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Abstract: Ticks transmit the most diverse array of infectious agents of any arthropod vector. Both ticks
and the microbes they transmit are recognized as significant threats to human and veterinary public
health. This article examines the potential impacts of climate change on the distribution of ticks and
the infections they transmit; the emergence of novel tick-borne pathogens, increasing geographic
range and incidence of tick-borne infections; and advances in the characterization of tick saliva
mediated modulation of host defenses and the implications of those interactions for transmission,
establishment, and control of tick infestation and tick-borne infectious agents.
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1. Introduction

Zoonotic diseases are a significant negative impact upon global public health that is increasing.
Zoonotic diseases are defined as infections shared in nature between humans and other vertebrate
animal species [1], characterized by transmission between species of organisms infecting humans that
are enzootic in other animal species [2]. Mutually transmissible infections between humans and other
animal species are thought to have arisen with the development of agriculture and the resulting contact
of more densely populated human communities with pathogens of domesticated and wild animal
species [3]. Greater than 60% of human infectious diseases emerging between 1940 and 2004 were
zoonotic, resulting in significant global morbidity, mortality, and economic costs [4]. Of those emerging
zoonoses, 71.8% are from wildlife and 22.8% are arthropod vector-borne infections [4]. Significantly,
the frequency of emerging vector-borne zoonoses has increased during the last ten years [4].

Among arthropod vectors of disease, ticks transmit the most diverse array of infectious agents
and ticks are the most important arthropod vectors, globally, of pathogens to humans and domestic
animals [5–7]. Tick-borne infections of humans are zoonoses of wildlife origins, similar to tick
transmitted diseases of companion and domestic animal species [8]. Dynamic interactions among
biotic and abiotic elements influence tick-borne disease epidemiology and ecology. Seminal studies by
Pavlovsky [9] advanced the concept that zoonotic pathogens and their vectors occur in distinct habitats,
resulting in the concept of the natural nidality, or landscape epidemiology, of transmissible diseases.
Changes in tick distribution and abundance, as well as emergence, resurgence, and geographic spread
of tick-borne infections, are influenced by tick and tick-borne pathogen demography, micro and macro
climate changes, human behavior, travel, land use and habitat modification (agricultural, residential,
recreational), economics, politics, population growth and movement, and intrinsic changes in ticks
and tick-borne pathogens [7,8,10]. The importance and awareness of the impacts of tick-borne diseases
are steadily increasing [11].

Defining tick-host-pathogen interactions, at the cellular and molecular levels, are additional areas
of study essential for characterizing pathogen transmission, establishment, pathogenesis, and for
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identifying novel checkpoints for control of both vectors and pathogens. A research focus where
advances are being achieved at an increasing pace is the characterization of tick saliva and its ability to
modulate multiple host defenses differentially during blood feeding, resulting in successful acquisition
of a blood meal and creation of environments favorable for pathogen transmission and establishment
in the host [12–16]. This area of study is an excellent example of the effective use of genetics, genomics,
functional genomics, proteomics, and the application of a broad array of molecular biology tools to
rapidly advance the understanding of complex pathways operating at the tick-host-pathogen interface.

Our understanding of ticks and tick-borne diseases is changing on many levels due to the
application of significant technological advances and new paradigms. An avenue for advancing
efforts to achieve effective control of ticks and tick-borne diseases is by implementing coordinated
planning, performance, and evaluation of diverse research initiatives and integrated control measures
in a One Health approach to these vectors and infections of human and veterinary public health
importance [11]. The One Health concept is the contemporary version of the coordinated and
collaborative human and veterinary medicine approach to zoonoses articulated by Schwabe [1].

This review examines selected contemporary topics of tick and tick-borne disease epidemiology,
tick biology, and tick-host-pathogen interactions that are of increasing importance for defining
underlying factors, relationships, and mechanisms that are essential for the success of these important
vectors and the infections they transmit. Long term objectives of these evolving areas of investigation
are to add to the accumulating body of knowledge that will result in the development of effective
disease prediction, prevention, and control interventions.

2. Changing Ticks and Tick-Borne Diseases

Ticks, tick transmitted infections, hosts, and a multitude of factors that influence them are
constantly undergoing change. This constant state of flux for multiple factors impacts: Vector and
disease surveillance, reporting, public awareness, and interventions; fluctuations in tick population
densities and range at local and national levels; introduction of tick-borne diseases into new areas,
resurgence, and emergence within established geographic areas; and the development of surveillance
and diagnostic tools to educate healthcare providers and raise awareness of the public both to old and
new public health threats. Understanding tick-borne zoonoses requires comprehensive examination
and increasing knowledge of the complex associations among tick populations, habitat landscapes,
climate, human behavior, human demographics, economics, and intrinsic pathogen factors [10,17–19].

Arthropod disease vectors and their transmission of disease causing agents are significantly
influenced by weather and climate [20]. Warming global temperatures will influence geographic
range and population expansion of ticks, which, in turn, influences distribution patterns and
incidences of tick-borne infections [10]. Ticks and tick-borne diseases are predicted to move poleward,
with accompanying contractions in subtropical or tropical equatorial ranges [21]. In the northern
hemisphere, warmer falls, winters, and springs can, potentially, increase the geographic range of
ticks further to the north, as well as to higher altitudes [10]. Likewise, elevated temperatures in
other regions could create environments not favorable for the development or survival of some tick
species. An environmental temperature rise of 2 ◦C is predicated to make habitats less favorable
for several tick species in South Africa [22]. Since ixodid ticks are particularly sensitive to humidity
levels [23,24], the combination of increased temperature and drier seasons could negatively impact
tick populations [25]. Ticks are particularly sensitive to variations in rainfall. Due to the complex
interactions of ticks, pathogens, reservoir hosts, and weather, any climate changes are likely to
influence tick-borne zoonoses more than vector-borne infections that are directly transmitted between
humans [26]. The impact of climate change on ticks and tick-borne diseases will be determined over
time; however, since differing views exist on the development of needed predictive models, this will
be a challenging task [18].
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3. Ticks on the Move

Changes in geographic distributions of tick populations have, are, and will continue to occur.
Modifications of any of the known interacting factors that influence tick populations have the potential
to affect the distribution and abundance of these important disease vectors. Simultaneous changes are
taking place among those complex associations of factors at micro and macro levels, which require
heightened surveillance of ticks and tick-borne diseases that are established, resurging, or emerging.

