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ABSTRACT

Haplotype phasing plays an important role in under-
standing the genetic data of diploid eukaryotic or-
ganisms. Different sequencing technologies (such
as next-generation sequencing or third-generation
sequencing) produce various genetic data that re-
quire haplotype assembly. Although multiple diploid
haplotype phasing algorithms exist, only a few will
work equally well across all sequencing technolo-
gies. In this work, we propose SpecHap, a novel hap-
lotype assembly tool that leverages spectral graph
theory. On both in silico and whole-genome se-
quencing datasets, SpecHap consumed less mem-
ory and required less CPU time, yet achieved com-
parable accuracy with state-of-art methods across
all the test instances, which comprises sequenc-
ing data from next-generation sequencing, linked-
reads, high-throughput chromosome conformation
capture, PacBio single-molecule real-time, and Ox-
ford Nanopore long-reads. Furthermore, SpecHap
successfully phased an individual Ambystoma mex-
icanum, a species with gigantic diploid genomes,
within 6 CPU hours and 945MB peak memory usage,
while other tools failed to yield results either due
to memory overflow (40GB) or time limit exceeded
(5 days). Our results demonstrated that SpecHap is
scalable, efficient, and accurate for diploid phasing
across many sequencing platforms.

INTRODUCTION

Humans and many other species possess diploid genomes
with paternal and maternal sets of chromosomes (1). The
majority of genetic variations between homologous chro-
mosomes consists of single nucleotide variation (SNV),
small insertion and deletion, and genome rearrangement
through structure variation or copy number variation (2).
Phasing, the reconstruction of specific allele sequences on
individual chromosomes, is fundamental to our under-

standing of compound heterozygosity (3). Many studies
have addressed the importance of haplotype phasing, in-
cluding but not limited to allelic differential expressions,
epigenomic regulations, and population development (4–
7). Furthermore, several studies have claimed that haplo-
type analysis revealed disease pathogenicity that could not
be inferred from unphased single nucleotide polymorphism
(SNP) signals (8–11).

Advances in high-throughput sequencing have resulted
in several sequencing protocols that have enabled credi-
ble identifications and linkages of genetic variants, signif-
icantly contributing towards the single individual haplo-
typing (SIH) problem, which refers to haplotype assem-
bling or haplotype phasing problem for a single individual.
Next-generation sequencing (NGS) technologies, including
the Ion Torrent S5 system (Life Technologies), have been
widely used to study the haplotypes leveraging paired-end
reads (12). For high-throughput chromosome conforma-
tion capture (Hi-C), HaploSeq correctly phased ∼95% of
heterozygous variants (13,14). However, trans interactions
between homologous chromosomes complicate the process
of phasing. Moreover, segmental duplication and simple
repeats are likely related to incorrectly phased haplotype
blocks based on Hi-C data (7,15,16). With higher NGS
throughput and cost-effectiveness, 10× synthetic long reads
(SLRs) protocol provides barcoded linked-reads (>100kb
long-range information) that are suitable for assembly and
phasing (1,17). Despite the high individual base error
rate of ∼15%, the third-generation sequencing, including
single-molecule real-time sequencing technology from Pa-
cific Biosciences (PacBio SMRT) and Oxford Nanopore
Technology (ONT), offers ultra-long reads with moderate
coverage, significantly promoting haplotype completeness
(18,19).

There are several algorithms for the SIH problem for
diploid organisms from sequencing reads on various pro-
tocols. We refer to SIH for diploid organisms with diploid
SIH in the rest of the article. These methods could be sum-
marized into three categories: optimization by reads (frag-
ments) partitioning, by minimum error correction (MEC)
and by haplotype likelihood. Several routines are adopted
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to solve the optimization including but not limited to
dynamic programming, Markov chain Monte Carlo and
heuristic graph cut. (i) FastHare, a fast algorithm based
on fragments partitioning optimization (13,18). (ii) Hap-
CUT, a method that assembles haplotype by minimizing
the MEC respectively through a max-cut heuristic algo-
rithm (20). (iii) DCHap, a divide-and-conquer algorithm
that combines fragment partitioning and MEC optimiza-
tion designed for third-generation sequencing data (21). (iv)
ReFHap, a graph-cut heuristic formulation based on the
graph max-cut algorithm for diploid SIH problem (22). (v)
HapCUT2, a general algorithm for human haplotype as-
sembly that adopts max-cut computations in the haplotype
graph to find the haplotype with maximum likelihood (18).
However, advances in sequencing technology continue to
call for more computationally efficient, scalable, and accu-
rate methods.

