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Mechanisms that integrate the metabolic state of a cell to regulatory pathways are necessary 

to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites are capable 

of forming functional, covalent modifications on proteins without the aid of enzymes1,2, and 

regulate cellular functions including metabolism3-5 and transcription6. An important ‘sensor’ 

protein that captures specific metabolic information and transforms it into an appropriate 

response is KEAP1 (Kelch-like ECH-associated protein 1), which contains reactive 

cysteines that collectively act as an electrophile sensor tuned to respond to reactive species 

resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 

results in reduced ubiquitination and the accumulation of the NRF27,8, which then initiates 

transcription of cytoprotective genes at antioxidant-response element (ARE) loci. Here we 

have identified a small molecule inhibitor of the glycolytic enzyme PGK1, which reveals a 

direct link between glycolysis and NRF2 signaling. Inhibition of PGK1 results in 

accumulation of the reactive metabolite methylglyoxal (MGx), which selectively modifies 

KEAP1 to form a novel methylimidazole crosslink between proximal cysteine and arginine 

residues (MICA) posttranslational modification (PTM). This PTM results in KEAP1 
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dimerization, NRF2 accumulation and activation of the NRF2 transcriptional program. 

These results demonstrate the existence of direct inter-pathway communication between 

glycolysis and the KEAP1-NRF2 transcriptional axis, provides new insight into metabolic 

regulation of cell stress response, and suggests a novel therapeutic strategy for controlling 

the cytoprotective antioxidant response in numerous human diseases.

In line with its role in responding to altered cellular conditions, numerous studies have 

linked deregulated KEAP1-NRF2 signaling in disease, including cancer9, neurodegenerative 

disorders10, chronic inflammatory diseases11, diabetes12 and aging13. Efforts to 

therapeutically target NRF2 signaling have largely focused on covalent small molecule 

agonists of KEAP1, including the clinical candidate bardoxolone methyl (BARD)14. To 

discover noncovalent modulators of the KEAP1-NRF2 signaling axis, as well as potentially 

novel mechanisms of action for its regulation, we performed a cell-based, high-throughput 

phenotypic screen using a NRF2-dependent luciferase reporter (pTI-ARE-LUC) in IMR32 

cells15. From a library of diverse heterocyclic compounds, we identified a hit compound, 

CBR-470-0, that did not contain any obvious electrophilic groups, and induced ARE 

transcriptional activity to a similar magnitude to the previously reported NRF2 activators 

tert-butylhydroquinone (TBHQ) and AI-1 (Extended Data Fig. 1a-c). Structure activity 

relationship (SAR) elaboration around the cyclic sulfone scaffold afforded CBR-470-1 (Fig. 

1a), an isobutylamine substituted analog that was not reactive in glutathione assays and had 

an EC50 ∼1 μM in the cellular ARE-LUC assay (Extended Data Fig. 1d-e). CBR-470-1 

treatment resulted in a dose- and time-dependent accumulation of NRF2 protein in IMR32 

cells (Fig. 1b), and increased both mRNA and protein levels of the NRF2-responsive genes 

NQO1 and HMOX1 (Extended Data Fig. 1f-g; Extended Data Table 1). Expression profiling 

of IMR32 cells exposed to compound for 24 hours revealed that the most significantly 

enriched gene set was ‘NFE2L2 targets,’ which was comprised of NRF2 target genes (Fig. 

1c-d); expression changes of these target transcripts were validated by focused qRT-PCR 

analysis (Extended Data Fig. 1f). CBR-470-1 also induced transcript levels of NQO1 and 

HMOX1, as well as enhanced NRF2 protein stabilization in HEK293T, SH-SY5Y, and 

primary human lung fibroblasts (HLF; Extended Data Fig. 1h-i), indicating that these effects 

are not restricted to a specific cell type. Genetic depletion of NRF2 protein using shRNA 

inhibited the ability of CBR-470-1 and TBHQ to induce luciferase expression, indicating 

that CBR-470-1 activity is dependent upon NRF2 (Extended Data Fig. 1j). Finally, 

CBR-470-1 treatment induced a cytoprotective NRF2 phenotype in vitro, as shown by 

protection of SH-SY5Y cells challenged with the cell permeable peroxide TBHP (Extended 

Data Fig. 1k).

We next sought to determine whether CBR-470-1 or related analogs induce activation of 

NRF2 signaling in vivo. Oral dosing of Balb/C mice with 50 mg/kg (BID, P.O.) of a glycine-

substituted analog, CBR-470-2, which is equally potent to CBR-470-1 and has more 

favorable bioavailability (Extended Data Fig. 2a-e), induced NRF2 target gene expression in 

several organs, with dose-dependent increases in Nqo1 and Hmox1 transcript levels 

observed in the skin (Fig. 1e). Published studies in NRF2-knockout mice have demonstrated 

that NRF2 is essential to protect against photo-aging phenotypes and skin carcinogenesis16 

resulting from UV irradiation17. We therefore evaluated the activity CBR-470-2 in this acute 

UV damage mouse model. Mice were prophylactically dosed with CBR-470-2 or BARD (3 
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mg/kg, P.O.) for five days before exposure to a single dose of UV irradiation. Mice were 

then dosed for an additional five days, sacrificed and UV damage was quantified. 

CBR-470-2 and BARD treatment resulted in comparable beneficial effects on erythema 

histological scores and total wounded area (Fig. 1f; Extended Data Fig. 2f-g). Both 

CBR-470-2 and BARD were also found to decrease epidermal thickness in response to UV 

exposure, consistent with activation of the NRF2 cytoprotective program (Fig. 1g-h)18. The 

combined pharmacodynamic and efficacy data indicate that CBR-470-2 treatment is capable 

of modulating NRF2 signaling in vivo, despite this compound series operating via an 

apparent mechanism that is independent of direct KEAP1 binding.

To determine the mechanism by which CBR-470-1 activates NRF2 signaling, we generated 

a photo-affinity probe containing biotin and diazirine substituents, termed CBR-470-PAP, 

which retained cellular activity in ARE-LUC reporter assays (EC50 = 2.4 μM, Extended 

Data Fig. 3a-b). Treatment of IMR32 cells with 5 μM CBR-470-PAP for 1 hr, followed by 

UV irradiation and subsequent anti-biotin Western blot analysis of cellular lysates (Fig. 2a), 

together with biochemical fractionation and LC-MS/MS analysis, identified the enzyme 

phosphoglycerate kinase 1 (PGK1) as a potential target of CBR-470-PAP (Extended Data 

Fig. 3c). In vitro binding experiments with recombinant protein revealed that CBR-470-PAP 

selectively labeled PGK1, which was blocked with CBR-470-1 soluble competitor, or 

shRNA depletion of PGK1 protein levels (Extended Data Fig. 3d-f). Thermal stability assays 

in the presence of CBR-470-1 resulted in a consistent shift in PGK1 stability, and isothermal 

dose response profiling19 against PGK1 and GAPDH also confirmed the selective, dose-

dependent alteration of PGK1 stability in the presence of CBR-470-1 (Extended Data Fig. 

3g-i). Furthermore, transient and viral shRNA knockdown of PGK1 in IMR32 cells activated 

ARE-LUC reporter signal and expression of NQO1 (Fig. 2b-c). Knockdown or 

overexpression of PGK1 protein modulated the NRF2-reporter, with decreased and 

increased observed CBR-470-1 EC50 values, respectively (Fig. 2d-e). Finally, depletion of 

enolase 1, an enzyme downstream of PGK1, was also found to induce ARE-LUC signal in 

IMR32 cells (Extended Data Fig. 3j). These results suggested that CBR-470-1 modulation of 

PGK1 activity, and therefore glycolysis, regulates NRF2 activation.

Consistent with the PGK1 inhibitory activity of CBR-470-1 (Extended Data Fig. 4a-b), 

targeted metabolomic profiling4,20 of IMR32 cells treated with compound revealed a rapid 

increase in metabolite levels upstream of PGK1 (1,3- and 2,3-bisphosphoglycerate [BPG], 

and D-glyceraldehyde-3-phosphate [GAP]), and depletion of downstream metabolites such 

as 3-phosphoglycerate (3PG) and lactate (Lac), which mirrored the profile observed upon 

viral knockdown of PGK1 in IMR32 cells (Fig. 2f; Extended Data Fig. 4c-d; Extended Data 

Table 2). In addition, co-treatment of ARE-LUC expressing reporter cells with CBR-470-1 

and an inhibitor of glucose entry into glycolysis, 2-deoxyglucose (2DG), significantly 

blunted reporter activation in a dose-dependent manner (Fig. 2g). Taken together, these data 

suggested that glycolytic intermediates may serve as a signal to the NRF2 signaling axis.

We first investigated if 1,3-BPG, which is directly metabolized by PGK1, could be involved 

in signaling to the KEAP1-NRF2 pathway via phosphoglyceryl-lysine (pgK) modification of 

KEAP1. However, CBR-470-1 treatment of IMR32 cells for 30 minutes, a time at which 

1,3-BPG levels are elevated, did not result in altered KEAP1 levels, or any α-pgK 
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immunoreactive bands using polyclonal antibodies raised against the phosphoglyceryl-lysine 

epitope (Extended Data Fig. 5a-c). These Western blots did, however, reveal the appearance 

of a CBR-470-1-dose-dependent, high molecular weight KEAP1 (HMW-KEAP1) band at 

roughly twice the molecular weight of monomeric KEAP1 (Fig. 3a). The HMW-KEAP1 

band was stable to reduction (Extended Data Fig. 5d) and exhibited kinetics and dose-

dependent formation consistent with CBR-470-1-dependent NRF2 stabilization and NQO1 
induction (Fig. 1b), but distinct from the direct KEAP1 alkylator tBHQ (Extended Data Fig. 

5e-j). Co-treatment of cells with CBR-470-1 and either reduced glutathione (GSH) or N-
acetylcysteine (NAC) inhibited HMW-KEAP1 band formation (Extended Data Fig. 5k). 

Knockdown of PGK1, which activates NRF2 target gene expression, also formed HMW-

KEAP1, and this band was competed by co-treatment with GSH (Extended Data Fig. 5l). 

Together these data indicated that modulation of glycolysis by CBR-470-1 results in the 

formation of a HMW-KEAP1 that is consistent with a covalent KEAP1 dimer, which has 

been previously observed21-23, but remained uncharacterized at the molecular level.