The northward range expansion of Ixodes ricinus in Sweden and Russia, along with an increased
abundance of this species at the eastern limits of its range in the Tula region of Russia, are attributed to
climate changes, with resultant milder winters [27,28]. Ixodes ricinus is the most frequently reported
tick in the United Kingdom with an expanding range in southern England [29]. Both Ixodes ricinus and
Borrelia burgdorferi are expanding their range into the northern latitudes of Europe [30]. These findings
support the hypothesis that climate change will increase the habitat of Ixodes ricinus in northern Europe
and Eurasia [31]. Ixodes persulcatus and tick-borne encephalitis expansion into the subarctic regions of
European Russia are also linked to climate change [32].

The geographic range extension, population increases, and an expanding array of transmitted
infectious agents of Ixodes scapularis are extensively studied in both the United States and
Canada [33,34]. Ixodes scapularis geographic range has expanded significantly in the Eastern and
Midwestern United States during the past 20 years [35]. Concomitant with this expanded range is
an increase in the incidence of reported cases of Lyme disease and other Ixodes scapularis vectored
pathogens [36]. Between 1996 and 2016, the number of counties in which Ixodes scapularis is established
doubled to 44.7% of all United States counties [35]. The potential geographic range of this tick exceeds
the currently described distribution within the United States [37]. Ixodes scapularis range grew into
eastern and central Canada by approximately 2004 and it was accompanied by the emergence of
Lyme disease [34]. Ixodes scapularis is considered to be reclaiming its historical geographic range in
response to changes that include habitat and climate changes, as well as the availability of hosts for
all life cycle stages, particularly white tailed deer [33]. Ixodes scapularis is a competent vector and
Peromyscus leucopus is a reservoir for an increasing number of human pathogens [33,36], highlighting
the public health importance of this tick.

Dermacentor reticulatus is a species whose biology is well suited to survive and thrive in diverse,
challenging, and changing weather conditions, climates, and habitats in Europe and Eurasia [38].
This tick recently expanded its range into many regions of Europe, raising the potential for the spread
of pathogens into these regions [38]. Dermacentor reticulatus range extended, during recent decades,
into Germany, the Netherlands, Poland, and other European regions that were previously considered to
be suitable habitats for this tick vector [39]. Climate and habitat modifications are important factors in
geographic range changes for disease vectors and pathogens [40]. Increasing numbers of wildlife hosts
and reforestation are factors in the range expansion of this tick [41]. Although Dermacentor reticulatus
has many possible host species, movement of dogs as companion animals and strays is an important
factor in the movement and establishment of this tick in new regions [38]. Dermacentor reticulatus
is a competent vector for pathogens of human and veterinary public health importance, including:
Omsk hemorrhagic fever virus, tick-borne encephalitis virus, Rickettsia raoultii, Rickettsia slovaca,
Anaplasma marginale, Babesia canis, Babesia caballi, and Theileria equi [38].

Amblyomma americanum is a North American tick of increasing importance due to its significantly
expanding geographic distribution, increased population density, and roles as a vector of established
and emerging infectious agents [42]. Contributing to the medical importance of Amblyomma americanum
is the ability of larvae, nymphs, and adults to readily seek and blood feed on humans [42,43].
The distribution of this important pest tick was, historically, from the southeastern United States
to west central Texas and north to Iowa; however, the geographic range now extends into the
Mid-Atlantic States and New England, and as far north as Maine [44]. The geographic range and
population resurgence of white tailed deer are significant, since they are hosts for larvae, nymphs, and
adults of this important tick species [45]. This tick species is increasingly recognized as an important
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vector of infectious agents. White tailed deer are reservoirs for Amblyomma americanum transmitted
Ehrlichia chaffeensis and Ehrlichia ewingii [36]. Amblyomma americanum is a competent vector for
Francisella tularensis [36] and is implicated as the vector for the recently discovered Heartland [46,47]
and Bourbon viruses [48]. Transmission of the enigmatic southern tick associated rash illness, STARI,
or also known as Masters disease, is linked to Amblyomma americanum [49].

The human health impact of ticks is evolving along the multiple fronts of infectious agents,
tick paralysis, damage due to feeding, and the emergence of allergies to tick saliva molecules.
First reported observations linking ticks to red meat allergy occurred in 2007 [50]. Subsequently,
delayed onset anaphylaxis following consumption of red meats in patients with a history of tick bites
were reported from multiple geographic regions, and the reactions were proven to be due to IgE
reactive with galactose-alpha-1,3-galactose, alpha-gal, a blood group oligosaccharide in non-primate
mammals [51,52]. Ixodid tick bites linked to the induction of alpha-gal delayed onset anaphylaxis are
those of Amblyomma americanum [52] and Ixodes ricinus [53]. Glycosylation of tick saliva proteins is
important for their biological activity. Therefore, eukaryotic expression systems are used to produce
recombinant tick saliva proteins [54]. Tick saliva composition and differential expression of saliva
molecules during the course of blood feeding are highly complex and modulate many aspects of host
immune defenses [12–16].