In this paper, we describe SpecHap, a novel fast and
accurate scalable algorithm for diploid SIH designed for
multiplex sequencing platforms, especially for the error-
prone long-reads from third-generation sequencing. Spec-
tral graph theory was adopted in the efficient identifica-
tion of topological domain with Hi-C data by iteratively
domain partitioning guided by Fieldler vector (23). Previ-
ous study also utilized spectral graph theory in population
genetics for the identification of genetic ancestry (24). How-
ever, it has not been explored in the context of haplotype
phasing. Instead of iteratively converging on the target hap-
lotype by optimizing MEC or haplotype likelihood (18),
SpecHap assembles haplotype efficiently by transforming
diploid SIH into a linear algebra problem using spectral
graph theory with divide-and-conquer strategy. We bench-
marked SpecHap with four state-of-art phasing software
packages and demonstrated its comparable accuracy on
diverse sequencing protocols. Moreover, SpecHap phased
an individual of amphibian species Ambystoma mexicanum
(Axolotl), which possesses one of the largest sequenced
genomes (32 billion base pairs), with ∼32× PacBio SMRT
long-reads (25,26).

MATERIALS AND METHODS

Revisiting spectral graph theory

First, we introduce the graph terminology related to this
work. Assume a connected undirected graph G consists of
N vertices V = {v1, v2, . . . , vN} and M edges denoted by
(vi , v j ), i �= j . The similarity matrix AN×N is constructed
for graph G to store the linkage relationship between a pair
of vertices vi , v j , such that Ai, j = wi, j where wi, j represents
the weight of the edge (vi , v j ). Denoted by di the weighted
degree,

∑
1≤ j≤N, j �=i

wi j , of the vertex vi in graph G, the de-

gree matrix D is a diagonal matrix with the i -th diagonal
element set to di . That is, Di, j = di if i = j , Di, j = 0 oth-
erwise. Then, by definition, the (unnormalized) Laplacian
matrix L of graph G is constructed as L = D − A. Given
a vertex subset Vs ⊂ V, the weight of a graph cut that bi-
sects V into Vs and Vs is defined as RatioCut(Vs, Vs) =∑

i∈Vs , j∈Vs wi j

|Vs | +
∑

i∈Vs , j∈Vs wi j

|Vs | (27) where | · | denotes the cardi-
nality.

We define vector f ∈ Rn with its entry fi representing the
membership of the i th element:

fi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√∣∣Vs

∣∣
|Vs | if vi ∈ Vs

−
√

|Vs |∣∣Vs

∣∣ if vi ∈ Vs

,

which lead to the conclusion that ‖ f ‖2 =
√

|V| and 1T f = 0.

f T Lf is related to RatioCut(Vs, Vs) as follows:

f T Lf =
∑n

i, j=1
wi j

(
fi − f j

)2

= 2

(∣∣Vs
∣∣

|Vs | + |Vs |∣∣Vs
∣∣ + 2

) ∑n

i∈Vs , j∈ Vs
wi j

= 2 |V|
(

1
|Vs | + 1∣∣Vs

∣∣
) ∑n

i∈Vs , j∈ Vs
wi j

= 2 |V| RatioCut
(
Vs, Vs

)
Thus, obtaining a minimum weighted graph cut is equiv-

alent to minimize f T Lf . However, this problem is NP-hard
(28) given the defined f . A relaxed optimization problem is
achieved by letting fi ∈ R:

Minimize f T Lf

Subject to 1T f = 0, ‖ f ‖2 =
√

|V|
The minimizer of this relaxed problem is given by the

eigenvector which corresponds to the second smallest eigen-
value of L (Fiedler vector) according to the Rayleigh–Ritz
theorem (28). The N vertices are bisected into two groups
according to the element sign (+, –) of the Fiedler vector
(29).

Haplotype phasing guided by spectral graph theory

We define linkage graph, an undirected graph of heterozy-
gous variants loci with each pair of vertices representing
two alleles at the corresponding locus. An edge between two
vertices of different variants loci represents a potential pair-
wise haplotype; the edge’s weight represents the logarithmic
likelihood for the corresponding haplotype. Applying spec-
tral analysis on this linkage graph allows the haplotype to
be inferred from the Fiedler vector. The process is summa-
rized in Figure 1A.

