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ABSTRACT
Human gut microbiome structure and emergent metabolic outputs impact health outcomes. 
However, what drives such community characteristics remains underexplored. Here, we rely on 
high throughput genomic reconstruction modeling, to infer the metabolic attributes and nutri-
tional requirements of 816 gut strains, via a framework termed GEMNAST. This has been performed 
in terms of a group of human vitamins to examine the role vitamin exchanges have at different 
levels of community organization. We find that only 91 strains can satisfy their vitamin requirements 
(prototrophs) while the rest show various degrees of auxotrophy/specialization, highlighting their 
dependence on external sources, such as other members of the microbial community. Further, 79% 
of the strains in our sample were mapped to 11 distinct vitamin requirement profiles with low 
phylogenetic consistency. Yet, we find that human gut microbial community enterotype indicators 
display marked metabolic differences. Prevotella strains display a metabolic profile that can be 
complemented by strains from other genera often associated with the Prevotella enterotype and 
agrarian diets, while Bacteroides strains occupy a prototrophic profile. Finally, we identify pre- 
defined interaction modules (IMs) of gut species from human and mice predicted to be driven 
by, or highly independent of vitamin exchanges. Our analysis provides mechanistic grounding to 
gut microbiome stability and to co-abundance-based observations, a fundamental step toward 
understanding emergent processes that influence health outcomes. Further, our work opens a path 
to future explorations in the field through applications of GEMNAST to additional nutritional 
dimensions.
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Background

The collective of self-organized microbes living in 
the human gut give rise to biological processes that 
modulate non-communicable disease (NCD) 
etiology.1–5 Gut strains adapt to the gut environment 
based on the metabolic attributes encoded in their 
genome. Molecules central to cell metabolism are 
considered essential nutrients when they must be 
provided by the environment. However, specific 
metabolic attributes allow strains the option of 
synthesizing such molecules when unavailable 
(optional nutrients). Such characteristics lead to the 
establishment of nutritional and bioenergetic 
exchanges between sets of strains with

complementary metabolic attributes, resulting in 
the emergence of higher scales of community orga-
nization (higher order units). It is now understood 
that the microbial processes that influence human 
biology cannot be effectively explained by individual 
strains, but rather the resulting higher order units.6–8 

These may take the form of specific co-abundance or 
interaction modules (IMs),6–8 or reflect broader 
aspects of microbial community assembly observed 
across human populations (such as community 
types or enterotypes)9,10 which likely represent dif-
ferential nutritional and bioenergetic signatures.11 

Although the mechanisms through which resources 
are exchanged have been described,12,13 and these
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can be readily related to genome evolution,14 the 
higher-order processes constraining emergent struc-
tures are yet to be defined, partially due to the 
inherent complexity within the community.

Metabolite-driven interactions in bacterial com-
munities have been extensively documented and 
reviewed.15–17 Yet, microbial coenzymes constitute 
an underexplored aspect of the gut environment 
that has recently been gaining momentum, parti-
cularly those also categorized as human 
vitamins.18–22 Vitamins have well-characterized 
biosynthetic and acquisition pathways,21 and con-
stitute essential20,22 and optional nutrients23,24 for 
gut commensals. Previous observations report vita-
min-restricted diet/media had nearly no impact in 
a community of gut auxotrophic species relative 
abundance.25 Recent evidence suggest that colon- 
targeted vitamin supplementation can alter micro-
bial alpha diversity.26 Further, vitamin auxotrophy 
has been identified as a driver of co-dependence 
and cooperation in a synthetic microbial 
community.12 Similar dynamics have been pro-
posed around bacterial quinones, which encompass 
menaquinones (vitamin K2) and ubiquinones.27,28 

Together, these characteristics strongly suggest that 
cofactor-driven microbial interactions are intrinsic 
to higher order units in the gut microbiome.