The range of Amblyomma maculatum, the Gulf Coast tick, within the United States has increased
significantly since the first half of the twentieth century [55,56]. This emerging vector species of
medical and veterinary importance was, initially, limited to the Gulf of Mexico coast from Texas
to the Atlantic Ocean coast to South Carolina and as far as 150 miles inland along this zone.
Currently, Amblyomma maculatum can be found as far north along the Atlantic coast as Delaware,
with a range of greater than 250 miles inland, and populations also established in several Midwestern
to southwestern states [55,56]. Amblyomma maculatum is the principal vector of the spotted fever agent,
Rickettsia parkeri, and the canine apicomplexian, Hepatozoon americanum [57]. Recently, an East Asian
tick, Hemaphysalis longicornis, was detected as an invasive species in New Jersey and within the past few
weeks (June 2018) was also detected in Virginia (http:outbreaknewstoday.com/longhorned-tick-found-
cattle-virginia-farm-43455/; https://entomologytoday.org/2018/04/24/invasive-tick-persists-new-
jersey/). The means by which this tick arrived in North America remains unclear; however, persistence
is a likely possibility after successfully overwintering in New Jersey and spreading to a distant site.

Geographic ranges and abundance of ticks are changing in response to multiple factors that may
be operating together to bring about the observed variations [36,56]. Both tick population densities
and distributions are impacted by a dynamic environment of biotic and abiotic factors that include
changes in human demographics and behaviors. In addition to their direct effects on ticks, biotic and
abiotic factors influence the vast number of tick associated microorganisms and tick-borne diseases,
as well as the additional public health threats of tick paralysis and other tick toxicoses [58,59].

The complex, ever changing nature and distributions of tick vectors and tick-borne diseases
requires continuous surveillance that encompasses the analysis of tick vectors, pathogens, reservoirs,
and epidemiology of infections [36]. Public health responses to vector-borne diseases are enhanced
by the integration of multidisciplinary teams engaged in the surveillance of vectors and vector-borne
diseases, diagnosis, control response strategies, education, research, training of research and
operational professionals, and community outreach [60]. Since ticks and tick-borne pathogens do
not recognize international boundaries, any network addressing ticks and tick-borne infections must
be part of a robust international disease monitoring network that provides timely evidence-based
communications to public health officials, healthcare providers, other decision makers, stakeholders,
and the public [61,62]. An integrated surveillance and response system that addresses all medically
important vectors is most effective and results in significant cost savings over specific vector and
related diseases approaches [63].

http:outbreaknewstoday.com/longhorned-tick-found-cattle-virginia-farm-43455/
http:outbreaknewstoday.com/longhorned-tick-found-cattle-virginia-farm-43455/
https://entomologytoday.org/2018/04/24/invasive-tick-persists-new-jersey/
https://entomologytoday.org/2018/04/24/invasive-tick-persists-new-jersey/
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4. Newly Recognized Pathogens Join the Mix

Vector-borne diseases account for a significant proportion of emerging infectious diseases
globally [4]. Ticks transmit an increasingly diverse array of infectious agents around the world [64,65].
In the United States, approximately 95% of reported vector-borne diseases are tick transmitted [66].
Conventional methods for identifying causative agents of a tick-borne disease are to associate a specific
illness with a history of a tick bite followed by linking that illness to a specific microorganism.
A classic example of that process of pathogen discovery is Lyme borreliosis [67]. Early epidemiologic
studies provided evidence that a tick, identified as Ixodes scapularis, transmitted the agent responsible
for the illness [68]. Subsequently, the tick was shown to transmit the causative Borrelia burgdorferi
spirochetes [69]. Awareness of the increasing complexity of tick associated microorganisms is due to
the application of genomics, functional genomics, next generation sequencing, and proteomics to the
analyses of tick microbiomes [65,70]. Molecular techniques are now used to reverse pathogen discovery
by applying these powerful tools for the identification of previously unrecognized microorganisms
in ticks prior to the association of those microbes with a disease [71]. Molecular techniques were the
basis for reversed discovery of the following microbes, later established to be human pathogens:
Borrelia miyamotoi [72], Neoehrlichia mikurensis [73], Rickettsia helvetica [74], and other Rickettsia
species [71]. A challenge posed by these powerful and sensitive approaches is to determine which
microbes are tick symbionts, disease causing agents, or have the potential to become emerging
pathogens of human and veterinary importance.

Here, I examine emerging and resurging tick-borne pathogens, highlighting the diversity of
infectious agents and implications of changing tick geographic distributions for changing disease
endemic regions. These changes have important implications for vector and disease surveillance,
interventions, and education of health care providers and the public.

Among tick vectors of public health importance, Ixodes scapularis, and the infectious agents it
transmits, are the foci of considerable attention. For an ixodid species that was not considered to
be a significant vector of human disease prior to 1970, the diversity of Ixodes scapularis transmitted
human pathogens stands at seven as of 2017 [33]. Lyme borreliosis is the most commonly encountered
Ixodes scapularis transmitted disease in the eastern and midwestern regions of the United States [67]
and Ixodes ricinus transmitted infection in Europe [75]. The estimated number of Lyme borreliosis
cases in the United States is in excess of 300,000 [76]. An excellent review of Lyme borreliosis is that
of Steere et al. [67]. Likewise, Lyme borreliosis in companion animals is addressed by Krupka and
Straubinger [77].