We also generalize the linkage graph where each pair of
vertices denotes a haplotype block. The haplotype block
refers to the group of variants loci with their haplotype
phased. We defined the generalized linkage graph as an
undirected graph of haplotype blocks with each pair of ver-
tices representing the two self-complement haplotypes cor-
responding haplotype block. Edges are added by treating
fragments into pairwise linkages between haplotype blocks.
The Fiedler vector of generalized linkage graph might guide
the connection of haplotype blocks: haplotype of different
haplotype blocks with the same sign might originate from
the same chromosome.
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Figure 1. Illustration of SpecHap Algorithm. (A) An example with 6 variants loci demonstrating the haplotype phasing routine of SpecHap. The linkage
graph is constructed from the sequenced reads and noisy edges are marked. The Fiedler vector is calculated from the adjacency matrix of the linkage
graph. Haplotype can then be deduced by the sign of the Fiedler vector. (B) An example with 6 variants loci demonstrating how SpecHap constructs
haplotype when Fieldler vector categorizes variants into two groups. SpecHap cut the graph into two sub-graphs accordingly and calculate the Fiedler
vector respectively. The haplotype is deduced for the two sub-graphs. Then, SpecHap constructs a generalized linkage graph for the two haplotype blocks.
Finally, SpecHap, connects the two haplotype blocks according to the Fielder vector.

Fragment extraction. We first extract the fragment infor-
mation from the alignment and variant file. This step is
completed with a refined version of ExtractHAIRs (Extract
HAplotype Informative Reads), which is a program from
the HapCUT2 software package that generates haplotype
fragment information from aligned sequence and variants
(18). The ExtractHAIRs was adopted since it supports ac-
curate genotype information extraction for diverse sequenc-
ing protocols.

Logarithmic likelihood as edge weight. To calculate the
edge weight of the linkage graph, we introduce a likelihood
heuristic based on the Phred probability of nucleotide at
variants loci in fragments. Consider q[ j ] as the likelihood
that nucleotide at variant locus j is incorrect on fragment
Ri . Given haplotype h, the likelihood of observing fragment
Ri with j variants is deduced as:

p (h) =
∏

Ri [ j ]=h[ j ]
(1 − qi [ j ])

∏
Ri [ j ]�=h[ j ]

qi [ j ] (1)

Since we consider heterozygous variants, the other haplo-
type can be deduced as h̄, the complementary of haplotype
h. Given a self-complement haplotype pair H = (h, h̄), the
likelihood p(H) that a fragment Ri have been observed is
generalized as MAX(p(h), p(h̄)). The likelihood that frag-
ment set R have been observed is:

p (H) =
∏

i
p (H) (2)

Our linkage graph incorporates edges that represent con-
flicting haplotypes. To decrease the noise and computa-
tional load, we define the edge weight given conflicting hap-
lotype H1 and H2 as:

EH1 = max
(

log
(

p (H1)
p (H2)

)
, 0

)
(3)

EH2 = max
(

log
(

p (H2)
p (H1)

)
, 0

)
(4)
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Since edge weight is calculated as the logarithmic likeli-
hood, the RatioCut is expressed as

RatioCut
(
Vs, Vs

) = |Vs | + ∣∣Vs
∣∣

|Vs |
∣∣Vs

∣∣
∏

i∈Vs , j∈Vs
pi j

Thus, the finding the minimum graph cut guided by the
Fiedler vector is equivalent to minimizing the product of
likelihood of pairwise haplotype linkages to be removed.

Linkage graph construction. The extracted fragments
might be treated as ‘hyperedges’ of covered variants loci.
Fragments are treated as pairwise edges between covered
loci. The weights of edges are calculated as logarithmic
likelihood given all fragments as described in the previ-
ous section. The average genomic span between heterozy-
gous variants loci in the linkage graph varies among dif-
ferent sequencing protocols. Therefore, linkage graphs with
same cardinality might cover genomic regions of different
lengths. Besides, with the introduction of third-generation
sequencing, the average number of variants covered by frag-
ments also increases.

Interpretation of fiedler vector. After eigendecomposition
of the Laplacian of the constructed linkage-graph, we in-
fer the haplotype according to the Fiedler vector. An ex-
pected Fiedler vector resembles the vector demonstrated
in Figure 1A, in which elements corresponding to paral-
lel alleles of given variant loci are assigned numbers with
opposite signs. The haplotype is constructed based on the
sign: alleles of different variant loci with the same sign
belong to the same haplotype. However, our experiments
demonstrated that this method might not work. There are
two exceptions where haplotype cannot be directly inferred
from the Fiedler vector. The first exception happens when
the linkage graph suggests that the two conflicting haplo-
types share equal likelihood at a specific variant locus. The
resulting Fiedler vector possesses close-to-zero entries of
the corresponding variant locus, which is pruned by our
algorithm.