Several central glycolytic metabolites other than 1,3-BPG contain reactive functionalities, 

including the triosephosphate isomers D-glyceraldehyde-3-phosphate (GAP) and 

dihydroxyacetone phosphate (DHAP), as well as their non-enzymatic elimination product 

methylglyoxal (MGx), an electrophilic dicarbonyl compound that has been found to form 

numerous modifications on nucleophilic residues in proteins24,25. Among these candidates, 

only treatment of cell lysates or live cells with MGx resulted in the selective formation of 

HMW-KEAP1 (Fig. 3b-c). Treatment of FLAG-KEAP1 containing lysates or purified 

KEAP1 with freshly distilled MGx induced dose-dependent formation of HMW-KEAP1 at 

mid-μM concentrations (Extended Data Fig. 5m-n), which is consistent with the range of 

MGx concentrations previously reported in living cells26,27. MGx treatment in cells 

functionally activated expression of the downstream NRF2 target genes NQO1 and HMOX1 
(Fig. 3d). Targeted LC-MS measurement of derivatized methylglyoxal confirmed that 

CBR-470-1 treatment resulted in significant elevation of cellular MGx levels in the first few 

hours of treatment (Fig. 3e; Extended Data Fig. 6a-c), which was sensitive to GSH treatment 

(Extended Data Fig. 6d-f). To further test the involvement of MGx in KEAP1-NRF2 

signaling, we perturbed its degradation, which is mediated by GSH and glyoxylase 1 

(GLO1). Knockdown of GLO1 by shRNA resulted in ARE-LUC reporter activation (Fig. 

3f), and also sensitized cells to CBR-470-1 activation of the ARE-LUC reporter (Extended 

Data Fig. 6g). Direct modulation of GLO1 enzymatic activity with a cell-permeable inhibitor 

(GLOi) also amplified reporter activation by CBR-470-1 (Extended Data Fig. 6h). 

Collectively, these metabolomic, proteomic and transcriptomic data established shared 

kinetics between MGx accumulation, HMW-KEAP1 formation and NRF2 pathway 

activation, suggesting the existence of a direct link between glycolysis and the KEAP1-

NRF2 signaling pathway mediated by the direct modification of KEAP1 by MGx.

A SILAC-based quantitative proteomic approach (Extended Data Fig. 7a) suggested the 

NTR (N-terminal region, amino acids 1-50) and BTB domains (amino acids 150-169) as 

candidate domains and residues that could be involved in HMW-KEAP1 formation in 

response to CBR-470-1-induced MGx elevation (Extended Data Figure 7b-d). We therefore 

examined more than a dozen C-to-S, K-to-M/R, and R-to-A mutations within these domains, 

as well as other known functional residues in KEAP1, for their effect on HMW-KEAP1 
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formation. Two arginine residues (R15 of the NTR domain and R135 of the BTB domain) 

significantly, but incompletely, reduced the formation of HMW-KEAP1 (Fig. 4a). More 

striking was the near complete inhibition of HMW-KEAP1 formation of the C151S mutant 

in the BTB domain (Fig. 4a). Consistent with this effect, C151-containing tryptic peptide 

levels were reduced by MGx treatment, and pre-treatment of cells with bardoxolone methyl, 

which alkylates C151, inhibited HMW-KEAP1 formation (Extended Data Fig. 7d-e). C151 

lies in an exposed region of the BTB domain that is predicted to mediate the homodimeric 

interface between two KEAP1 monomers, which is necessary for proper NRF2 binding and 

ubiquitination8,23. Therefore, the strong abrogation of HMW-KEAP1 formation through 

mutation of C151 and proximal arginines suggested that MGx may be mediating an 

uncharacterized modification between these residues.

In an effort to identify this modification, we synthesized a model peptide containing cysteine 

and arginine separated by a glycine linker, which was intended to mimic high inter- or 

intramolecular Cys/Arg proximity, and treated it with MGx at physiologic temperature and 

pH overnight (Fig. 4b). LC-MS analysis revealed a new peak, which corresponded to a mass 

increase of 36 Da, consistent with a mercaptomethylimidazole crosslink (Fig. 4c-d) formed 

by nucleophilic attack of the dicarbonyl by the side chains of cysteine and arginine, followed 

by dehydration-mediated cyclization and formation of a novel methylimidazole (MICA) 

posttranslational modification. We purified this product and confirmed its structure by a 

series of one- and two-dimensional NMR experiments (Fig. 4d; Extended Data Fig. 7f-i). To 

determine whether MICA modification occurs within KEAP1 protein, we treated cells with 

CBR-470-1 or MGx, isolated HMW-KEAP1 and monomeric KEAP1 by gel, and then 

digested these discrete populations for LC-MS/MS analyses. A peptide bearing a MICA 

crosslink between C151 and R135 was identified in isolated HMW-KEAP1 from both 

CBR-470-1 and MGx treatment, but not in the isolated monomeric KEAP1 (Fig. 4e). 

Furthermore, parallel-reaction monitoring (PRM) confirmed the presence and co-elution of 

more than a dozen parent-to-daughter ion transitions that were uniquely present in HMW-

KEAP1 (Fig. 4f; Extended Data Fig. 8a-b). These studies suggest a model where glycolytic 

metabolic status is coupled to NRF2-dependent gene expression through the direct 

interaction of a reactive glycolytic metabolite, MGx, and the sentinel protein KEAP1 via the 

formation of a stable and mechanistically novel protein PTM (Fig. 4g).

While it has been reported that MGx can form covalent modifications on diverse proteins, 

the compositions, sites and functions of these modifications have remained enigmatic. 

Likewise, several recent reports have implicated MGx in the pathogenesis of diseases such 

as diabetes28 and aging29, yet the discrete molecular targets of MGx in these contexts are 

unknown. Here we found that inhibition of PGK1 increases triosephosphate levels, which 

results in elevated levels of cellular MGx and the formation of a HMW-KEAP1 species 

leading to NRF2-dependent gene expression. Formation of the HMW-KEAP1 species 

involves a novel PTM, MICA, that is dependent on MGx and serves to form a covalent 

linkage between proximal cysteine and arginine residues. These results raise intriguing 

questions about the general reactivity of MGx, its potential role as a signaling metabolite in 

other cellular processes, and the specific modifications involved in oft-cited advanced 

glycated endproducts as biomarkers of disease pathology. In our studies both cellular and 

lysate treatment with MGx showed selective modification of C151 in KEAP1, likely due to 
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the intrinsic hyperreactivity of this residue, and the presence of properly oriented arginine(s) 

that enables formation of the MICA modification. Additional factors such local metabolite 

concentration gradients may also contribute to MICA formation in KEAP1. Future studies to 

elucidate the full target profile of MGx, and specifically other inter- and intramolecular 

MICA modifications, are expected to shed light on this model and provide a global view of 

MGx modification sites in the proteome.

The direct connection between glucose metabolism and the KEAP1-NRF2 axis by MGx 

adds an additional layer of regulation to both pathways and global metabolic status. First, 

this connection highlights the role of glycolysis in regulating cellular redox status beyond 

the contribution to NADPH and glutathione production. These reducing equivalents are 

critical for the regulation of a wide range of reactive species in the cell, and when these 

levels are deregulated, the KEAP1-NRF2 pathway is poised to respond and limit cellular 

damage. Recent studies have also implicated the output of NRF2 transcriptional program in 

the direct detoxification of MGx through increased glutathione synthesis30, GLO1 
transcription, as well as redirection of glucose carbon away from central metabolites (e.g. 

MGx) and into the pentose phosphate pathway31. Therefore, the direct coupling of glucose 

metabolism with KEAP1 function through MGx creates an intrinsic feedback loop to sense 

and respond to changing metabolic demands in the cell. A final aspect of this study is the 

notion that modulation of endogenous reactive metabolite levels using small molecules may 

represent an alternative approach toward activating the ARE pathway for treatment of a 

number of disease involving metabolic stress.

Methods

Chemicals.

TBHQ, 2DG, MGx and GSH were obtained from Sigma Aldrich. The synthesis of AI-1 has 

been described previously32. The GLO1 inhibitor (CAS No. 174568-92-4) was from 

MedChemExpress. CBR-470-0 and CBR-581-9 were from ChemDiv. CBR-470-1 (initially 

from ChemDiv as D470-2172) and related analogs were synthesized in house according to 

full methods described in the Supplementary Information. All commercially obtained 

chemicals were dissolved in DMSO and used without further purification with the exception 

of 2DG, MGx and GSH, which were delivered as aqueous solutions.

Cell Culture.

IMR32, SH-SY5Y, HeLa, and HEK293T cell lines were purchased from ATCC. Human 

lung fibroblasts (HLF) and mouse dermal fibroblasts (MDFs, C57BL/6-derived) were 

obtained from Sciencell and used before passage 3. IMR32, HLF, SH-SY5Y, HeLa, and 

HEK293T cells were propagated in DMEM (Corning) supplemented with 10% fetal bovine 

serum (FBS, Corning) and Anti-anti (Gibco). MDFs were propagated in fibroblast medium 2 

from Sciencell. Mouse epidermal keratinocytes (MPEK-BL6) were obtained from Zen Bio 

and propagated in epidermal keratinocyte medium (Zen Bio).
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High throughput screening and ARE-LUC reporter assay.

For high throughput screening, IMR32 cells were plated at 5 × 103 cells per well in white 

384-well plates in 40 μL of growth medium. The next day 100 ng of pTI-ARE-LUC reporter 

plasmid in 10 μL of Optimem medium (Gibco) was transfected into each well using Fugene 

HD at a dilution of 1 μg plasmid DNA: 4 μL of Fugene. 24 hours later, compounds were 

transferred using a 100 nL pintool head affixed to PerkinElmer FX instrument such that the 

final screening concentration was 2 μM. After 24 hour incubation, ARE-LUC luminance 

values were recorded on an Envision instrument after the addition of 30 μL of Bright Glo 

reagent solution (Promega, diluted 1:3 in water). Compounds which increased ARE-LUC 

signal greater than 4 Z-scores from plate mean were deemed hits. For overexpression and 

knockdown experiments in HEK293T with ARE-LUC reporter readouts, 5 × 105 cells were 

plated on poly-d-lysine coated plates and transfected with 1.5 μg of overexpression or 

shRNA plasmid and 500 ng of pTI-ARE-LUC using Optimem medium and Fugene in the 

same mode as above. 24 hours later, 103 transfected cells were plated in 50 μL of growth 

medium in white 96-well plates. After a 24 hour incubation, an additional 50 μL of growth 

medium with compound at the indicated concentrated was added to each well. ARE-LUC 

luminance values were recorded on an Envision plate reader 24 hours later by the addition of 

75 μL of Bright Glo reagent solution (1:3 in water).

Peroxide stress model.