In addition to well established diseases, multiple emerging tick transmitted pathogens were
described during the past two decades [33–78]. The global scope of emerging tick-borne disease causing
agents is impressive, including Babesia [79–81], rickettsioses [71], ehrlichiosis and anaplasmosis [82–84],
Borrelia [78,85], and viruses [86,87].

Piroplasmorida, of the phylum, Apicomplexa, contain Babesia and Theileria, highly important
tick-borne parasites of domestic and wild animal species [88]. Babesiosis is considered the,
economically, most important vector-borne disease of cattle [89]. Although wildlife species’ infections
with Babesia are common, most cases are subclinical [90]. Babesiosis is an increasing global animal
health problem. which is partially due to the changing geographic ranges of tick vectors that are
occurring, in part, as a result of climate change [91]. There are more than one hundred Babesia
species that infect a wide range of vertebrate hosts, including fifteen recently described species [89].
New Babesia species are reported from regions not previously associated with babesiosis [92].
The assertion has been made that if they are hosts for competent vector ticks, essentially, all vertebrates
may be susceptible to Babesia infection [89]. The molecular phylogeny, classical and molecular
taxonomy, and population genetics of Babesia were recently reviewed along with an examination of
babesias infecting a variety of unexpected or non-traditional host species from around the world [89].

Babesiosis is a global emerging zoonosis of increasing importance [92]. During the past fifty years,
the incidence of human babesiosis increased exponentially [93], a situation likely to continue with
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the discovery of additional Babesia species infecting humans [89]. Babesia species that cause disease
in humans are Babesia microti, Babesia microti-like organisms, Babesia duncani, Babesia duncani-like
organisms, Babesia divergens, Babesia divergens-like organisms, and Babesia venatorum [80].

Babesia divergens is a bovine parasite that is associated with the infection of splenectomized
humans [94]. The first reported human babesiosis case was a fatal Babesia divergens infection
of a splenectomized individual [93]. Babesia divergens infections are most commonly associated
with splenectomized individuals, other immunosuppressive conditions, and patients of advanced
age [79,80,93]. Babesia divergens human infections are occasionally reported in North America and
Europe [79,89,93], and, sporadically, in Africa and Asia [95]. Human babesiosis cases were also reported
in Australia and South America [80].

The first human babesiosis case occurring in an immunocompetent individual was a Babesia microti
infection reported in 1969 following the bite of Ixodes scapularis [96]. During the years since that initial
report, both the incidence and geographic range of Babesia microti infections has increased significantly
across the northeastern and upper Midwestern United States, with Ixodes scapularis infection rates of
approximately 20% in well-established endemic areas [80,97]. The expanding range of Ixodes scapularis,
combined with the current presence of Lyme borreliosis, increases concerns about the emergence of
babesiosis in Canada [98]. Babesia microti and Babesia microti-like organism infections are also reported
from Europe, Taiwan, and Japan [80,89,93]. Babesia microti is a species complex comprised of three
distinct clades [99]. Phylogenetic analysis suggests that Babesia microti should be a distinct genus within
the Apicomplexa [80].

The family, Anaplasmataceae, within the order, Rickettsiales, contains the tick transmitted genera,
Anaplasma and Ehrlichia, that are important pathogens of companion, domestic, and wildlife species, as
well as zoonoses of public health importance [83,100]. The evolving complexity of relationships
among the Anaplasmataceae is reflected in the cluster, “Candidatus Neoehrlichia species” [83],
and reclassification of the genus, Anaplasma [101].

Human granulocytic anaplasmosis was originally described in the upper Midwestern United
States and assigned the designation of human granulocytic ehrlichiosis, caused by Ehrlichia
phagocytophilum [84,102,103]. Reclassification of the granulocytic group, Ehrlichia, resulted in the
change to Anaplasma phagocytophilum [104]. In addition to infecting humans, Anaplasma phagocytophilum
causes tick-borne fever in ruminants, equine anaplasmosis, and febrile illness in cats and canines [83].
Competent vectors of Anaplasma phagocytophilum are ixodid ticks of the Ixodes ricinus complex; Ixodes
ricinus in Europe, Ixodes persulcatus in Asia, and Ixodes scapularis, Ixodes pacificus, and Ixodes spinipalpis
in North America [104]. The number of human anaplasmosis cases has consistently increased since the
infection became nationally reportable [84], with a twelve-fold increase between 2001 and 2011 [103].
Human granulocytic anaplasmosis coinfections with other Ixodes scapularis transmitted pathogens are
an important consideration, with approximately 10% of infected individuals having antibodies that are
reactive with Borrelia burgdorferi or Babesia microti [105]. An expanding range and numbers of vector
tick species makes it likely that the incidence of human granulocytic anaplasmosis will continue to
increase in the northern hemisphere.

Ehrlichia are tick-borne Gram-negative members of the family, Anaplasmataceae, that are of human
and veterinary public health importance [83,84]. Ehrlichia species with recognized zoonotic potential
include: Ehrlichia chaffeensis, Ehrlichia ewingii, Ehrlichia canis, Ehrlichia muris, Ehrlichia ruminantium,
and Ehrlichia mineirensis [84]. In addition, new genetic variants of Ehrlichia, “Candidatus Neoehrlichia
species,” were described in Europe, eastern Russia, China, and Japan [83]. Heartwater, caused by
Ehrlichia ruminantium, is a notifiable disease of importance in domestic and wild ruminants in Africa
and regions of the Caribbean [106].