The second exception leads to a Fiedler vector that cat-
egorizes variants into two sub-blocks, as demonstrated in
Figure 1B. Such Fiedler vectors are commonly seen with
error-prone third-generation sequencing and linked-reads
sequencing where reads with identical barcodes might orig-
inate from different DNA fragments (see Supplementary
Material for detailed description). To infer haplotype with
such a Fiedler vector, we partition the adjacency matrix ac-
cordingly and apply spectral graph analysis to each sub-
block respectively. Since the Fiedler vector of sub-blocks
might categorize variants further, SpecHap partitions vari-
ants recursively until haplotype can be deduced from the
Fielder vector. SpecHap will prune variants when we fail
to resolve haplotype for sub-blocks with two variants. The
sub-blocks are then merged by treating each as a ver-
tex. A generalized linkage graph is constructed, and the
merging of sub-blocks is guided by spectral analysis (Fig-
ure 1B). The SpecHap algorithm might be summarized as
below:

Algorithm 1: SpecHap haplotype assembling routine
1  Construct linkage graph with adjacency matrix;
2  if No conflicting haplotype in graph then 
3   Return haplotype with depth-first search;
4  else
5   Calculate Fielder vector;
6   if Fiiedler vector guides variant partitioning then
7   Partition the linkage graph accordingly;
8   Jump to Line 2;
9   Connect the phased haplotype blocks;
10   else 
11   Return Haplotype with Fielder vector;
12   end
13 end

Haplotype assembling with linked-reads

In our experiments of phasing with 10× linked-reads, we
identified reads with the same barcode providing conflicting
haplotype linkage when comparing with the phase3 released
trio-phased haplotype from 1000 genome project (30). It
might be introduced by the rare but significant situations
where reads with the same barcode are from two different
DNA molecules. Thus, heuristics were taken to increase the
accuracy of the assembled haplotype. First, variants are fil-
tered by their allele depth and quality before the phasing al-
gorithm. We also disallow a haplotype block from striding
over 30 continuously filtered variants. Then, the covering
range of each barcode is inferred based on the alignment
results. In our implementation, a barcode can neither start
nor end on an aligned read with mapping quality <30, and
the overall barcode spanning length cannot be longer than
60 kb. A detailed description of adopted parameters can be
found in Supplementary Table S1.

Haplotype assembling with Hi-C

For Hi-C data that introduce trans interactions between ho-
mologous chromosomes, SpecHap treats possible trans in-
teractions as general errors and does not model them specif-
ically. SpecHap filters read pairs with insertion larger than
40M base-pair to avoid linkage with higher trans interaction
error rate.

Chromosome level haplotype construction

Since many mammalian species possess large genomes, the
number of heterozygous variants on a single chromosome
might be enormous. The construction of linkage graph and
matrix operation will consume a massive amount of CPU
and memory if all the heterozygous variants are phased at
the same time. Thus, a divide-and-conquer strategy is ap-
plied. SpecHap divides the chromosome into multiple in-
tervals with user-defined length. A depth-first search (DFS)
will then be applied to find the connected variants within
the interval. Then, connected variants in each interval are
phased by applying spectral graph theory and the phased
result of each interval is introduced when phasing its suc-
cessor. The detailed description can be found in the Supple-
mentary Material.
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Algorithm complexity

The computation performed by SpecHap comprises four as-
pects: DFS, graph construction, calculation of graph Lapla-
cian and analysis of the Fiedler vector. Let k be the num-
ber of eigenvectors to be calculated. Assume that a chromo-
some with N heterozygous variants is divided into overlap-
ping intervals with each interval containing n variants. Let
m be the number of fragments. Then, for each segmented
interval, the time complexity for constructing a graph is
T(n) = O(n2) and the time to run DFS is T(n) = O(n + m).
The construction of the unnormalized graph Laplacians
involves matrix addition of complexity T(n) = O(n2). The
eigen-calculation requires T(n) = O(kn2) time.

When calculating the Fielder vector recursively, SpecHap
iteratively bisects the graph and there exists at most log(n)
bisections. Hence the worst-case time complexity for iter-
atively calculating the Fielder vector is given by T(n) =
O(kn2 log n). SpecHap calculates the first two eigenvectors
to obtain the Fiedler vector, which implies k = 2. The pro-
cedure is applied for N

n intervals. Thus, the time complexity
of the algorithm can be summarized as:

T (n) = O (Nn log n)) (5)

In most situations, SpecHap does not trigger a recursive
procedure. The detailed time complexity analysis of differ-
ent algorithms is in Supplementary Table S2.

Human genome dataset processing

NGS data. The high-coverage NGS alignment data for
NA12878 and NA19240 were downloaded from the 1000
Genome Project with phase 3 release (30).

10× linked-reads data. 10x linked-reads for NA12878
were gathered from 10× genomics officials at
https://support.10xgenomics.com/genome-exome/
datasets/2.0.0/NA12878 WGS and NA19240 from
https://support.10xgenomics.com/genome-exome/datasets/
2.2.1/NA19240 WGS v2. The alignment was performed
with LongRanger2.2.1.