104 SH-SY5Y cells were plated in 100 μL of growth medium in white 96-well plates. After 

48 hours of compound treatment, 20 μL of tert-butyl peroxide diluted to the indicated 

concentrations was added to each well. After an 8 hour incubation, cell viability 

measurements were recorded on an Envision plate reader after the addition of 50 μL of a 

Cell Titer Glo solution (Promega, diluted 1:6 in water). Relative viabilities are reported as a 

fraction relative to the same dose of compound treatment without TBHP.

shRNA knockdown studies.

PGK1-targeting shRNA vectors sh10 and sh47 refer to Sigma Mission shRNA lentiviral 

clones NM_000291.2-338s1c1 and NM_000291.2-935s1c1 respectively. GLO1-targeting 

shRNA vectors sh29 and sh30 refer to Sigma Mission shRNA lentiviral clones 

NM_006708.1-195s1c1 and NM_006708.1-292s1c1 respectively. The non-targeting 

scrambled control vector refers to SHC002 (Sigma). Lentiviruses were generated in 

HEK293T cells by transient expression of the above vectors with pSPAX2 and pMD2.G 

packaging vectors (Addgene plasmids 11260 and 12259). Viral supernatants were collected 

after 48 hours of expression and passed through a 70 μm syringe filter before exposure to 

target cells.

Quantitative RT-PCR.

Cells were collected by trypsinization and subsequent centrifugation at 500g. RNA was 

isolated using RNeasy kits from Qiagen and concentrations obtained using a NanoDrop 

instrument. 500ng-5μg of RNA was then reverse transcribed with oligo dT DNA primers 

using a SuperScript III First-Strand Synthesis kit from Invitrogen. Quantitative RT-PCR 

reactions were measured on a Viia 7 Real-Time PCR system (Thermo) using a Clontech 
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SYBR green-based master mix. Gene specific primer sets are provided in Extended Data 

Table 1. Reactions were normalized to TUBG1 levels for each biological replicate and 

relative transcript abundance calculated using the comparative Ct method.

Gene set enrichment analyses (GSEA).

Total RNA was extracted from IMR32 cells treated for 24 hours with either DMSO or 5 μM 

CBR-470-1 (3 biological replicates per condition) using an RNeasy kit (Qiagen). RNA-seq 

experiments were performed by the Scripps Next Generation Sequencing Core according to 

established in house methods. Gene set enrichment analyses and leading edge heatmaps 

were generated with TPM values from the above experiment using the java GSEA package. 

“NFE2L2 targets” gene set refers to Molecular Signature Database (http://

software.broadinstitute.org/gsea/msigdb) gene set ID M2662.

Quantitative Metabolomic Profiling.

For polar metabolite profiling experiments, cells were grown in 15 cm plates and cultured in 

RPMI supplemented with 10% FBS, 2 mM L-glutamine and 1% P/S prior to media 

replacement containing either vehicle (DMSO) or the indicated dose of CBR-470-1. 

Following incubation for the appropriate time, cells were scraped into ice-cold PBS and 

isolated by centrifugation at 1,400g at 4°C. Cell pellets were resuspended in 300 μl of an 

80:20 mixture of cold MeOH/H2O, an internal standard was added (10 nmol d3-serine; 

Sigma Aldrich), and the suspension was sonicated (Fisher Scientific FB-505) for 5 seconds 

followed by a 10 minute centrifugation at 16,000g. The supernatant was collected, dried 

under N2 gas and resulting dried metabolites resuspended in 30 μl of 40% MeOH/H2O for 

analysis on an Agilent triple quadrupole LC-MS/MS (Agilent Technologies 6460 QQQ). For 

negative mode operation, metabolites were separated by hydrophilic interaction 

chromatography with a Luna-NH2 column (Phenomenex) running mobile phase A (CH3CN 

supplemented with 0.2% NH4OH) and B (95:5 v/v H2O:CH3CN supplemented with 50 mM 

NH4OAc and 0.2% NH4OH) and the following gradient: 0% B for 3 min; linear increase to 

100% B for 27 min at a flow rate of 0.4 ml/min, followed by an isocratic flow of 100% B for 

3 min. The spectrometer settings were: capillary voltage = 4.0 kV, drying gas temperature = 

350°C at 10 L/min, and the nebulizer pressure was 45 psi. Metabolite peak transitions and 

retention times are listed in Extended Data Table 2 and were confirmed by running standards 

for measured glycolytic, PPP, CAC and co-factor metabolites. 2-phosphoglycerate and 3-

phosphoglycerate isomers were quantified in aggregate (2PG/3PG). Relative metabolite 

abundance was quantified by integrated peak area for the given MRM-transition, and all 

metabolite levels were normalized to internal standard extracted ion intensity values for d3-
serine. These parameters were used to quantify all metabolites, with the exception of 1,3-

BPG and MGx, which required chemical derivitization to stable intermediates prior to LC-

MS/MS quantification, as previously reported20,33. MGx deviated from all other metabolites, 

as it was separated on a Gemini reverse-phase C18 column (5 mm, 4.6 mm x 50 mm; 

Phenomenex) together with a pre-column (C18, 3.5 mm, 2 mm x 20 mm) and detected in 

positive mode analysis, with mobile phase A (H2O) and B (50:50 v/v H2O:CH3CN) 

supplemented with 0.1% TFA. The gradient started with 0% B for 2 min and increased 

linearly to 100% B over 10 min with a flow rate of 0.4 ml/min, followed by an isocratic 

gradient of 100% B for 5 min at 0.4 ml/min. The QQQ settings were the same as above.
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FLAG-tagged Protein Expression and Western Blotting.

Full-length, human PGK1 (NM_000291, Origene) transiently expressed from a pCMV6 

entry vector with a C-terminal Myc-DDK tag; full-length, human KEAP1 (28023, Addgene) 

was transiently expressed from a pcDNA/FRT/TO plasmid with a C-terminal 3xFLAG tag. 

All references to FLAG-PGK1 or FLAG-KEAP1 represent the proteins in the 

aforementioned vectors, respectively. Transient protein expression was performed in 

confluent 10 cm plates of HEK293T cells by transfection of 1 μg plasmid with 

Lipofectamine 2000 (Invitrogen) according to manufacturer’s protocol. For in situ 
compound or metabolite treatment experiments, compounds were added approximately 24 

hours after transfection, and incubated for the indicated duration. For FLAG-KEAP1 

western blotting and immunoprecipitation experiments, cells were harvested by scraping, 

pelleted by centrifugation, washed twice with PBS and lysed in 8 M urea, 50 mM 

NH4HCO3, phosphatase inhibitor cocktail (Sigma Aldrich), and EDTA-free complete 

protease inhibitor (Roche), pH 8.0, at 4 ˚C. Lysate was sonicated (Fisher Scientific FB-505), 

insoluble debris cleared by centrifugation, and the supernatant was diluted into 4X Laemmli 

buffer containing 50mM dithiothreitol (DTT) as a reducing agent. Samples were prepared 

for SDS-PAGE by heating to 95 ˚C for 5 minutes, cooled to room temperature, resolved on 

NuPAGE Novex 4-12% Bis-Tris Protein Gels (Invitrogen), and transferred onto 

nitrocellulose membranes by standard western blotting methods. Membranes were blocked 

in 2% BSA in TBS containing 0.1% tween-20 (TBST) and probed with primary and 

secondary antibodies. Primary antibodies used in this study include: anti-FLAG-M2 (1:1000, 

F1804, Sigma Aldrich), anti-KEAP1 (1:500, SC-15246, Santa Cruz), anti-HSPA1A (1:1000, 

4872, Cell Signaling), anti-ACTB (1:1000, 4790, Cell Signaling), anti-GAPDH (1:1000, 

2118S, Cell Signaling) and TUBG (1:1000, 5886, Cell Signaling). Rabbit polyclonal anti-

pgK antibody was generated using pgK-modified KLH and affinity purification as 

described4 at a 1:400 dilution of a 0.33 mg/mL stock in 10mM sodium HEPES (pH 7.5), 

150mM NaCl, 30% glycerol and 0.02% sodium azide. Secondary donkey anti-rabbit, donkey 

anti-goat, and donkey anti-mouse (Licor), were used at 1:10,000 dilution in 2% BSA-

containing TBST and incubated for 1 hour prior to washing and imaging on a Licor infrared 

scanner. Densitometry measurements were performed with ImageJ software.

Time- and dose-dependent CBR-470-1 treatment studies were performed in HEK293T cells 

24 hours after transient transfection of FLAG-KEAP1, or in IMR32 cells for endogenous 

KEAP1. Fresh RPMI media with 10% FBS, 2 mM L-glutamine, 1% P/S and the indicated 

concentration of CBR470-1 (20 μM for time-dependent experiments) or equivalent DMSO 

was added to cells in 10 cm dishes. Following the indicated incubation time cells were lysed 

in lysis buffer [50 mM Tris, 150 mM NaCl, 1% Triton-X 100, phosphatase inhibitor cocktail 

(Sigma Aldrich), and EDTA-free complete protease inhibitor (Roche), pH 7.4] and 

processed for western blot as indicated above.

Target identification studies with CBR-470-PAP.

10 cm dishes of confluent IMR32 cells were exposed to 5 μM CBR-470-PAP with the 

addition of either DMSO or a 50-fold molar excess of CBR-470-1 (250 μM) for 1 hour at 

37 °C. Samples were then UV crosslinked using a Stratalinker 2400 instrument for 10 

minutes. RIPA extracted lysates were then fractionated with ammonium sulfate with percent 
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increments of 20. These fractions were then separated via SDS-PAGE and relevant probe-

labeling was determined by anti-biotin (1:500, ab1227, Abcam) western blotting as above. A 

parallel gel was silver stained using the Pierce silver stain kit. Relevant gel slices from the 

80 percent fraction were excised and PGK1 identity was determined by LC-MS/MS by the 

Scripps Center for Metabolomics and Mass Spectrometry. Follow up shRNA knock down 

studies confirmed PGK1 as the target within this fraction.

Dye-based thermal denaturation assay.

Thermal denaturation experiments were performed using a Protein Thermal Shift Dye Kit 

(ThermoFisher, 4461146). Reactions contained 2 μM recombinant PGK1 with the indicated 

dose of aqueously-delivered CBR-470-1 with 1x supplied thermal shift dye and reaction 

buffer in 20uL reaction volumes. Fluorescence values were recorded using a Viia7 Real-

Time PCR instrument according to supplied instructions.

Recombinant PGK1 assay.

