50 µL of extract was combined with 50 µL of BCKA
internal standard; 0.8 ng/µL of KIVd7 (made from sodium-
2-Keto-3-methyl-d3-butyrate-3,4,4,4d4-0.5g; CDN Isotopes, D-
6855) and 500 µL of 25mM OPD in 2M HCl (made from o-
Phenylenediamine, 98%; VWR, CAAAA11946-30). The mixture
was vortexed and then incubated at 80◦C for 20min with
shaking and then cooled on ice for 5min. The derivatized
extract was centrifuged at 500 g for 15min. The extract was
transferred to a tube containing approximately 0.08 g sodium
sulfate (VWR, CA71008-804) then 500 µl of ethyl acetate (ethyl
acetate; VWR, CABDH83621.100) was added. The sample was
vortexed, centrifuged at 500 g at room temperature for 15min.
The supernatant was transferred to a second tube containing
0.08 g of sodium sulfate. A second 500 µl of ethyl acetate

was added to the first sodium sulfate tube, vortexed, and
centrifuged as above. The supernatant was combined with the
first portion in the second sodium sulfate tube. The combined
sample was vortexed and centrifuged at 500 g for 15min.
The new supernatant was transferred to a new empty tube.
Samples were vacuum centrifuged at 30◦C for 45min. Samples
were reconstituted in 50 µL of 200mM ammonium acetate
(made from; ammoniumAcetate, 98%; VWR, CA97061-014) and
transferred to amber glass UPLC vials (Waters, 186001130C).
BCKAs were quantified with a Waters Acquity UPLC, Xevo-
µTandem Mass Spectrometer and an Acquity UPLC BEH C18
1.7µm, 2.1 50mm (Waters, 186004660) and ACQBEHC18
VanGuard 130 Å,1.7µm, 2.1× 5mm (Waters, 186003975) using
multiple reaction monitoring (MRM) and internal standard
calibration as per a prior study (71, 74).

Statistical Analysis
Data are expressed as mean ± standard error of the mean
(SEM) unless otherwise indicated. Statistical and Spearman’s
correlation analyses were conducted using Prism software
(GraphPad, CA, USA) and SAS statistical software version 9.4
(Toronto, ON), respectively. Comparisons between multiple
groups were performed using two-way analysis of variance
followed by a Tukey post-hoc test or one-way ANOVA followed
by a Tukey post-hoc test or a Chi square goodness of fit
test, as appropriate. Clinical parameters were plotted against
tissue biomarkers and linear regression statistical analysis as
well as Spearman correlations for normally and non-normally
distributed variables was performed to assess for significance. All
correlations are unadjusted. P-values of <0.05 were considered
statistically significant.
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