Hi-C data. Hi-C sequencing data were downloaded from
NCBI PRJNA473369 for sample NA12878. Sequenced
reads from seven selected cells (SRR7226668, SRR7226671,
SRR7226678, SRR7226679, SRR7226681, SRR7226682
and SRR7226685) (7) were combined for further analy-
sis. An additional set of WGS sequenced ∼36× Hi-C data
with multiple enzyme protocol by Arima Genomics were
acquired for sample NA12878 with accession SRR6675327
(31). For sample NA19240, ∼31× data were acquired from
the 1000 genome SV project with accession NCBI PR-
JEB11418 (32). The alignment and insertion size of each
reads-pair were determined with BWA mem with option -
5SP (33).

PacBio SMRT data. PacBio SMRT ∼44× WGS data
were acquired with NCBI accession number SRX1607993
for NA12878 from Genome in a Bottle Consortium and
∼120× SRR11363956 for sample NA19240 (34). Align-
ment was performed with minimap2 (35) with pre-set pa-
rameters.

Nanopore data. Nanopore reads were downloaded from
ENA with accession PRJEB30620 for ∼40× NA12878 (36)
and PRJEB26791 for ∼80× NA19240 (37). Alignment was
performed with minimap2 (35) with pre-set parameters.

Ambystoma mexicanum genome dataset processing

We also acquired the PacBio SMRT sequencing reads of
Ambystoma mexicanum with NCBI accession code PR-
JNA378970 (25). Alignment was performed by minimap2
to its chromosome-scale assembly GCA 002915635.2 (38).
The called variant is accessible from EBI with accession
number ERZ1668256.

Sequencing data simulation

The trio-phased sample HG00403 was taken as the haplo-
type for simulation on chromosomes 1, 21 and 22. Reads
of length 150 bp and insert size 350 bp were simulated for
NGS and linked-reads with wgsim and LRSIM (39) respec-
tively with 30× coverage. 50× PacBio SMRT and ONT
reads were also simulated based on the same haplotype by
PBSIM (40) and DeepSimulator (41) with protocol-specific
sequencing error rates.

Evaluation metrics

To benchmark the result of SpecHap, we adopted the fol-
lowing criteria which have been widely used metrics to ac-
cess the completeness and accuracy of haplotype assembly.
They are N50 of adjusted genomic span (AN50), the num-
ber of phased heterozygous sites, short-range switch error
rate (mismatch error rate), and long-range switch error rate
(switch error rate) (18,42–44). The metric AN50 stands for
the N50 of adjusted genomic span, which is the span in
reference base pairs from first to last phased variant mul-
tiplied by the fraction of phased variants over total vari-
ants spanned by the haplotype block. The number of phased
variants was also summarized to assess the continuity of
the haplotype. For haplotypes where the ‘ground truth’ was
provided, the accuracy of the haplotype can be evaluated
by the mismatch error rate and switch error rate. The mis-
match error rate is calculated by the number of mismatch
errors, that is, the number of errors that can be fixed by flip-
ping the haplotype assignment at a single variant site, over
the number of all possible mismatch errors. Similarly, the
switch errors refer to the flipping of the haplotype assign-
ments at each of two or more consecutive variants to attain
the ‘ground truth’.

To access the efficiency of programs, we collected the
CPU time and peak memory consumption with Oracle Grid
Engine on CentOS 7 with Intel Xeon CPU E7-4850 v2. To
ensure a fair comparison, all the methods adopted the same
set of fragments as input and default parameters are used
for all sequencing protocols and methods. For SpecHap, we
set the interval size to be 200 with interval overlap to be 60
for all sequencing protocols.

RESULTS

We assessed the performance of SpecHap with RefHap,
HapCUT2, FastHare and DCHap for NGS, 10x Genomics

https://support.10xgenomics.com/genome-exome/datasets/2.0.0/NA12878_WGS
https://support.10xgenomics.com/genome-exome/datasets/2.2.1/NA19240_WGS_v2
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Figure 2. Overview of conducted experiment setting and status for sam-
ples with coverage less than 50×. Software that does not support a specific
data type is marked with ‘–’. For Homo sapiens, methods that exceed the 24
CPU hours limit are marked as ‘Failed’. For Ambystoma mexicanum, meth-
ods that exceed 5 CPU days and 40GB peak memory usage are marked as
‘Failed’.