PGK1 enzymatic activity in the forward direction was measured with a coupled enzymatic 

assay34. Three PGK1 conditions were prepared by dissolving recombinant PGK1 in 

potassium phosphate buffer (10 mM KH2PO4, 10 mM MgSO4, pH 7.0), and transferring the 

aliquots of PGK1 solution to the microtubes being treated with same amount of DMSO and 

indicated concentrations of CBR-470-1. Final concentration of PGK1 is 20 ng/mL and 

DMSO is 1% for each sample. Two blank conditions, 0 μM and 100 μM of CBR-470-1 with 

no PGK1, were also prepared for the control measurements. All PGK1 samples and blank 

samples were pre-incubated for 20 minutes and then transferred to the UV-transparent 96 

well plate (Corning). The assay solution (10 mM KH2PO4, 2 mM G3P, 0.6 mM NAD+, 200 

mM Glycine, 0.4 mM ADP, pH 7.0) was activated by adding GAPDH with 10 μg/mL final 

concentration, and then the assay solution was added to the wells containing PGK1 samples 

and blank samples. The change in absorbance at 340 nm at room temperature was measured 

every 20 seconds for 45 minutes, by Tecan Infinite M200 plate reader. Each condition was 

performed with three independent replications.

Isothermal dose response profiling of PGK1.

In-vitro thermal profiling assay for recombinant proteins was performed by dissolving pure 

recombinant PGK1 and GAPDH into PBS, and dividing equal amount of mixture into 9 

aliquots. Each aliquot was transferred to 0.2 mL PCR microtubes being treated with 

different amounts of CBR-470-1 added from DMSO stock, and equal amount of DMSO for 

the control. Each microtube contains 50 μL of mixture with final concentration of 45 μg/mL 

for each protein and DMSO concentration 1 % with following final concentrations of 

CBR-470-1; 0 μM, 0.1 μM, 0.3 μM, 1 μM, 3 μM, 10 μM, 33 μM, 100 μM, 333 μM. After 30 

minutes incubation at 25°C, samples were heated at 57°C for 3 minutes followed by cooling 

at 25°C for 3 minutes using Thermal Cycler. The heated samples were centrifuged at 

17,000g for 20 minutes at 4°C, and the supernatants were transferred to new Eppendorf 

tubes. Control experiments were performed with heating at 25°C for 3 minutes, instead of 

57°C. Samples were analyzed by SDS-PAGE and Western blot.
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Metabolite Treatments and HMW-KEAP1 screening.

For in vitro screening of glycolytic metabolites, HEK293T cells expressing FLAG-KEAP1 

were lysed by snap-freeze-thaw cycles (3x) in PBS, pH 7.4, containing EDTA-free complete 

protease inhibitor (Roche). Lysates were cleared by centrifugation and the supernatants 

normalized for concentration by Bradford reagent (2 mg/mL). Concentrated stocks of each 

metabolite were made in PBS, which were added to the lysate samples for the final indicated 

concentrations and incubated at 37˚C for 2.5 hours with shaking. Following incubation, 

samples were denatured with 6 M urea and processed for SDS-PAGE and western blotting. 

Methylglyoxal (40% v/v with H2O), glyceraldehyde 3-phosphate (GAP), dihydroxyacetone 

phosphate (DHAP), and 2,3-bisphosphoglycerate (2,3-BPG) were all obtained from Sigma 

Aldrich and used as PBS stocks. In situ metabolite treatments were performed in HEK293T 

cells 24 hours after transfection of FLAG-KEAP1, treated with MGx (1 or 5 mM) in H2O 

(Sigma) or equivalent vehicle alone for 8 hours. Cells were collected by scraping, washed in 

PBS and centrifuged, and lysed in urea lysis buffer and analysis by SDS-PAGE and western 

blot. Dose-response experiments were performed with high purity MGx was prepared by 

acidic hydrolysis of MG-1,1-dimethylacetal (Sigma Aldrich) followed by fractional 

distillation under reduced pressure and colorimetric calibration of the distillates, as 

previously reported33. For in vitro MGx dose-response dimerization of KEAP1, HEK293T 

cells expressing FLAG-KEAP1 were lysed in PBS as indicated above, then serial dilutions 

of high purity MGx in 50 mM Sodium Phosphate, pH 7.4, were added to the equal volume 

of lysate aliquots with final protein concentration of 1 mg/mL. Each mixture was incubated 

at 37°C for 8 hours with rotating, HMW-KEAP1 formation was analyzed by SDS-PAGE and 

western blot.

For studies with recombinant KEAP1, FLAG-KEAP1 was expressed in HEK293T cells 

from transient transfection of the Flag-Keap1 plasmid (Addgene plasmid #28023). FLAG-

KEAP1 protein was immunopurified after overnight incubation at 4 degrees with anti-FLAG 

M2 magnetic beads (Sigma) in RIPA buffer in the presence of protease inhibitors, eluted 

with 3xFLAG peptide (150 ng/mL) in PBS, and desalted completely into PBS. 500 ng of 

purified FLAG-KEAP1 protein was then subjected to reducing conditions with the addition 

of either TCEP (0.1 mM) or DTT (1 mM) for 10 minutes at 37 degrees. MGx was then 

added to a final concentration of 5 mM and incubated for 2 hours at 37 degrees. Reactions 

were quenched by the addition of 50 μL of 4x sample buffer and subsequent boiling for 10 

minutes. 12 μL of this reaction was then separated by SDS-PAGE and the presence of 

HMW-KEAP1 evaluated by anti-FLAG Western blotting as described or by silver staining 

using the Pierce Silver Stain Kit (ThermoFisher Scientific).

Site-directed Mutagenesis of KEAP1

KEAP1 mutants were generated with PCR primers in Extended Data Table 1 according to 

the Phusion site-directed mutagenesis kit protocol (F-541, Thermo Scientific) and the 

QuikChange site-directed mutagenesis kit protocol (200523, Agilent). Mutant KEAP1 

plasmids were verified by sequencing [CMV (forward), wild-type primers in the middle of 

KEAP1 sequence (forward) and BGH (reverse)], and were transiently expressed in 

HEK293T cells in the same manner as wild type KEAP1. Screening of CBR-470-1-induced 

HMW-KEAP1 formation with mutant constructs was performed just as with wild type 
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KEAP1, after 8 hour CBR-470-1 treatment (20 μM). Following treatment, cells were 

harvested and prepared for SDS-PAGE and western blotting as indicated above.

SILAC cell culture methods and proteomic sample preparation.

SILAC labeling was performed by growing cells for at least five passages in lysine- and 

arginine-free SILAC medium (RPMI, Invitrogen) supplemented with 10% dialyzed fetal calf 

serum, 2 mM L-glutamine and 1% P/S. “Light” and “heavy” media were supplemented with 

natural lysine and arginine (0.1 mg/mL), and 13C-, 15N-labeled lysine and arginine (0.1 mg/

mL), respectively.

General protein digestion for LC-MS/MS analysis was performed by dissolving protein (e.g. 

whole lysate or enriched proteins) in digestion buffer (8 M urea, 50 mM NH4HCO3, pH 

8.0), followed by disulfide reduction with DTT (10 mM, 40 minutes, 50 ˚C), alkylation 

(iodoacetamide, 15 mM, 30 min, room temperature, protected from light) and quenching 

(DTT, 5mM, 10 minutes, room temperature). The proteome solution was diluted 4-fold with 

ammonium bicarbonate solution (50 mM, pH 8.0), CaCl2 added (1 mM) and digested with 

sequencing grade trypsin (∼1:100 enzyme/protein ratio; Promega) at 37 ˚C while rotating 

overnight. Peptide digestion reactions were stopped by acidification to pH 2-3 with 1% 

formic acid, and peptides were then desalted on ZipTip C18 tips (100 μL, Millipore), dried 

under vacuum, resuspended with LC-MS grade water (Sigma Aldrich), and then lyophilized. 

Lyophilized peptides were dissolved in LC-MS/MS Buffer A (H2O with 0.1% formic acid, 

LC-MS grade, Sigma Aldrich) for proteomic analysis.

Proteomic LC-MS/MS and Data Analysis.

LC-MS/MS experiments were performed with an Easy-nLC 1000 ultra-high pressure LC 

system (ThermoFisher) using a PepMap RSLC C18 column heated to 40˚C (column: 75 μm 

x 15 cm; 3 μm, 100 Å) coupled to a Q Exactive HF orbitrap and Easy-Spray nanosource 

(ThermoFisher). Digested peptides (500 ng) in MS/MS Buffer A were injected onto the 

column and separated using the following gradient of buffer B (0.1% Formic acid 

acetonitrile) at 300 nL/min: 0-2% buffer B over 10 minutes, 2-40% buffer B over 120 

minutes, 40-70% buffer B over 10 minutes, and 70-100% buffer B over 5 minutes. MS/MS 

spectra were collected from 0 to 150 minutes using a data-dependent, top-20 ion setting with 

the following settings: full MS scans were acquired at a resolution of 120,000, scan range of 

400-1600 m/z, maximum IT of 50 ms, AGC target of 1e6, and data collection in profile 

mode. MS2 scans was performed by HCD fragmentation with a resolution of 15,000, AGC 

target of 1e5, maximum IT of 30 ms, NCE of 26, and data type in centroid mode. Isolation 

window for precursor ions was set to 1.5 m/z with an underfill ratio of 0.5%. Peptides with 

charge state >5, 1 and undefined were excluded and dynamic exclusion was set to eight 

seconds. Furthermore, S-lens RF level was set to 60 with a spray voltage value of 2.60kV 

and ionization chamber temperature of 300 ˚C.

MS2 files were generated and searched using the ProLuCID algorithm in the Integrated 

Proteomics Pipeline (IP2) software platform. Human proteome data were searched using a 

concatenated target/decoy UniProt database (UniProt_Human_reviewed_04-10-2017.fasta). 

Basic searches were performed with the following search parameters: HCD fragmentation 
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method; monoisotopic precursor ions; high resolution mode (3 isotopic peaks); precursor 

mass range 600-6,000 and initial fragment tolerance at 600 p.p.m.; enzyme cleavage 

specificity at C-terminal lysine and arginine residues with 3 missed cleavage sites permitted; 

static modification of +57.02146 on cysteine (carboxyamidomethylation); two total 

differential modification sites per peptide, including oxidized methionine (+15.9949); 

primary scoring type by XCorr and secondary by Zscore; minimum peptide length of six 

residues with a candidate peptide threshold of 500. A minimum of one peptide per protein 

and half-tryptic peptide specificity were required. Starting statistics were performed with a 

Δmass cutoff = 15 p.p.m. with modstat, and trypstat settings. False-discovery rates of 

peptide (sfp) were set to 1%, peptide modification requirement (-m) was set to 1, and spectra 

display mode (-t) was set to 1. SILAC searchers were performed as above with “light” and 

“heavy” database searches of MS1 and MS2 files by including static modification of 

+8.014168 for lysine and +10.0083 for arginine in a parallel heavy search. SILAC 

quantification was peformed using the QuantCompare algorithm, with a mass tolerance of 

10 p.p.m. or less in cases where co-eluting peptide interfere. In general all quantified 

peptides has mass error within 3 p.p.m..