Ehrlichia chaffeensis, a causative agent of human monocytic ehrlichiosis, was first described
as a human pathogen in 1986 in a seriously ill man with a history of tick bites from the central
United States [82]. The enzootic cycle of Ehrlichia chaffeensis infection in the United States involves
the white tailed deer reservoir and the tick vector, Amblyomma americanum, for which all life cycle
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stages aggressively feed on humans [82]. Ehrlichia chaffeensis is the most commonly reported human
ehrlichiosis followed by Ehrlichia ewingii infection [84,107]. Importantly, Ehrlichia ewingii infection
occurs in white tailed deer, canines, and ticks throughout the geographic range of Amblyomma
americanum [108]. The significantly expanding range of Amblyomma americanum [55,56], and its role as
a vector of Ehrlichia chaffeensis and Ehrlichia ewingii, suggests that these zoonotic pathogens will also
be occurring in new areas, a situation of importance to healthcare providers, public health officials,
and veterinarians.

Tick-borne rickettsial diseases have increased dramatically during the past thirty years for
established, re-emerging, and emerging pathogens, some of which were previously identified, but not
associated, with human disease [71,78]. Tick transmitted rickettsioses are members of the spotted fever
group, rickettsiae [109]. Molecular, genomic, and functional genomic tools are the drivers that resulted
in the identification of novel species and establish, more clearly, the relationships among rickettsiae,
tick vectors, and hosts [110]. An example of the application of these tools is molecular typing, used to
identify new Rickettsia conorii subspecies conorii and israelensis [111]. An in depth, comprehensive
review of rickettsioses based upon their geographic occurrence was provided by Parola et al. [71] and
updated by Kernif et al. [78].

Borrelia burgdorferi infection is the topic of numerous studies, as well as the subject of excellent
reviews [67]. Lyme borreliosis is increasing in Europe [30,112]. In addition to Borrelia burgdorferi
sensu stricto, Borrelia afzelii, Borellia garinii, Borrelia bavariensis, and Borrelia spielmanii cause human
disease [113]. Borrelia mayonii was discovered to be an additional causative agent of Lyme borreliosis
in the upper Midwestern United States in 2016 [114]. Ixodes scapularis is a competent vector for Borrelia
mayonii [115]. The geographic extent and complexity of Lyme borreliosis spirochetes is increasing
across the northern hemisphere range of the Ixodes ricinus complex due to the application of new
phylogenetic analyses [85]. The clinical importance of the newly identified, tick-borne Borrelia species,
coupled with an expanding range of vectors, will further evolve and be defined in coming years.

New uncultured Borrelia species are reported from Tanzania, Morocco, Ethiopia, and Algeria [78].
Borrelia miyamotoi was first described in Ixodes persulcatus ticks in Japan; however, it was not
associated at that time with human disease [116]. Borrelia miyamotoi was subsequently identified as the
causative agent of an Ixodes tick transmitted relapsing fever [117]. Borrelia miyamotoi occurs across the
North American, European, and Asian regions where Lyme borreliosis is found [78]. Characterization
of the microbiomes of diverse tick species will likely result in the identification of novel tick-borne
bacteria species, including Borrelia.

Important new zoonotic viruses are emerging and well known viral infections are resurging.
Reviews were recently published on novel and emerging tick-borne viruses [86,87,118,119]. Tick-borne
viruses are of increasing global medical and veterinary importance due to emerging and resurging
viruses, expanding geographic ranges of tick vectors, and well recognized viruses appearing in
new areas [86,87]. Severe fever with thrombocytopenia syndrome is an emerging hemorrhagic
fever viral zoonosis caused by a phlebovirus of the family, Bunyaviridae [120]. Severe fever with
thrombocytopenia virus was first described from patients in rural China [120] and the closely
related Heartland virus was isolated from severely ill patients in northwestern Missouri in the
United States [121]. Vector competent ticks for this important emerging virus are Haemaphysalis
longicornis and Rhipicephalus (Boophilus) microplus in China [120] and Amblyomma americanum in
the United States [46,122]. Geographic distributions of these ticks indicate that the severe fever
with thrombocytopenia syndrome virus could be widely distributed. Heartland virus neutralizing
antibodies were detected in vertebrate wildlife species from Texas to Maine, coinciding with the
distribution of Amblyomma americanum [47]. Bourbon virus is a novel thogotovirus recently discovered
in the Midwestern United States that is transmitted by Amblyomma americanum [48,123].

Well established tick-borne viruses are expanding their geographic areas of occurrence and/or
resurging in incidence. Tick-borne encephalitis serogroup viruses are increasing their range across
Europe [124], while Powassan virus is a re-emerging public health threat in North America [125,126].
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Crimean-Congo hemorrhagic fever virus is occurring in new sites around the Mediterranean, including
Spain, France, Italy, and Turkey, in addition to Africa, Asia, and eastern Europe where it is well
established [127,128]. The extension of Crimean-Congo hemorrhagic fever into new areas is possibly
based upon birds transporting the tick vector, Hyalomma marginatum, into Central Europe [129].
Alkhurma virus is a tick-borne hemorrhagic fever zoonosis linked to livestock in Saudi Arabia, with
a potentially wider distribution than previously known [130]. Alkhurma hemorrhagic fever virus is
a variant of Kyasanur virus, first detected in the 1950s in India and now thought to be more widely
disseminated than the initial focus in the Karnataka state of India [87,131].

5. Reversed Discovery of Tick-Borne Diseases

The use of powerful molecular methods, such as high throughput sequencing, is increasing the
identification in ticks of microorganisms that are not currently linked to human disease [65,118].
Tick microbiome characterizations provide detailed analyses of symbionts, known human and
veterinary pathogens, potential causes of future zoonotic disease, and yet to be identified microbes
associated with a tick [70].