In addressing gut microbiome complexity, we 
adopt a constructive approach by focussing on the 
cofactor nutritional dimension and individual gut 
strains, to then infer how their metabolic attributes 
can influence higher order agent assembly. 
Targeting a group of well-characterized families of 
cofactors, we aimed to relate metabolic attributes 
(optional) and nutritional requirements (essential) 
of individual gut strains to gut community structure. 
Given the emerging interest and its structural rela-
tionship to menaquinones (vitamin K2), we include 
ubiquinone 8 (CoQ8) in the quinones family. Note 
that for simplicity we use the term vitamin to refer to 
every family of explored compounds even though 
some are not human vitamins (for example, CoQ8). 
We explore an assembly of 816 genome scale models 
(GSMs), part of AGORA (assembly of gut organisms 
through reconstruction analysis),29 which have been 
used to accurately predict metabolomics-based out-
comes previously.29–32 GSMs are computational 
reconstructions of individual genomes that allow

modeling of the metabolic attributes encoded33 

while accounting for the metabolic network within 
the cell as a whole, where metabolic modules con-
verge and communicate, influencing functional 
outcomes.34,35 This reveals what is truly metaboli-
cally feasible, as phenotype cannot be determined by 
presence/absence of specific genes or pathways 
alone.22 Modeling of GSMs allows fine tuning of 
growth media, inspection of fluxes and cellular 
inputs and outputs, and strain growth in terms of 
biomass generation enabling the assessment of the 
effect of the environment over functional properties. 
In doing so, GSM modeling can reveal what consti-
tutes essential and optional nutrients for a strain 
under specific environmental conditions.

To comprehensively infer the metabolic traits of 
816 AGORA strains we relied on our recently 
developed high throughput GSM modeling pipe-
line, GEMNAST (Genome Scale Model based 
Metabolic and Nutritional Assessment), based on 
COBRApy,36 capable of assessing GSM metabolism 
in a comprehensive range of nutritional environ-
ments. Based on our initial results, we explore how 
vitamin metabolic attributes and nutritional 
requirements of individual gut strains influence 
higher order unit structure, including those linked 
to human gut community assembly (enterotypes). 
This analysis represents a novel approach through 
which our ecological understanding of gut micro-
bial community structures is enhanced.

Results

Exhaustive assessment of the vitamin auxotrophy 
spectrum among gut bacteria

Higher order units in the gut emerge from indivi-
dual strains interacting with each other and their 
environment. To determine what drives higher 
order units within the vitamin nutritional dimen-
sion comprehensive characterization of the meta-
bolic attributes and nutritional requirements of 
a representative sample of gut strains was required. 
Hence, we aimed to identify which of the eight 
vitamin families (vitamins from here onwards) in 
Table 1 constitutes essential (required), optional 
(synthesizable under the right environment) and 
non-nutrient (neither) vitamins for 816 AGORA
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strains. To do this, we modeled strain growth under 
a range of standardized environmental conditions 
derived from nutritionally rich, anaerobic, univer-
sally defined growth media (UDM, Methods) which 
contained the elements required for de novo bio-
synthesis of the vitamins in question.

To determine essential vitamins for 816 AGORA 
strains, GEMNAST recreated 256 in silico growth 
media formulations wherein vitamin-free univer-
sally defined medium (VFM) was supplemented 
with all combinations of presence/absence of the 
explored vitamins (Figure 1a). This ensured that 
the only limiting nutrients in the media were one 
or more of such families. Growth feasibility in 
a total of 208,896 in silico monocultures (256 per 
strain) was assessed by modeling strains’ whole 
metabolic network. As initial validation of our find-
ings, we sought evidence of published in vitro vita-
min requirements data. Soto-Martin et al. 
examined B vitamins requirements in vitro for 
eight of the strains in AGORA, among other.22 

Based on the optical density (OD) readings pro-
vided by Soto-Martin et al. where strains achieved 
optimal or no growth in vitamin restricted media 
(Methods) we found that 79.2% of our predictions 
match in vitro outcomes (Additional file 1). Due to 
GEMNAST’s Boolean approach, eight in vitro cul-
tures were considered inconclusive as sub-optimal 
growth of strains was reported (Methods).

Our essential vitamin assessment predicted 
vitamin dependence was widespread (Additional 
file 2). A majority of the strains (55%) presented 
more than two essential vitamins to grow above 
our predetermined threshold (0.09 gDW/h, 
Methods), while 126 strains (15.4% of our sam-
ple) had one essential vitamin. This demon-
strates that even for a small set of vitamins, 
over 70% of strains in our dataset require at 
least two to be sourced from the environment 
(Figure 1c). B1 was identified as the most com-
mon essential vitamin as a total of 506 strains 
required it to be externally sourced (Figure 1d). 
The second and third most requisite vitamins 
were B2 and K, which were essential for 390 
and 375 strains, respectively. In contrast, B12 
was not essential in these growth conditions.