Quantitative Proteomic Detection of Potential KEAP1 Modification Sites

Quantitative surface mapping with SILAC quantitative proteomics was performed with 

“heavy” and “light” labeled HEK293T cells expressing FLAG-KEAP1. Cells were 

incubated with DMSO alone (light cells) or CBR-470-1 (20 μM, heavy cells) for 8 hours. 

After incubation cells were scraped, washed with PBS (3x) and combined prior to lysis in 

Urea lysis buffer [8 M Urea, 50 mM NH4HCO3, nicotinamide (1 mM), phosphatase 

inhibitor cocktail (Sigma Aldrich), and EDTA-free complete protease inhibitor (Roche), pH 

8.0] by sonication at 4 ˚C. After sonication insoluble debris was cleared by centrifugation 

(17,000 g, 10 min), diluted with Milli-Q water to give 1 M urea, and lysate was incubated 

with Anti-FLAG M2 resin (100 μL slurry, A2220, Sigma Aldrich) at 4 ˚C overnight while 

rotating. For SILAC label-swap experiments, “light” HEK293T cells were incubated with 

CBR-470-1 and “heavy” cells were incubated with DMSO and processed as above. FLAG 

resin was washed with PBS (7×1 mL), FLAG-KEAP1 protein eluted with glycine-HCl 

buffer (0.1 M glycine, pH 3.5, 2×500 μL), followed by 8 M urea (2×100 μL). The combined 

eluent was brought up to 8 M urea total concentration and processed for trypsin digestion 

and LC-MS/MS analysis as indicated above.

The SILAC maps were generated by comparing SILAC ratios for each peptide, relative to 

the median value for all KEAP1 peptides. SILAC ratios were converted to Log2 values and 

plotted to visualize peptides that are significantly perturbed, for example by modification, 

relative to the rest of the protein. A minimum of three SILAC ratios for each peptide was 

required for inclusion in KEAP1 surface maps, which allowed for ∼85-90% coverage of the 

KEAP1 protein. Missing sequences were caused by the lack or close spacing of trypitc sites, 

resulting in inadequate peptides for MS/MS detection.

In vitro MGx- Peptide Reactions

‘CR’ peptide was synthesized using standard solid phase peptide synthesis with FMOC-

protected amino acids on MBHA rink amide resin. Peptides were cleaved in a solution of 
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94% trifluoroacetic acid, 2.5% triisopropyl silane, 2.5% H2O, 1% β-mercaptoethanol (βME) 

and precipitated with ether. Peptide identity was confirmed using an Agilent 1100 series LC-

MS. Peptides were purified via reverse phase HPLC on an Agilent Zorbax SB-C18 250mm 

column and dried via lyophilization. For methylglyoxal reactions CR peptide (1 mM) was 

incubated with 12.5 mM methylglyoxal (diluted from 40% solution in water; Sigma Aldrich) 

or equivalent amount of water (mock) in 1x PBS pH 7.4 at 37°C overnight. Reactions were 

diluted 1:25 in 95/5 H2O/Acetonitrile + 0.1% trifluoroacetic acid and analyzed by LC-MS.

For NMR experiments, approximately 1.5 mg of the CR or CR-MGx crosslinked peptide 

was purified by reverse phase HPLC, lyophilized and dissolved in 700 μL d6-DMSO. The 

peptides was dried via lyophilization. All NMR experiments were performed on a Bruker 

Avance II+ 500 MHz 11.7 Tesla NMR. Data was processed and plotted in Bruker Topspin 

3.5. CR peptide NMR experiments were run with a spectral width of 8.5 for 2D experiments 

(in both dimensions) and 15 for 1D proton NMR with a pulse width of 13.5 μs and an 

interscan delay of 3 s. For the proton NMR, 256 scans were taken. For the COSY-DQF 

experiment, 128 and 2048 complex points were acquired in the F1 and F2 dimensions 

respectively, with 8 scans per point. For the TOCSY experiment, a mixing time of 60 μs was 

used, and 256 and 1024 complex points were acquired with 8 scans per point. All CR-MGx 

peptide NMR experiments were run with a spectral width of 13 (in both dimensions) with a 

pulse width of 11.5 μs and an interscan delay of 2.2 s. For the proton NMR, 256 scans were 

taken. For the COSY-DQF experiment, 128 and 2048 complex points were acquired in the 

F1 and F2 dimensions respectively, with 8 scans per point. For the TOCSY experiment, a 

mixing time of 80 μs was used, and 256 and 1024 complex points were acquired with 8 

scans per point.

In-gel digestion of KEAP1

Targeted proteomic analyses of KEAP1 protein were performed by running anti-FLAG 

enriched HMW-KEAP1 and LMW-KEAP1 (from both CBR-470-1 or MGx treatments as 

above) on SDS-PAGE gels, and isolated gel pieces were digested in-gel with sequencing 

grade trypsin (Promega), as previously reported35. Tryptic peptides from in-gel tryptic 

digestions were dissolved in 100 mM Tris-HCl, pH 8.0, with 2 mM of CaCl2, and further 

digested with mass spectrometry-grade chymotrypsin (Thermo Scientific) according to 

manufacturer’s protocol. Chymotryptic digestion reactions were stopped by acidification, 

and desalted on Ziptip C18 tips.

Targeted proteomic analysis of crosslinked KEAP1 peptides

Double digested KEAP1 peptides from isolated HMW-KEAP1 and monomeric KEAP1 

were analyzed by LC-MS/MS on an Easy-nLC 1000 ultra-high pressure LC system coupled 

to a Q Exactive HF orbitrap and Easy-Spray nanosource as indicated above. Candidate 

peptides were initially searched by manual inspection of chromatograms and MS1 spectra 

for m/z values of peptide candidates from predicted digestion sites, crosslink sites and 

differential presence in HMW- and monomeric KEAP1 from both CBR-470-1 and MGx 

treated samples. Extracted MS1 ions of the candidates were present in HMW-KEAP1 

digests but not in LMW-KEAP1 digests. MS/MS spectra and PRM experiments were 

collected on the same instrument using the following settings: Global and general settings 
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included lock masses of off, chromatography peak width of 15 seconds, polarity of positive, 

in-source CID of 0.0 eV, inclusion list set to ‘on,’ and an m/z value of the target parent ion 

with its charge state in the inclusion list. MS2 scans were performed by HCD fragmentation 

with microscans of 1, resolution of 120,000, AGC target of 5e5, maximum IT of 200 ms, 

loop count of 1, MSX count of 1, isolation window of 2.0 m/z, isolation offset of 0.0 m/z, 

NCE of 16, and spectrum data type in profile mode. Furthermore, S-lens RF level was set to 

60 with a spray voltage value of 2.20kV and ionization chamber temperature of 275 ˚C. 

Targeted PRM experiments were performed on CBR-470-1-, MGx-induced HMW-KEAP1 

and monomeric KEAP1 samples.

UVB Skin Damage Model.

32 5-week old Balb/c male mice were randomized into 4 groups of 8 animals such that each 

group had similar body weight means. Mice were prepared for removal of hair from their 

entire back two days prior to UVB exposure (day 3) by using an electric shaver and 

depilatory cream. On day 5, mice received exposure to UVB (200 mJ/cm2) produced by a 

broad band UVB lamp (Dermapal UVB Rev 2) powered by a Kernel UV Phototherapy 

system. UVB exposure was confined to a rectangular area of ∼8 cm2 by a lead shielding 

mask. UVB doses were confirmed by dosimeter measurements (Daavlin X96). Sham 

animals were shaved but received no UVB treatment. Mice were dosed from day 0 to study 

end at day 10 via oral gavage twice daily (CBR-470-2, 50mg/kg BID PO; BARD, 3 mg/kg 

PO; Vehicle, 0.5% methyl cellulose/0.5% Tween80). Mice were monitored daily for body 

weight changes and erythema scoring from days 5 to 10. Mice were sacrificed at day 10 and 

specimens collected for histological analysis from the wounded area. These studies were 

performed at Biomodels, LLC (Watertown, MA). Blinded erythema scores were recorded by 

a blinded, trained investigator according to established in house scale. In short, a scale of 0 

to 4 was generated with a score of 0 referring to normal skin and a score of 4 indicating 

severe ulceration.

Percent wounded area measurements.

Photographs of animals on day 10 of the study were taken such that the distance from 

camera, aperture, and exposure settings were identical. Images were then cropped such that 

only the shaved, wounded area encompassed the imaging field. These images were then 

processed with a custom ImageJ macro which first performed a three color image 

deconvolution to separate the red content of the image36. The thresholding function within 

ImageJ software was then used to separate clear sites of wounding from red background 

present in normal skin. Red content corresponding to wounds was then quantified as a 

fraction of the whole imaging field and reported as percent wounded area.

Epidermal thickness measurements.