The application of molecular techniques was the basis for the reversed discovery of tick
associated microbes that were, subsequently, recognized as human pathogens: Borrelia miyamotoi [72],
Neoehrlichia mikurensis [73], Rickettsia helvetica [132], Rickettsia monacensis [74], and other Rickettsia
species identified by genomic methods [71]. High throughput sequencing of the microbiomes of Ixodes
scapularis, Dermacentor variabilis, and Amblyomma americanum from a single site in New York State
resulted in identification of nine new viruses [119]. This study design was expanded to multiple sites
in Connecticut, New York, and Virginia, with the detection of nine previously characterized viruses
and 24 presumably novel viral species [118]. New microbial species were detected in Western Europe
when the Ixodes ricinus microbiome was analyzed by next generation sequencing [133]. Microbe DNA
detected in a fed tick may be residual from a previous blood meal and not definitive evidence that the
tick species in question is a competent vector for that microbe [134].

Expansion of tick species into new geographic areas presents the threat of the introduction
of well characterized, resurging, and emerging tick-borne infectious agents into those regions.
The characterization of microbiomes of tick species infesting humans in an area can provide a database
of known and possible disease threats to public health officials, healthcare providers, and the public.
Such tick associated microbe databases could prove invaluable in the identification of emerging
tick-borne diseases.

6. Tick Saliva: Key to Blood Feeding Success and Pathogen Transmission

Tick saliva creates a host cutaneous environment favorable, and, potentially, essential,
for successful blood feeding, as well as the transmission and establishment of tick-borne infectious
agents by the suppression or deviation of host pain/itch responses, hemostasis, inflammation,
innate and adaptive immune defenses, and wound healing [12–14,16,86,135–143]. The amazing
complexity of tick salivary gland secretions was first appreciated by the analysis of cDNA library
expressed sequence tags of multiple ixodid species of medical importance [15,144–146]. Significant
differences in the encoded molecules of expressed salivary gland transcriptomes were found upon
comparison of over 500 expressed proteins of Ixodes scapularis [144] and approximately 700 expressed
proteins of Dermacentor andersoni [145]. Initial salivary gland transcriptomes characterizations were
under estimates of protein constituent complexities with the application of high throughput sequencing
technology [13,15,86]. Combined transcriptome and proteome analyses of salivary glands enhances
the scope and depth of understanding of functional activities [15,16,147]. These studies reveal salivary
glands are comprised of multiple gene families encoding molecules, with diverse biochemical activities,
gene duplication and functional redundancies, and differential expression of genes during the course
of blood feeding. Salivary gland transcriptomes also differ among individual ticks [148]. Non-protein
saliva molecules are also modulators of host defenses [149].
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The analysis of tick salivary glands revealed differential gene expression during infection with
tick-borne pathogens; however, the roles, if any, of these differentially expressed genes in pathogen
transmission and establishment within the skin at the tick bite site remains to be determined.
Differential salivary gland gene expression was characterized for Ixodes scapularis nymphs infected
with Borrelia burgdorferi [144]. Differential gene expression occurred in both the salivary glands and
midgut of Rhipicephalus microplus when infected with Anaplasma marginale [150]. Bartonella henselae
infection of Ixodes ricinus induced significant numbers of both upregulated and downregulated salivary
gland genes, including within members of the same multigene family [151]. Interconnections of the
salivary gland and other tick tissue transcriptomes were reviewed in the context of tick physiology,
tick-host interactions, and pathogen transmission [15].

Recent reviews examined the activities of the saliva and individual saliva molecules of diverse
species of ticks on individual cellular and molecular elements and pathways of vertebrate host
inflammation, innate, and adaptive immune defenses [12–14,16,86,138,141–143]. The following
overview of these ixodid tick-host relationships is presented as a model that examines defense
modulating activities collectively across tick species on the normal host responses that would
be expected to occur in response to injury created by a tick bite and how the tick modulated
host environment creates cutaneous sites favorable for the success of tick transmitted infectious
agents. Readers seeking up-to-date background material on inflammation and cellular and molecular
immunology should consult the superb textbook by Abbas et al. [152].

Tick mouthparts are composed of two chelicerae, cutting plates that penetrate the epidermis into
the dermis, and the ventrally positioned hypostome, which anchors the mouthparts into the skin
and, in combination with the overlying chelicerae, forms a channel for the introduction of saliva and
the uptake of blood from the pool-like feeding site [153,154]. Many ixodid species produce a protein
attachment cement that is deposited in different configurations, depending upon the tick species,
to help anchor the tick to the host skin [154]. Saliva is introduced during the attachment process
directly into the bite site, percutaneously around the mouthparts, and into the attachment cement,
exposing Langerhans cells and keratinocytes of the epidermis and the myriad of diverse cells in the
dermis to the biological actions of the saliva molecules [155,156].

Tick saliva suppresses proinflammatory cytokine production by inhibiting the Toll-like receptor
stimulation of keratinocytes, the most abundant basal cells in the epidermis [157]. Tick feeding reduces
the number of Langerhans cells, epidermal dendritic cells, in the areas surrounding the bite during
an initial infestation [158]. Tick saliva also inhibits keratinocyte production of the chemokines IL-8,
a monocyte attractant protein, and antimicrobial peptide defensins [159]. At the epidermal level,
these changes can reduce the early aspects of inflammation and antimicrobial responses, as well
as antigen uptake and the processing and presentation by Langerhans dendritic cells that normally
traffic to draining lymph nodes to stimulate a primary immune response. Suppressing keratinocyte
proinflammatory cytokines can reduce dermal endothelial activation, attraction of neutrophils and
macrophages to the tick bite site, and dendritic cell activation.