To complement our essential vitamins assess-
ment, we aimed to identify optional vitamins for 
the strains in our sample. Identifying which 
AGORA strains are capable of synthesizing vita-
mins that are essential for others is necessary to 
reveal potential interactions in the gut where 
one strain sources the molecule to another. 
Further, complete biosynthetic pathways do not 
always determine phenotype; reconciling cellu-
lar-level metabolism and nutritional context is 
required. Hence, to further characterize 
AGORA strains’ vitamin metabolic attributes

Table 1. Biologically active vitamin forms and analogues that can be transported through the cell membrane and that play a role in 
AGORA GSMs’ metabolism were selected, then grouped by family for our analysis.37 Vitamin precursors that form part of UDM from 
which active forms can be synthesized are shown under the “Precursors in media” column. *In this study the abbreviation ‘K’ refers to 
menaquinones (vitamin K2) as well as the ubiquinone 8 (coenzyme Q), but excludes phylloquinone (vitamin K1).

Vitamins and analogues Precursors in media Family Role in bacteria metabolism

Thiamine, thiamine monophosphate, thiamine 
pyrophosphate

Thiazole, cysteine, tyrosine, 
ribose

Thiamine 
(B1)

Tricarboxylic acid cycle dependent physiology

Riboflavin, reduced riboflavin, flavin adenine 
dinucleotide, flavin mononucleotide

Guanosine triphosphate, 
ribose

Riboflavin 
(B2)

Coenzymes associated with flavoproteins mainly involved in 
oxidative metabolism

Nicotinic acid, niacinamide, nicotinamide 
ribotide, nicotinamide adenine dinucleotide

Tryptophan Niacin (B3) Precursor for NAD⁺ and NADP⁺ (hydrogen transfer)

Pantothenic acid Valine, alanine, methyl- 
oxovaleric acid, 
formaldehyde

Pantothenic 
acid (B5)

Precursor for Coenzyme A (acyl group carrier) involved in 
fatty acid metabolism and cell membrane integrity

Pyridoxine, pyridoxal, pyridoxamine, pyridoxal 
5-phosphate

Glutamine, ribose Pyridoxine 
(B6)

Coenzyme involved in transamination/deamination reactions

Folic acid, tetrahydrofolic acid, 
5-methyltetrahydrofolate

pABA, glutamate Folates (B9) DNA replication and methylation (single-carbon metabolism)

Cobalamin I, cobalamin II, adenosylcobalamin Methionine, cobalt, glycine, 
CoA

Cobalamins 
(B12)

Methionine and nucleotide synthesis

Menaquionine-7, menaquionine-8, 
demethylmenaquinone-8, ubiquinone-8

Chorismate Quinones (K) 
*

Cell membrane electron flow and oxidative stress regulation
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Figure 1. Graphic representation of our essential vitamins assessment (panel a) and optional vitamins assessment (panel b) 
experimental designs. Results of both assessments for 816 AGORA GSMs and eight vitamin families are summarized in panel 
d. Both utilize UDM (rich, anaerobic media), where all the 816 strains can grow as base media. a) Three hypothetical strains are 
modeled in four growth media formulations, the result of every combination of presence/absence of two vitamins (B1 and B2), which 
are added to vitamin-free UDM (VFM). Extrinsic vitamin requirements for the three strains are determined based on their individual 
growth profiles. b) The same three hypothetical strains are modeled in three growth media formulations, UDM missing a single vitamin 
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and properly discriminate optional vitamins 
from non-nutrients, GEMNAST modeled eight 
media formulations, each lacking a single vita-
min family from our selection (Figure 1b). In 
total 6,528 in silico monocultures were per-
formed. Here, we assessed a strain’s capability 
to grow and synthesize the vitamin missing from 
UDM (UDM – 1). Results revealed that vitamin 
biosynthesis is widely spread among the tested 
strains (Figure 1c, Additional file 2). We found 
that B12 is the most common optional vitamin 
in the tested growth conditions, with 600 strains 
being capable of synthesizing it while growing 
above our predetermined threshold (0.09 gDW/ 
h); it was closely followed by B6 (optional 
for 583).

Coherently, we find that no vitamin was identified 
as both essential and optional for a given strain 
(Figure 1d). Combining our assessments of essential 
and optional vitamins notably reveals that B1, B5, 
B9, B12 and/or K are non-nutrients for a portion of 
strains in our sample (Figure 1d). Thus, biosynthetic 
pathway presence/absence is not sufficient to inde-
pendently predict a vitamin metabolic attributes. 
The studied strains presented on average three 
essential and four optional vitamins for the tested 
growth conditions (Additional file 2).