H&E stained skin sections corresponding to the wounded area were generated by Histotox 

Labs and accessed via pathxl software. 24 individual measurements of epidermal thickness 

from 8 sections spanning a 400 μm step distance were recorded per animal by a non-blinded, 

trained investigator. These measurements were then averaged to generate a mean epidermal 

thickness measurement per animal.
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Extended Data

Extended Data Figure 1. 
A high throughput screen identifies a non-covalent NRF2 activator chemical series which 

activate a robust NRF2 transcriptional program in multiple cell types. a, Plate-based Z-

scores of ARE-LUC luminance measurements of all test compounds from a 30k compound 

screen in IMR32 cells. b, Structure of screening hit CBR-470-0. c, Relative ARE-LUC 

luminance measurements from IMR32 cells treated for 24 hours with a concentration 
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response of CBR-470-0 and reported NRF2 activators TBHQ and AI-1 (n=3 biologically 

independent samples, mean and s.e.m.). d, LC-MS quantification of CBR-470-1 (50μM) 

incubated in the presence or absence of GSH (1mM) in PBS for 1 hour (left) and 48 hours 

(right). Relative ion intensities within each time point were compared with representative 

chromatograms shown (n=2). e, Relative ARE-LUC luminance values from IMR32 cells 

transfected with wild type (wt) or mutant (mt, two core nucleotides necessary for NRF2 

binding were changed from GC to AT) ARE-LUC reporter constructs and treated with the 

indicated doses of CBR-470-1 for 24 hours (n=3, mean and s.e.m.). f, Relative abundance of 

NRF2-dependent transcripts as determined by qRT-PCR from IMR32 cells treated for 24 

hours with 5 μM CBR-470-1 (n=3). g, Western blot analyses of total NRF2 protein content 

or NRF2-controlled genes (NQO1, HMOX1) from IMR32 cells treated for 24 hours with 5 

μM CBR-470-1 (n=5). h, Western blot analyses of total NRF2 protein content from the 

indicated cell types treated for 4 hours with 5 μM CBR-470-1 (n=3). i, Relative expression 

levels of NQO1 and HMOX1 from the indicated cell types treated for 24 hours with 5 μM 

CBR-470-1 (n=3, mean and s.d.). j, Relative ARE-LUC luminescence values from 

HEK293T cells transfected with the indicated shRNA constructs and pTI-ARE-LUC and 

then treated with TBHQ (10 μM) or CBR-470-1 (5 μM) for 24 hours (n=3). k, Relative 

viability measurements of SH-SY5Y cells treated with either CBR-470-1 (5 μM) or TBHQ 

(10 μM) for 48 hours and then challenged with the indicated doses of tert-Butyl 

hydroperoxide (TBHP) for 8 hours (n=4). Data are mean and s.d. of biologically 

independent samples (P* < 0.05, P** < 0.005, P*** < 0.001, univariate two-sided t-test).
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Extended Data Figure 2. 
CBR-470-2 pharmacokinetics and in vivo activity. a, Structure of CBR-470-2. b, Relative 

ARE-LUC luminance values from IMR32 cells transfected with pTI-ARE-LUC and treated 

with the indicated doses of CBR-470-1 and CBR-470-2 for 24 hours (n=3 biologically 

independent samples). c, Plasma concentrations of CBR-470-2 from mice treated with a 

single 20 mg/kg dose of compound. (n=3 animals, mean and s.e.m.). d, e, Relative transcript 

levels of Nqo1 and Hmox1 from mouse epidermal keratinocytes (d) and mouse dermal 

fibroblasts (e) treated for 24 hours with the indicated doses of compound (n=3 biologically 

independent samples, mean and s.d.). f, Blinded erythema scores from mice treated with 
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vehicle, CBR-470-2 or Bardoxolone after UV exposure (n=8 animals, P* < 0.05, P*** < 

0.005, one-way ANOVA with Dunnett’s correction, mean and s.e.m.). g, Representative 

images of UV-exposed dorsal regions of animals at day 10 of the study.

Extended Data Figure 3. 
A photoactivatable affinity probe-based approach identifies PGK1 as the relevant cellular 

target of CBR-470-1. a, Structure of CBR-470-PAP. b, Relative ARE-LUC luminance values 

from IMR32 cells transfected with pTI-ARE-LUC and then treated with the indicated doses 
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of CBR-470-PAP for 24 hours (n=3). c, Silver staining and anti-biotin Western blots of 

ammonium sulfate fractionated lysates from UV-irradiated IMR32 cells treated with 5 μM 

for 1 hour with or without CBR-470-1 competition (250 μM)(n=3). Shown on the right are 

initial proteomic target results from gel-band digestion and LC-MS/MS analysis. d, Anti-

biotin Western blots from in vitro crosslinking assays with recombinant PGK1 and EBP1 in 

the presence of the indicated doses of CBR-470-PAP (n=2). e, Anti-biotin Western blot 

analyses from an in vitro crosslinking assay with recombinant PGK1 in the presence of 

CBR-470-PAP (1 μM) and indicated concentration of soluble CBR-470-1 competitor (n=2). 

f, Anti-biotin Western blot analyses of cells treated with 5 μM CBR-470-PAP after 

transduction with anti-PGK1 and anti-EBP1 shRNA for 48 hours. Depletion of PGK1 

protein selectively reduces CBR-470-PAP-dependent labeling (n=2). g, Dye-based thermal 

denaturation assay with recombinant PGK1 in the presence CBR-470-1 (20 μM) or vehicle 

alone (n=3). Calculated Tm values are listed. h, i, Dose-dependent thermal stability assay of 

recombinant PGK1 and GAPDH in the presence of increasing doses of CBR-470-1 near the 

Tm of both proteins (57°C) (h) (n=5) or room temperature (i) (n=3). Western blot of sample 

supernatants after centrifugation (13,000 rpm) detected total PGK1 and GAPDH protein, 

which were plotted in Prism (below). j, ARE-LUC reporter activity in HEK293T cells with 

transient shRNA knockdown of ENO1 (n=3). Data shown represent mean ± SEM of 

biologically independent samples.
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Extended Data Figure 4. 
CBR-470-1 inhibits PGK1 in vitro and in situ. a, Schematic of the GAPDH/PGK1 coupled 

assay. Pre-equilibration of the GAPDH reaction (top left) results in an NAD+/NADH 

equilibrium, which upon addition of PGK1 and ADP pulls the reaction to the right 

producing more NADH. Monitoring NADH absorbance after addition of PGK1 (bottom 

right) can be used to monitor PGK1 activity in the forward direction (right). Kinetic 

monitoring of NADH absorbance (340 nm) after established equilibrium with GAPDH 

shows little change (black curve), but is significantly increased upon addition of PGK1, 

Bollong et al. Page 21

Nature. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pulling the equilibrium to the right (red curve). b, CBR-470-1 does not affect the GAPDH 

equilibrium alone, but significantly inhibits PGK1-dependent activity and accumulation of 

NADH (n=5). c, d, Relative level of central metabolites in IMR32 cells treated with viral 

knockdown of PGK1 for 72 hours (c) (n=4) and with CBR-470-1 relative DMSO alone for 

the indicative times (d) (n=3). Each metabolite is normalized to the control condition at each 

time point. Univariate two-sided t-test (Extended Data Fig 5b); data shown represent mean ± 

SEM of biologically independent samples.

Extended Data Figure 5. 
Modulation of PGK1 induces HMW-KEAP1. a, Anti-pgK (phosphoglyceryl-lysine) and 

anti-GAPDH Western blots analysis of CBR-470-1 or DMSO-treated IMR32 cells at early 

(30 min) and late (24 hr) time points (n=6). b, Anti-FLAG (left) and anti-pgK (right) 

Western blot analysis of affinity purified FLAG-KEAP1 from HEK293T cells treated with 

DMSO or CBR-470-1 for 30 min. Duplicate samples were run under non-reducing (left) and 
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reducing (DTT, right) conditions (n=6). c, Densitometry quantification of total endogenous 

KEAP1 levels (combined bands at ∼70 and 140 kDa) in IMR32 cells treated with DMSO or 

CBR-470-1 for the indicated times (n=6). d, Western blot detection of FLAG-KEAP1 in 

HEK293T cells comparing no-reducing reagent to DTT (left), and stability of CBR-470-1-

dependent HMW-KEAP1 to the presence of DTT (12.5 mM final concentration, middle) and 

beta-mercaptoethanol (5% v/v final concentration, right) during sample preparation. treated 

with DMSO or CBR-470-1 for 8 hours (n=8). e, Time-dependent CBR-470-1 treatment of 

HEK293T cells expressing FLAG-KEAP1. Time-dependent assays were run with 20 μM 

CBR-470-1 with Western blot analysis at the indicated time-points (n=8). f, g, Western blot 

detection (f) and quantification (g) of endogenous KEAP1 and β-actin in IMR32 cells 

treated with DMSO or CBR-470-1 for the indicated times (n=6). Arrows indicate 

monomeric (∼70 kDa) and HMW-KEAP1 (∼140 kDa) bands. h, i, Western blot (h) 

detection and quantification (i) of FLAG-KEAP1 in HEK293T cells exposed to increasing 

doses of CBR-470-1 (n=3). j, Kinetic qRT-PCR measurement of NQO1 mRNA levels from 

IMR32 cells treated with tBHQ (10 μM) or CBR-470-1 (10 μM) for the indicated times 

(n=3). k, Quantification of HMW-KEAP1 formation upon treatment with CBR-470-1 or the 

direct KEAP1 alkylator TBHQ, in the presence or absence of reduced glutathione (GSH) or 

N-acetylcysteine (NAC) (n=3). All measurements taken after 8 hour of treatment in FLAG-

KEAP1 expressing HEK293T cells. l, Transient shRNA knockdown of PGK1 induced 

HMW-KEAP1 formation, which was blocked by co-treatment of cells by GSH (n=3). m, 
Anti-FLAG Western blot analysis of FLAG-KEAP1 monomer and HMW-KEAP1 fraction 

with dose-dependent incubation of distilled MGx in lysate from HEK-293T cells expressing 

FLAG-KEAP1 (n=4). n, SDS-PAGE gel (silver stain) and anti-FLAG Western blot analysis 

of purified KEAP1 treated with the MGx under the indicated reducing conditions for 2 hr at 

37°C (n=3). Purified protein reactions were quenched in 4x SDS loading buffer containing 

βME and processed for gel analysis as in (d). Data shown represent mean ± SEM of 

biologically independent samples.
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Extended Data Figure 6. 
MGx and glyoxylase activity regulates NRF2 activation. CBR-470-1 causes elevated MGx 

levels in cells. a, Schematic depicting chemical derivatization and trapping of cellular MGx 

for analysis by targeted metabolomics using two unique fragment ions. b, c, Daughter ion 

fragments (b) and resulting MS/MS quantification of MGx levels (c) in IMR32 cells treated 

with CBR-470-1, relative to DMSO (n=4). d, Quantitative LC-MS/MS measurement of 

cellular MGx levels in IMR32 cells treated for 2 hours with CBR-470-1 or co-treated for 2 

hours with CBR-470-1 and NAC (2 mM) relative to DMSO (n=4). e, Relative ARE-LUC 

luminance values from IMR32 cells transfected with pTI-ARE-LUC and co-treated with the 

indicated doses of CBR-470-1 and GSH (n=3). f, Relative levels of transcripts NQO1 and 

HMOX1 from IMR32 cells co-treated with CBR-470-1 (10 μM) and the indicated 

concentrations of GSH for 24 hours (n=3). g, Fractional ARE-LUC values from HEK293T 

cells transiently co-transfected with pTI-ARE-LUC and the indicated shRNAs and then 

treated for 24 hours with the indicated doses of CBR-470-1 (n=3). h, ARE-LUC reporter 

activity in HEK293T cells treated with CBR-470-1 alone (black) and with a cell-permeable 

small molecule GLO1 inhibitor (red) (n=3). Univariate two-sided t-test (Extended Data Fig 

7d, h); data are mean ± SEM of biologically independent samples.
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Extended Data Figure 7. 
Schematic of SILAC-based proteomic mapping of KEAP1 modifications in response to 

CBR-470-1 and NMR characterization of CR-MGx peptide. a, Stable isotope-labeled cells 

(stable isotope labeling with amino acids in cell culture, SILAC) expressing FLAG-tagged 

KEAP1 were treated with vehicle (‘light’) and CBR-470-1 or MGx (‘heavy’), respectively. 