In general, innate immune effectors within the dermis are down regulated to reduce the
development and expression of immunity to the foreign body, tick mouthparts, and saliva molecules
introduced into the skin. Innate immune antivirus responses include type I alpha and beta interferons
produced by a variety of cells and natural killer (NK) cells that directly kill virus infected target cells
and produce macrophage activating interferon gamma, IFN-gamma [160,161]. Tick saliva inhibits
interferon-beta production [162], as well as NK cell binding to and killing of target cells [163,164].
Inhibition of type I interferon can disrupt immune regulation and virus inhibiting responses in
many cell types. Impaired NK cell function reduces innate and first lines of defense against
introduced viruses.

Approximately ten years ago, innate lymphoid cells were recognized and their diverse roles
in inflammation, autoimmunity, immune regulation, and other physiological processes began to be
characterized [165–169]. Innate lymphoid cells are classified based on their similarities to cytotoxic,
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Th1, Th2, and Th17 T lymphocytes of the adaptive immune response; they lack somatically rearranged
antigen receptors; their distribution includes nonlymphoid and lymphoid tissues; and, their activities
include integration of innate and adaptive immunity [165,168,169]. The innate lymphoid cells
subgroups, functionally, are homologous to adaptive immune response T lymphocyte populations in
function and cytokine elaboration with cytotoxic innate lymphoid cells, including NK cells; group one
innate lymphoid cells resemble Th1 lymphocytes; group two innate lymphoid cells share functional
characteristics with Th2 lymphocytes; and innate lymphoid cells group three cells are compared to Th17
CD4+ T lymphocytes [165,169]. Innate lymphoid cells also express class II major histocompatibility
antigen that suggests roles in immune regulation for these cells activated by a variety of cellular factors,
including cytokines and other regulators of immune function [166,169]. Other than very limited
examinations of NK cells, the roles of innate lymphoid cells in tick feeding and responses to tick-borne
pathogens remain unexplored. Innate lymphoid cells can be assumed to be important contributors
to immune responses at the tick-host-pathogen interface. Studying these relationships will likely be
highly productive in providing new insights into these vectors and pathogens as they interact with
their hosts.

The alternative pathway of complement is an integral component of innate immune defenses
that is a rapidly activated series of proteins directed against invading microorganisms and damaged
cells to promote their destruction, phagocytosis, and produce bioactive molecules with vasoactive
and chemotactic properties [170,171]. Tick saliva blocks the alternative complement pathway,
C3 convertase [172], by inhibiting factor B cleavage, as well as C3a anaphylatoxin formation and
deposition of the important opsonizing factor, C3b [173]. Tick inhibition of the alternative complement
pathway reduces a major innate immune effector that targets microbes for direct killing, inhibits
microbe opsonization, and reduces chemoattraction of inflammatory cells. Alternative complement
pathway suppression reduces the amplification pathway activated in response to classical complement
pathway activation and reduces host defenses against the tick and tick-borne infectious agents.

Macrophages are described as resident or circulating cells within tissues and as proinflammatory,
classically activated M1, or anti-inflammatory, alternatively activated M2 populations [174,175].
Tick saliva suppresses macrophage proinflammatory cytokines’ production [176,177], antimicrobial
nitric oxide [178], and the Th1 polarizing cytokine IL-12 and immune synapse costimulatory
molecules [179]. These changes in macrophage function can reduce hematopoiesis of granulocytes,
polarization of the helper T lymphocyte response, and signaling at the immune synapse of the antigen
presenting cell and T lymphocyte.

Suppression of proinflammatory cytokines and chemokines is a common feature of the saliva
of many tick species [12,138]. Proinflammatory cytokines activate post-capillary endothelial cells to
express selectins and other adhesion molecules, and, in concert with chemokine interactions with
leukocyte integrins, orchestrate leukocyte egress from the vascular compartment into tissues at sites of
injury and/or infection [180,181]. Tick saliva down regulates the expression of E-selectin, P-selectin,
ICAM-1, VCAM-1, and the CD18 component of leukocyte surface, β2-integrin [182–184]. Collective
down regulation of endothelium activation, adhesion molecule expression, chemokines, and, thus,
integrin transition to a high affinity state by chemokines creates an environment where accumulation
of inflammatory cells is suppressed and a site more favorable to successful tick feeding and pathogen
establishment is created. Histologic examination of tick bite sites reveals a very minimal inflammatory
cell response during a first infestation and a greatly increased inflammatory response throughout the
bite site and surrounding the tick mouthparts during a repeated infestation [185].

Neutrophils are the first cells recruited to an inflammatory focus where they phagocytose and kill
extracellular pathogens, activate and recruit other cells, and both cause tissue damage and participate
in tissue repair [186,187]. Tick saliva diintegrin metalloproteinases reduces β2-integrin expression
involved in neutrophil adherence for movement into tissues at the bite site, superoxide production,
and killing of Borrelia burgdorferi [188].
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Dendritic cells are heterogeneous populations of cells that are central regulators of adaptive
immunity by orchestrating naïve T cell immune responses and by acting as an interface between innate
and adaptive immunity [189]. With such pivotal roles in immune regulation, it is not surprising that
ticks modulate dendritic cell functions. Although an initial tick infestation reduced Langerhans cell
numbers around tick mouthparts, repeated infestation increased their numbers at tick bite sites for
hosts expressing an acquired resistance to infestation [158]. Tick saliva reduces bone marrow derived
dendritic cell development, differentiation, and maturation; diminishes costimulatory molecule
expression at the immune synapse of dendritic cells and T lymphocytes; impairs chemokine receptor
expression and chemotactic responses; and inhibits the Th1 polarizing cytokine, IL-12, as well as
proinflammatory cytokine production, while enhancing the expression of the anti-inflammatory
cytokine, IL-10 [190–194].