linked-read, Hi-C, PacBio SMRT and ONT sequencing. In
silico data for HG00403 and WGS data for NA12878 and
NA19240 were adopted for benchmarking. The trio-phased
haplotype from the 1000 Genomes Project was taken as
the ‘ground truth’ and variants set to assemble haplotype
for each data type. The sample NA19240 contains ∼1.5-
fold more heterozygous variants. We also conducted exper-
iments phasing ∼32× PacBio SMRT for Ambystoma mex-
icanum. Figure 2 illustrates the overview of the conducted
experiment setting and status for datasets under 50× cover-
age. SpecHap managed to pass all experiment settings, while
the other four software packages either did not support a
specific data type or failed to complete the task within the
usage boundary (24 CPU hours for Homo sapiens, 5 CPU
days and 40GB peak memory usage for Ambystoma mex-
icanum). The overall and per-haplotype-block benchmark
statistics were demonstrated in Figures 3 and 4 correspond-
ingly.

SpecHap demonstrated runtime and memory efficiency on in
silico data

SpecHap assembles the haplotype by graph bisection based
on the min-cut heuristic guided by spectral graph theory.
Since many algorithms model diploid SIH with graph bi-
section, some other heuristics for graph cut are adopted
(18,20,22). To evaluate the efficiency of the min-cut heuris-
tic implementation based on spectral graph theory, we com-
pared the graph cut module of SpecHap with the greedy
maximum likelihood cut heuristic of HapCUT2. We per-
formed simulations on graphs with 50–500 heterozygous
SNVs for 10×, 30× and 50× read coverage with conflict-

ing haplotypes exhibited on a single variant locus. The CPU
time of the two graph-cut routines was plotted in Supple-
mentary Figure S1. Comparing with HapCUT2, the CPU
time of the SpecHap graph-cut routine demonstrates no sta-
tistical differences for data with different coverage. When
the graph contains 50 heterozygous SNVs, both graph-
cut routines finish within 60 CPU microseconds. When the
number of SNVs in the graph increases to 500, SpecHap
finishes within 500 CPU microseconds for all coverage pro-
files. HapCUT2, however, spends more than 1000 CPU mi-
croseconds for data with 10× coverage and more than 4000
CPU microseconds for data with 50X coverage.

We then used in silico data to benchmark SpecHap with
the existing method focusing on the third-generation se-
quencing protocol. When phasing with PacBio SMRT se-
quence, SpecHap outperformed all four existing methods
considering both CPU time and peak memory usage based
on the simulation. SpecHap was around 40 times faster
than HapCUT2, 100 times faster than ReFHAP and as fast
as FastHare. DCHap did not function efficiently and ac-
curately enough on simulations with PacBio SMRT reads.
While assembling haplotype with ONT reads, SpecHap
achieved 20 times faster than HapCUT2, 30 times faster
than ReFHAP, 2 times faster than DCHap and as fast as
FastHare. FastHare, however, demonstrated significantly
higher error rates among methods.

We also benchmarked SpecHap’s performance with mul-
tiple interval sizes on both simulated PacBio SMRT and
ONT data as demonstrated in Supplementary Table S3.
The CPU time of SpecHap increases as the interval size in-
creases. When the interval size increased to 1000, the CPU
time of SpecHap tripled. It is also noticeable that with dif-
ferent interval sizes, SpecHap assembled haplotypes might
be different. The small variation in statistics was consid-
ered acceptable comparing with the results of other soft-
ware packages.

SpecHap persisted runtime and memory efficiency on WGS
sequenced data

SpecHap persisted its efficiency on WGS data. For high
coverage NGS data, SpecHap completed the haplotype as-
sembling with the least CPU usage (2 CPU minutes) and
peak memory (109 MB) for NA12878. As for NA19240,
SpecHap finished with only 329 CPU seconds and 157MB
memory. ReFHap did not scale well while FastHare and
HapCUT2 consumed excessive memory (18GB and 25GB
respectively) on NA19240. For Hi-C data, SpecHap out-
performed HapCUT2 on computational load by complet-
ing the haplotype assembly within minutes of CPU time,
with minimum memory consumption (∼200 MB) on both
∼36× NA12878 sample ∼30× NA19240 sample. With 10×
linked-reads, SpecHap and HapCUT2 achieved compara-
ble speed. However, HapCUT2 requires additional compu-
tation on fragment linking (32 CPU hours on the linkage of
fragments with the script provided by HapCUT2 for sample
NA12878).