Subsequent mixing of the cell lysates, anti-FLAG enrichment, tryptic digestion and LC-

MS/MS analysis permitted detection of unmodified portions of KEAP1, which retained ∼1:1 

SILAC ratios relative to the median ratios for all detected KEAP1 peptides. In contrast, 
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peptides that are modified under one condition will no longer match tryptic MS/MS 

searches, resulting skewed SILAC ratios that “drop out” (bottom). b, SILAC ratios for 

individual tryptic peptides from FLAG-KEAP1 enriched DMSO treated ‘light’ cells and 

CBR-470-1 treated ‘heavy’ cells, relative to the median ratio of all KEAP1 peptides. 

Highlighted tryptic peptides were significantly reduced by 3- to 4-fold upon relative to the 

KEAP1 median, indicative of structural modification (n=8). c, Structural depiction of 

potentially modified stretches of human KEAP1 (red) using published x-ray crystal structure 

of the BTB (PDB: 4CXI) and KELCH (PDB: 1U6D) domains. Intervening protein stretches 

are depicted as unstructured loops in green. d, SILAC ratios for individual tryptic peptides 

from FLAG-KEAP1 enriched MGx treated ‘heavy’ cell lysates and no treated ‘light’ cell 

lysates, relative to the median ratio of all KEAP1 peptides. Highlighted tryptic peptides were 

significantly reduced by 2- to 2.5- fold upon relative to the KEAP1 median, indicative of 

structural modification (n=12). e, Representative Western blotting analysis of FLAG-KEAP1 

dimerization from HEK293T cells pre-treated with Bardoxolone methyl followed by 

CBR-470-1 treatment for 4 hours (n=3). f, 1H-NMR of CR-MGx peptide (isolated product 

of MGx incubated with Ac-NH-VVCGGGRGG-C(O)NH2 peptide). 1H NMR (500MHz, d6-

DMSO) δ 12.17 (s, 1H), 12.02 (s, 1H), 8.44 (t, J = 5.6 Hz, 1H), 8.32-8.29 (m, 2H), 8.23 (t, J 

= 5.6 Hz, 1H), 8.14 (t, J = 5.9 Hz, 1H), 8.05 (t, J = 5.9 Hz, 1H), 8.01 (t, J = 5.9 Hz, 1H), 7.93 

(d, J = 8.5 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.26 (s, 1H), 7.09 (s, 1H), 4.33-4.28 (m, 1H), 

4.25-4.16 (m, 3H), 3.83 (dd, J = 6.9 Hz, J = 16.2 Hz, 1H), 3.79-3.67 (m, 6H), 3.63 (d, J = 5.7 

Hz, 2H), 3.54 (dd, J = 4.9 Hz, J = 16.2 Hz, 1H), 3.18-3.13 (m, 2H), 3.04 (dd, J = 4.9 Hz, J = 

13.9 Hz, 1H), 2.88 (dd, J = 8.6 Hz, J = 13.6 Hz, 1H), 2.04 (s, 3H), 1.96 (sep, J = 6.8 Hz, 

2H), 1.87 (s, 3H), 1.80-1.75 (m, 1H), 1.56-1.47 (m, 3H), .87-.82 (m, 12H). g, 1H-NMR of 

CR peptide (Ac-NH-VVCGGGRGG-C(O)NH2). 1H NMR (500MHz, d6-DMSO) δ 
8.27-8.24 (m, 2H), 8.18 (t, J = 5.7 Hz, 1H), 8.13-8.08 (m, 3H), 8.04 (t, J = 5.7 Hz, 1H), 7.91 

(d, J = 8.8 Hz), 7.86 (d, J = 8.8 Hz, 1H), 7.43 (t, J = 5.4 Hz, 1H), 7.28 (s, 1H), 7.10 (s, 1H), 

4.39 (dt, J = 5.6 Hz, J = 7.4 Hz, 1H), 4.28 (dt, J = 5.7 Hz, J = 7.2 Hz, 1H), 4.21-4.13 (m, 

2H), 3.82-3.70 (m, 8H), 3.64 (d, J = 5.8, 2H), 3.08 (dt, J = 6.5 Hz, J = 6.5 Hz, 2H), 2.80-2.67 

(m, 2H), 2.43 (t, J = 8.6 Hz, 1H), 1.94 (sep, J = 6.8 Hz, 2H), 1.85 (s, 3H), 1.75-1.68 (m, 1H), 

1.54-1.42 (m, 3H), .85-.81 (m, 12H) h, 1H-1H TOCSY of CR-MGx peptide. i, Peak 

assignment for CR-MGx peptide TOCSY spectrum. Data are mean ± SEM of biologically 

independent samples.
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Extended Data Figure 8. 
MS2 analysis of CR-MGx crosslinked KEAP1 peptide. a, Targeted Parallel reaction 

monitoring (PRM) transitions (n=6). b, Annotated MS2 spectrum from the crosslinked 

C151-R135 KEAP1 peptide.

Extended Data Table 1.

Primer sequences for real-time qPCR and cloning experiments.

Gene Forward Primer Sequence Reverse Primer Sequence

NQOl GCCTCCTTCATGGCATAGTT GGACTGCACCAGAGCCAT

HMOX1 GAGTGTAAGGACCCATCGGA GCCAGCAACAAAGTGCAAG
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Gene Forward Primer Sequence Reverse Primer Sequence

ME1 GGAGACGAAATGCATTCACA ACGAATTCATGGAGGCAGTT

GCLM GCTTCTTGGAAACTTGCTTCA CTGTGTGATGCCACCAGATT

TXNRD1 TCAGGGCCGTTCATTTTTAG GATCTGCCCGTTGTGTTTG

FTH1 GGCAAAGTTCTTCAAAGCCA CATCAACCGCCAGATCAAC

GSR TTGGAAAGCCATAATCAGCA CAAGCTGGGTGGCACTTG

EPHX1 CTTCACGTGGATGAAGTGGA CTGGCGGAATGAATTTGACT

ABCC2 GGGATCTCTTCCACACTGGAT CATACAGGCCCTGAAGAGGA

PRDX1 GGGCACACAAAGGTGAAGTC GCTGTTATGCCAGATGGTCAG

NQ02 TGCGTAGTCTCTCTTCAGCG GCAACTCCTAGAGCGGTCCT

GSTM3 GGGTGATCTTGTTCTTCCCA GGGGAAGCTCCTGACTATGA

SOD1 CCACACCTTCACTGGTCCAT CTAGCGAGTTATGGCGACG

TXNRD1 TCAGGGCCGTTCATTTTTAG GATCTGCCCGTTGTGTTTG

GSTP1 CTCAAAAGGCTTCAGTTGCC ACCTCCGCTGCAAATACATC

GCLC CTTTCTCCCCAGACAGGACC CAAGGACGTTCTCAAGTGGG

GLOl TGGATTAGCGTCATTCCAAG GCGGACCCCAGTACCAAG

PGK1 CTTGGGACAGCAGCCTTAAT CAAGCTGGACGTTAAAGGGA

TUBG1 ATCTGCCTCCCGGTCTATG TACCTGTCGGAACATGGAGG

Mutation Primer (Forward) Primer (Reverse)

C23S 5’-/5Phos/GCA GGG GAC GCG GTG ATG 
TAC -3’

5’-/5Phos/CCC CTC AGG AGA CTG TGA CTG 
CAG GGG C -3’

C38S 5’-/5Phos/GCC CTC CCA GCA TGG CAA -3’ 5’-/5Phos/GTC ACC TCC GCC TTG GAC TCA 
GT -3’

C151S 5’-/5Phos/TGA ACG GTG CTG TCA TGT 
ACC AGATC -3’

5’-/5Phos/TGA CGT GGA GGA CAG ACT TCT 
CGC -3’

C273S 5’-/5Phos/CCG AAC TTC CTG CAG ATG CAG 
CT -3’

5’-/5Phos/CGT CAA CGA GTG GGA GCG CAC 
G -3’

C288S 5’-/5Phos/GTC CGA CTC CCG CTG CAA 
GGA CT -3’

5’-/5Phos/TGC AGG ATC TCG GAC TTC TGC 
AGC T -3’

C396S 5’-/5Phos/GAC CAA TCA GTG GTC GCC 
CTG -3’

5’-/5Phos/ATG GGG TTG TAA GAG TCC AGG 
GC -3’

C405S 5’-/5Phos/CGT GCC CCGTAA CCG CAT CG 
-3’

5’-/5Phos/CTC ATG GGG GCG CTG GGC G -3’

K39R 5’-/5Phos/GCC CTC CCA GCA TGG CAA -3’ 5’-/5Phos/GTC ACC TCC GCC CTG CAC TCA 
GT -3’

K39M 5’-/5Phos/GCC CTC CCA GCA TGG CAA -3’ 5’- GTC ACC TCC GCC ATG CAC TCA GT -3’

C38S/K39M 5’-/5Phos/GCC CTC CCA GCA TGG CAA -3’ 5’- GTC ACC TCC GCC ATG GAC TCA GT -3’

K150M 5’-/5Phos/TGA ACG GTG CTG TCA TGT 
ACC AGA TC -3’

5’- TGA CGT GGA GGA CAC ACA TCT CGC 
C -3’

R6A 5’- GCA GCC AGA TCC CGC GCC TAG CGG 
GGC TG -3’

5’- CAG CCC CGC TAG GCG CGG GAT CTG 
GCT GC -3’

R15A 5’- GGG CCT GCT GCG CAT TCC TGC CCC 
TGC A -3’

5’- TGC AGG GGC AGG AAT GCG CAG CAG 
GCC C -3’

R50A 5’- CTC CCA GCA TGG CAA CGC CAC CTT 
CAG CTA CAC -3’

5’- GTG TAG CTG AAG GTG GCG TTG CCA 
TGC TGG GAG -3’

Bollong et al. Page 28

Nature. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mutation Primer (Forward) Primer (Reverse)

R135A 5’- CCC A AG GTC ATG GAG GCC CTC ATT 
GAA TTC GCCT-3’

5’- AGG CGA ATT CAA TGA GGG CCT CCA 
TGA CCT TGG G -3’

Extended Data Table 2.