Tick saliva modifies dendritic cell responses to tick-borne pathogens. Ixodes ricinus saliva reduced
dendritic cell uptake of Borrelia afzelli that would reduce subsequent antigen presentation [195].
Dendritic cell apoptosis is reduced and frequency of cell infection increased with tick-borne encephalitis
virus upon exposure to Ixodes ricinus saliva [196]. Ixodes scapularis saliva, sialostatin L2, reduces Toll-like
receptor induced dendritic cell signal transduction pathway activation during Borrelia burgdorferi
infection [197]. Additional studies of the interactions among tick saliva, tick-borne pathogens, and
dendritic cells are needed, including the impact of repeated infestations on dendritic cell functions.

T lymphocyte subsets are the predominate cellular effectors and regulators of cutaneous adaptive
immune responses [198,199]. There are approximately twice as many circulating T lymphocytes
as resident T cells in the skin, and the circulating T cells are predominantly of an effector Th1
phenotype [200]. Cutaneous T lymphocyte populations include resident populations of memory
regulatory T cells and effector memory cells, as well as cytotoxic, CD8+ T lymphocytes that receive
CD4+ helper T cell growth signals, such as IL-2 [201,202].

The fact that ticks target a myriad of T lymphocyte effectors and regulatory activities is not
surprising. Tick inhibition of T lymphocyte proliferation [12,13,203] is a common host defense
modulating strategy linked to multiple saliva proteins in diverse tick species [204,205]. T lymphocyte
proliferative responses are further inhibited by tick saliva IL-2 binding protein and inhibition of T
lymphocyte IL-2 production [205,206]. Another common tick saliva induced host immunomodulation
strategy is polarization of CD4+ T helper lymphocytes to a Th2 response, accompanied by the
production of IL-4, IL-5, IL-6, and IL-10, with concomitant suppression of Th1 responses and cytokines,
including interferon-γ [12,13,138,141,143]. Suppression of interferon-γ reduces the ability to activate
macrophages, an important aspect of killing intracellular pathogens, providing help to B lymphocytes
for class switching to IgG antibody production, and for the formation of granulomas. Tick saliva also
inhibits cytotoxic T lymphocyte proliferation [207]. Suppressed helper T lymphocytes and reduced
IL-2 availability will impair cytotoxic T lymphocytes, since helper T lymphocytes are the primary
source of IL-2 that is essential for cytotoxic T lymphocyte proliferation.

Tick salivary gland molecules suppress B lymphocyte proliferation and, in one case, were linked
to a specific saliva protein [126,208,209]. Tick infestation reduced both a primary IgM and IgG antibody
responses to heterologous antigens [210–212]. The down regulation of antibody responses could result
from the direct effects of tick saliva on B lymphocytes and/or the suppression of helper T lymphocytes
and their mediators that are essential for antibody class switching to IgG and other isotypes.

Although individual tick species were not linked to each of the host immunomodulatory
phenomena just described, the scope of how ticks down regulate and deviate host inflammation,
innate, and adaptive immunity are impressive. Tick countermeasures to host pain and itch, hemostasis,
and immune defenses likely evolved so that ticks of a specific species could repeatedly obtain blood
meals during the life of the host; however, for some tick-host associations, acquired resistance to tick
feeding develops [12,13,136,137,143,203]. Tick modification of the host cutaneous interface provides a
favorable, and possibly privileged, site for the introduction and establishment of tick-borne infectious
agents. This author believes that the repertoire of pathogens transmitted by a specific tick species
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is dependent, in large, upon the host immunosuppressive properties of the saliva of the vector
tick [12,137].

7. Concluding Thoughts

Public awareness of the increasing population sizes, expanding geographic ranges of important
tick vectors, and emergence and resurgence of tick-borne infectious agents is becoming greater.
There exists the potential to develop integrated surveillance strategies for monitoring tick species’
movements into new regions and changes in their population sizes that is combined with high
throughput sequencing of tick microbiomes. Central to these efforts will be further microbiome gene
annotations to define both tick symbionts and, potentially, transmitted microbes. Microbiome databases
for ticks of medical and veterinary importance will provide physicians, veterinarians, public health
works, other stakeholders, and the public with current information about recognized and, potentially,
emerging tick-borne infectious agents that threaten, or could threaten, a region. Information obtained
from these ongoing analyses will help with planning and assessing control interventions and protecting
the health of companion, domestic, and wildlife animal species, as well as humans. Changes in tick
geographic distributions and numbers, and the emergence of new tick-borne infectious agents, will
continue. We need to be knowledgeable of those changes. A One Health approach is highly appropriate,
if not essential, to be prepared to protect against these zoonotic infectious agents.

Significant advances are being made, at an increasingly rapid pace, in understanding the
tick-host-pathogen interface. Studies with multiple tick species and tick-borne pathogens established
the importance of tick modulation of host pain/itch, hemostasis, inflammatory responses, innate and
adaptive immunity, and wound healing. The complexity of saliva protein and non-protein components
are increasing, with greater awareness of families of bioactive molecules, redundancies in activities,
and differential expression during tick feeding. Linking specific saliva molecules to specific defense
modulatory activities remains a major challenge; however, progress is being made toward achieving
that goal and dissecting the underlying cellular and molecular mechanisms involved.
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