As for the PacBio SMRT data, SpecHap similarly
demonstrated its efficiency by completing the assembly with
around 13 CPU minutes and 120MB peak memory for
the ∼44× NA12878 sample. When the sequencing depth
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Figure 3. Overall benchmarked data on both simulation and WGS sample NA12878 for diverse sequencing protocol. (A) Log2-scaled CPU and peak
memory usage, in seconds and Megabytes respectively. Value exceeding 30 000 CPU seconds and 15GB peak memory usage is capped. (B) Overall switch
error rate and mismatch error rate are calculated as the number of errors divided by the number of possible errors.

increase to ∼120× for sample NA19240, most software
started to consume excessive memory (16GB for FastHare,
230GB for DCHap and 30GB for HapCUT2), while Hap-
CUT2 took the most time to complete (52 CPU hours).
SpecHap, however, remained efficient (∼3000 CPU sec-
onds) with minimum memory usage (within 200MB). For
the ONT data, SpecHap was able to assemble the haplo-
type with around 10 CPU minutes on the ∼40× NA12878
dataset. When the sequencing depth increased to 80X on
sample NA19240, SpecHap persisted with its efficiency and
completed haplotype assembly with 2257 CPU seconds and
163MB peak memory consumption. While the second most
efficient method, FastHare, took ∼11 CPU hours and 16GB
peak memory to complete. ReFHap did not scale well due
to time limit exceeded on both PacBio SMRT and ONT
data. The CPU time and peak memory usage for all the
methods were summarized in Figure 3:A and Supplemen-
tary Table S4.

SpecHap accurately phased individual NA12878 and
NA19240 on diverse sequencing protocols

NGS data. To access SpecHap on NGS data, we first took
a high coverage sequenced data for individual NA12878
from the 1000 Genomes Project. As displayed in Figure 3B,
the switch error rate for SpecHap was less than ReFHap,
the second-most accurate algorithm among all other soft-
ware. HapCUT2 shared a virtually similar switch error of
ReFHap while keeping more variants unpruned. FastHare,
however, demonstrated a higher switch error rate with more
pruned variants compared with SpecHap and HapCUT2.
As for the mismatch error rate, all four methods shared
comparable results with no statistically significant differ-
ence. As for the measurement of the dataset for sample
NA19240, SpecHap persisted its accuracy with the least
switch error. The AN50 metric for haplotypes generated by
different methods demonstrated no statistically significant
difference for both individuals.
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Figure 4. Log2 scaled violin plot of benchmarked data on a per-haplotype-block scale. (A) Switch error rate. Methods with zero switch error on the
simulation dataset are not showed (10× chr21 sim, NGS chr21 sim, chr22 sim, PacBio chr1 sim, chr21 sim and chr22 sim). (B) Mismatch error rate. (C)
Adjusted span, defined as haplotype block span times ratio of the number of phased SNPs over the number of total SNPs, in base pair. (D) Number of
phased SNPs.

Hi-C data. Since most methods are not specialized for
haplotype assembling with Hi-C data, we only compared
the quality of haplotype assembly generated by SpecHap
and HapCUT2. Three sets of sequencing data were cho-
sen to benchmark the completeness and accuracy of the
assembled haplotype: NA12878, ∼36× NA12878 Arima
and ∼31× NA19240. HapCUT2 models the transloca-
tion error by iteratively estimating the probability of reads
originating from different homologous chromosomes (18).
SpecHap achieves a comparable switch error rate and
AN50 among three datasets (Supplementary Figures S3
and S4).

10× linked-read data. We benchmarked SpecHap on 10×
genomics linked-reads. The 10x linked-reads label short
reads that originated from a single long DNA fragment with
the same barcode. Although DNA fragments generally span
around 60k base-pair range, reads might be sparsely dis-
tributed across the original fragment. It is also possible that
two reads that shared the same barcode originated from dif-
ferent DNA molecules. The dataset we acquired has around
50X coverage for both individuals NA12878 and NA19240;
reads were filtered so that only fragments with white-listed
barcodes were kept. The same sets of variants were used to
extract fragment information. SpecHap achieved a compa-
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rable accuracy and AN50 on both datasets with HapCUT2
(Supplementary Figure S2).

PacBio SMRT data and ONT Data. PacBio SMRT se-
quencing and ONT sequencing are known for their error-
prone (∼10%) long reads. For individual NA12878, on
PacBio SMRT data, SpecHap achieved a virtually iden-
tical switch error rate compared to HapCUT2. FastHare,
with second-best efficiency, demonstrated a higher switch
error rate with most variants pruned. DCHap, with slightly
more accurate results, assembled the haplotype with the
lowest AN50 and pruned the second most variants. All
methods demonstrated no statistically significant differ-
ences concerning the mismatch error rate. On ONT data,
SpecHap similarly demonstrated its accuracy with a com-
parable switch error rate. DCHap, with the least switch er-
rors, pruned >2000 SNVs than SpecHap and HAPCUT2.
ReFHap failed to finish the assembly process with both
PacBio SMRT reads and ONT reads due to excessive time
consumption. The switch and mismatch error rate, AN50
and the number of phased SNVs for all methods were sum-
marized in Supplementary Tables S5 and S6.