Acquisition parameters used for targeted metabolomic measurements on a triple quadrupole 

mass spectrometer. Glucose 6-phosphate, G6P; Fructose 1, 6-bisphosphate, FBP; 

Glyceraldehyde-3-phosphate, GAP; 1,3- or 2,3-Bisphosphoglycerate, BPG; 2- or 3-

Phosphoglycerate, 2/3-PG; Phosphoenolpyruvate, PEP; Lactate, Lac; Ribose-5-phosphate, 

R5P; Glutathione, GSH; Glutathione disulfide, GSSG; Succinate, Succ; Glutamate, Glu; 

Citrate, Cit; Nicotinamide adenine dinucleotide, NAD+; Nicotinamide adenine dinucleotide 

(reduced), NADH; Nicotinamide adenine dinucleotide phosphate, NADP+; Nicotinamide 

adenine dinucleotide phosphate (reduced), NADPH; Adenosine triphosphate, ATP; 

Adenosine diphosphate, ADP; 3-Phosphoglyceroyl hydroxamic acid, 3PGha (derivatization 

product of 1,3-BPG); 2-Methylquinoxaline, 2MQ (derivatization product of MGx). D3-

Serine is an isotopically labeled serine standard included in all runs as an internal 

normalization control.

Metabolite Precursor
mass

MSI
Resolution

Product
ion

MS 2
Resolution

Dwell Fragmentor Collision
Energy

Polarity Retention
time (min)

Glucose 179.05 Wide 89.2 Unit 5 68 12 Neg 12.2

G6P 258.9 Wide 138.9 Unit 100 100 5 Neg 22.3

FBP 339.1 Wide 96.9 Unit 100 100 20 Neg 26.8

GAP 169 Wide 96.9 Unit 100 100 5 Neg 22.1

BPG 264.9 Wide 96.9 Unit 5 86 21 Neg 30.9

2/3-PG 184.98 Wide 78.9 Unit 5 86 21 Neg 24.6

PEP 166.97 Wide 79 Unit 5 78 9 Neg 25.4

Pyruvate 87.1 Wide 43 Unit 100 100 10 Neg 14.8

Lac 89.1 Wide 43 Unit 100 100 20 Neg 13.5

D3-Serine 107.05 Wide 75.1 Unit 5 18 9 Neg 13.9

R5P 228.7 Wide 78.8 Unit 100 100 35 Neg 19.9

Serine 104.2 Wide 73.8 Unit 5 100 5 Neg 13.9

GSH 305.7 Wide 143.0 Unit 100 100 15 Neg 16.7

GSSG 610.7 Wide 305.9 Unit 100 100 15 Neg 20.5

Succ 117 Wide 73.1 Unit 100 100 5 Neg 18.8

Glu 146.1 Wide 102.1 Unit 100 100 5 Neg 15.9

Cit 191 Wide 111 Unit 5 100 5 Neg 24.4

NAD+ 662.1 Wide 540 Unit 100 100 15 Neg 16.1

NADH 663.4 Wide 407.9 Unit 100 100 35 Neg 16.1

NADP+ 742 Wide 619.9 Unit 100 100 25 Neg 24.1

NADPH 743.5 Wide 407.8 Unit 100 100 25 Neg 24.1

ATP 506 Wide 159 Unit 100 100 25 Neg 27.5

ADP 425.8 Wide 134 Unit 100 100 15 Neg 26.5
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Metabolite Precursor
mass

MSI
Resolution

Product
ion

MS 2
Resolution

Dwell Fragmentor Collision
Energy

Polarity Retention
time (min)

3PGha 199.98 Wide 199.98 Unit 5 116 0 Neg 22.4

3PGha 199.98 Wide 79 Unit 5 116 15 Neg 22.4

2MO 145.1 Wide 77.1 Unit 5 100 24 Pos 8.5

2MO 145.1 Wide 92.1 Unit 5 100 20 Pos 8.5

D3-Serine 109.07 Wide 63.1 Unit 5 40 12 Pos 4.3

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1|. CBR-470-series compounds activate NRF2 signaling in vitro and in vivo.
a, Structure of CBR-470-1. b, NRF2 protein levels from IMR32 cells treated with the 

indicated concentrations of CBR-470-1 for 4 hours (top) or 5 μM CBR-470-1 for the 

indicated time periods (bottom). Blots are representative of 3 independent experiments. c, 
GSEA enrichment plot depicting the enrichment of a NRF2 target gene set 

(“Singh_NFE2L2_Targets” in MSigDB) from IMR32 cells treated for 24 hours with 5 μM 

CBR-470-1 (n=3, P < 0.0001, nom. p-value in GSEA). d, Heat map representation of the 

leading-edge subset of the most upregulated NRF2-regulated transcripts upon CBR-470-1 

treatment. Data are biologically independent samples. e, Relative Nqo1 and Hmox1 
transcript levels 24 hr after indicated P.O. doses of CBR-470-2 (n=6, biologically 

independent samples). f, Quantification of wounded area by automated image analysis from 

animals of the indicated treatment groups at study end (day 10). g, Quantification of 

epidermal thickness from H&E stained sections from the indicated groups at study end. h, 
Representative images of H&E stained skin sections from animals sacrificed at day 10 of the 

study. CBR-470-2, 50 mg/kg BID PO; BARD, bardoxolone methyl, 3mg/kg BID PO; UV, 

200 mJ/cm2; data are mean and s.e.m., n=8 animals. Statistical analyses are one-way 

ANOVA with Dunnett’s correction (e-g). Data are mean and s.e.m.
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Fig. 2.|. CBR-470-1-dependent inhibition of glycolysis activates NRF2 signaling.
a, Anti-biotin Western blot analysis of IMR32 cells treated with CBR-470-PAP (10 μM) for 

one hour and exposed to UV light to induce photocrosslinking (representative shown from n 
= 4 biological replicates). b, Transient transfection of shRNA constructs targeting PGK1 in 

HEK293T cells activates the ARE-LUC reporter. PGK1 and β-actin protein levels shown 

from representative experiments (n=4 biological replicates). c, Viral shRNA knockdown of 

PGK1 induces NQO1 mRNA levels in IMR32 cells. PGK1 and Tubulin protein levels are 

shown from representative experiments (n=3). d,e, CBR-470-1 activation of ARE-LUC 

reporter in HEK293T cells with transient knockdown (d) or overexpression (e) of PGK1 
demonstrates opposing effects on compound potency. PGK1, Actin and Tubulin protein 

levels are shown from representative experiments (n=3). f, Heat map depiction of relative 

metabolite levels in IMR32 cells treated for 30 min with CBR-470-1 (left) or viral shRNA 

knockdown of PGK1 (right) relative to DMSO and scramble shRNA controls, respectively. 

BPG refers to both 2,3-BPG and 1,3-BPG, whereas 1,3-BPG specifically refers to the 1,3-

isomer. g, ARE-LUC reporter activity in IMR32 cells co-treated with CBR-470-1 (5 μM) 

and 2DG for 24 hr. (n=12). Statistical analyses are univariate two-sided t-tests (b, c, g). Data 

are mean and s.d. of biologically independent samples.

Bollong et al. Page 34

Nature. Author manuscript; available in PMC 2019 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3.|. Methylglyoxal modifies KEAP1 to form a covalent, high molecular weight dimer and 
activate NRF2 signaling.
a, Time-course, anti-FLAG Western blot analysis of whole cell lysates from HEK293T cells 

expressing FLAG-KEAP1 treated with DMSO or CBR-470-1. b, Western blot monitoring of 

FLAG-KEAP1 migration in HEK293T lysates after incubation with central glycolytic 

metabolites in vitro (1 and 5 mM, left and right for each metabolite). c, FLAG-KEAP1 (red) 

and β-actin (green) from HEK293T cells treated with MGx (5 mM) for 8 hr. d, Relative 

NQO1 and HMOX1 mRNA levels in IMR32 cells treated with MGx (1 mM) or water 

control (n=3). e, LC-MS/MS quantitation of cellular MGx levels in IMR32 cells treated with 

CBR-470-1 relative to DMSO (n=4). f, ARE-LUC reporter activity in HEK293T cells with 

transient shRNA knockdown of GLO1 (n=8). Univariate two-sided t-test (d, f); data are 

mean ± SEM of biologically independent samples.
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Fig. 4.|. Methylglyoxal forms a novel posttranslational modification between proximal cysteine 
and arginine residues in KEAP1.
a, Quantified HMW-KEAP1 formation of wild-type or mutant FLAG-KEAP1 from 

HEK293T cells treated with DMSO or CBR-470-1 for 8 hr (n=23 for WT; n=16 for R15A; 

n=13 for C151S; n=7 for K39R, R135A; n=4 for R6A, R50A, all other C-to-S mutations, 

and R15/135A & C151S triple-mutant; n=3 for R15/135A, and all K-to-M mutations). b, 
Schematic of the model peptide screen for intramolecular modifications formed by MGx and 

nucleophilic residues. c, Total ion- (TIC) and extracted ion chromatograms (EIC) from 

MGx- and mock-treated peptide, with a new peak in the former condition marked with an 

asterisk. EICs are specific to the indicated m/z. (n=3 independent biological replicates). d, 
1H-NMR spectra of the unmodified (top) and MICA-modified (bottom) model peptide, with 

pertinent protons highlighted in each. Notable changes in the MICA-modified spectrum 

include the appearance of a singlet at 2.04 p.p.m. (allyl methyl in MICA), loss of the thiol 

proton at 2.43 p.p.m., and changes in chemical shift and splitting pattern of the cysteine beta 

protons and the arginine delta and epsilon protons. Full spectra and additional 

multidimensional NMR spectra can be found in Extended Data Fig. 7. e, EIC from LC-

MS/MS analyses of gel-isolated and digested HMW-KEAP1 (CBR-470-1 and MGx-

induced) and monomeric KEAP1 for the C151-R135 crosslinked peptide. Slight retention 

time variation was observed on commercial columns (n=3 independent biological 

replicates). f, PRM chromatograms for the parent and six parent-to-daughter transitions in 

representative targeted proteomic runs from HMW-KEAP1 and monomeric digests (n=6). g, 
Schematic depicting the direct communication between glucose metabolism and KEAP1-

NRF2 signaling mediated by MGx modification of KEAP1 and subsequent activation of the 
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NRF2 transcriptional program. Univariate two-sided t-test (a); data are mean ± SEM of 

biologically independent samples.
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