SpecHap demonstrated scalability by phasing with giant
diploid genome

SpecHap also demonstrated high scalability by assembling
the ∼32× PacBio SMRT reads with N50 read length
around 14.2 kb of an Ambystoma mexicanum individual,
which possesses 32 billion base-pair-long genome (25,38).
As illustrated in Supplementary Figure S5, SpecHap was
able to finish the assembly within 6 CPU hours with only
945MB of peak memory consumption, while all other meth-
ods failed to finish within the time limit (5 CPU days)
and memory limit (40GB). The assembled haplotype blocks
have the AN50 of 206Kbp within a total of 20375931 num-
ber of phased SNPs, which is 99.8% of total heterozygous
SNPs of Ambystoma mexicanum). The most-heterozygous
variants-phased haplotype block has an adjusted span of
more than 2 Mb. For per-haplotype-block adjusted span
and the number of phased variants, see Supplementary Fig-
ure S6.

DISCUSSION

SpecHap, a novel diploid SIH algorithm, supports sequenc-
ing data with different coverage from diverse platforms.
SpecHap transforms diploid SIH into a linear algebra prob-
lem by applying spectral graph theory. The allele partition-
ing guided by Fiedler Vector might be interpreted as a min-
cut heuristic on our linkage graph (28). SpecHap adopts
divide-and-conquer to accelerate the computation by di-
viding chromosomes into intervals of user-defined size. A
larger interval size might affect SpecHap’s efficiency. Al-
though there is no guarantee that SpecHap provides opti-
mal solutions and the interval size might affects the phasing
result, we demonstrated that our model succeeded in effi-
ciently and accurately assembling haplotypes with diverse
sequencing reads for individual NA12878 and NA19240.
SpecHap is also scalable to phase one of the largest se-
quenced genomes of Ambystoma mexicanum with around

∼32× PacBio SMRT data, showing it to be a promising tool
for future research on the evolutionary history of amphib-
ians and other organisms with immense genome scale.

Long-read sequencing introduces significant advances
considering the completeness and continuity of assembled
haplotypes. However, PacBio SMRT and ONT long-reads
maintain a higher per-base error rate and may fail to accu-
rately identify SNVs, particularly heterozygous ones (45). In
our experiments, we adopted the trio-phased high-quality
variants set for NA12878 and NA19240 from the 1000
Genome Project as input for all methods. Since most diploid
SIH methods, including SpecHap, require a high-quality
set of variants to conduct phase, 30X Illumina short reads
sequencing might be performed to obtain reliable calls
for SNVs, short insertions and deletions. Some recent ap-
proaches based on deep learning were also able to identify
variants accurately from long-read sequencing (46).

In this study, we introduced a novel diploid SIH algo-
rithm SpecHap and demonstrated its robustness and ef-
ficiency. By transforming diploid SIH into a linear alge-
bra problem, SpecHap assembled haplotype with ultrafast
speed while preserving comparable accuracy. Moreover, a
comprehensive analysis on the influence of technological
specific error over phasing quality may be conducted for
Hi-C and 10× linked-reads. Although our algorithm works
on the diploid genome, generalization towards high ploidy
is expected. For multiploidy genomes, it is possible to en-
counter multi-allelic variants. Since we are expecting mul-
tiple haplotypes, the current graph bisection model might
not fit when the ploidy increases. Besides, the determina-
tion of haplotype-resolved structural variation might also
be an important feature to be introduced in the future.
Haplotype-resolved structural variations are often deter-
mined with haplotype-resolved de novo assembly (47) and
most SIH software packages including SpecHap support
SNPs, short insertions and deletions only. Phasing with
structure variations is challenging since they introduce com-
plex genome rearrangement events. To assemble haplotype-
resolved structural variation, a refined linkage graph that
incorporates genome rearrangements is expected in the fu-
ture.

DATA AVAILABILITY

All the data used in this paper can be retrieved from pub-
lic databases. All the experiments are reproducible with
the dedicated version of the software with default argu-
ments. SpecHap source code is deployed at https://github.
com/deepomicslab/SpecHap and a copy is attached in the
supplemental material. To allow reproduction of the results
in this manuscript, the commands to run programs dur-
ing simulation, alignment, fragment extraction, and bench-
marking were also attached. The fragment information
was extracted with a refined version of ExtractHAIRs (18)
which is packed with SpecHap. We adopted the implemen-
tation of FastHare from Duitama et al. (44) for benchmark-
ing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

https://github.com/deepomicslab/SpecHap
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkab709#supplementary-data
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