To better understand the mechanisms med-
iating vitamin interactions we explored vitamin 
active export capabilities with GEMNAST. We 
found that, besides niacin, which was actively 
exported by 430 strains, export of synthesized 
(optional) vitamins is a rare occurrence within 
strains in our dataset (Additional file 3). This 
may imply that these molecules are not actively 
made available to other gut microbes, and are 
mainly passively exchanged; for example, vita-
min transfer after cell lysis.13,38 However, it is 
also plausible that specific mechanisms for vita-
min cross-feeding are yet to be described and 
therefore not represented within the AGORA

framework. Overall, our findings suggest that 
gut strains present broadly complementary vita-
min metabolic attributes and that passive/active 
inter-strain vitamin exchanges can occur in the 
gut microbiome, which can enable the emer-
gence of higher order units.

The microbial vitamin auxotrophy spectrum is 
occupied by discrete vitamin capability groupings

Interpreting microbiomes in functional terms 
can greatly aid in understanding the gut eco-
system. Across the surveyed strains, we identi-
fied 84 different essential vitamin profiles, plus 
a group of 91 strains with no essential vitamins 
in the tested nutritional conditions (proto-
trophs). Meanwhile, 138 optional vitamin pro-
files were identified among the 816 strains 
assessed. Such findings revealed significant 
overlap among strains’ vitamin metabolic attri-
butes (functional redundancy). Hence, we 
sought to explore the distribution of strains in 
the auxotrophy spectrum aiming to identify 
broad vitamin capability groups that could 
improve our ability to parse vitamin-based 
functional complementarity and community 
structure. Accordingly, we performed hierarch-
ical agglomerative clustering followed by non- 
linear two-dimensional clustering (Additional 
file 4), which revealed discrete groupings in 
our dataset.

Informed by the above mentioned clustering 
approaches and following careful manual inspec-
tion, final capability groups were devised. In total, 
79% (644 out of 816) of the stains in our sample 
were mapped to one of eleven vitamin capability 
groups, which were distributed along the auxotro-
phy to prototrophy spectrum (Figure 2). The addi-
tional 21% of strains in our sample presented 
vitamin requirements that were incompatible with 
capability groups patterns. Notably, we find that

(UDM – 1): B1, B2 or B3; if a strain is capable of growing in any of the given media its metabolic network is surveyed in search for the 
vitamin that was removed from UDM. If such family is identified, it is determined that the strain in question can synthesize it. *Strain 2 
is capable of growing in UDM without B3 but does not synthesize B3 meaning that the vitamin is not required for strain 2 to grow and 
that strain 2 cannot synthesize it (non-nutrient). c) Pie charts with percentages of strains that presented a given number of essential 
and optional vitamins. d) Combined results from the analyses described in A and B. Vitamins were identified as either essential 
(“Require”), optional (“Synthesises”) or non-nutrients (“None”, when vitamins were not identified as essential nor optional) for the 
assessed AGORA strains.
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Figure 2. Essential and optional vitamins of the 644 strains mapped to a vitamin capability group. Each row represents a unique strain. 
Strain names are omitted for readability purposes (Refer to Additional file 2 for strain-specific details). The first column shows strain 
phyla by color. The second column details vitamins that are required from the environment (essential). The third column shows 
vitamins that strains can synthesize (optional). Contrast between both columns reveals groups of strains that do not require, nor 
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strains from the Bacteroidetes phylum were largely 
mapped to more prototrophic capability groups 
while highly auxotrophic capability groups are 
characterized by strictly anaerobic members of the 
Firmicutes phylum (Figure 2, Additional file 2). 
Figure 2 shows that vitamin capability groups, 
based on essential vitamin profiles, also present 
similar optional vitamin profiles. This suggests 
that such strains likely occupy similar niches within 
gut communities where evolutionary pressures led 
to the loss, or conservation, of biosynthetic path-
ways to guarantee survival/improve fitness.39 Based 
on group-level vitamin metabolic attributes, the

Prototrophs group is the only one where strains 
can self-satisfy all their vitamin requirements 
and can further serve as a B2, B3, B5, B6, and/ 
or B9 source for more environmentally depen-
dent clusters (Figure 2). Meanwhile, other 
groups require external vitamin sources. For 
example, strains in group B2+ require B2, and 
most require B1, to be sourced by the environ-
ment. However, such strains are well positioned 
to source those from other groups with B3, B6, 
and/or B9 (Figure 2). Thus, broad complemen-
tary profiles can be observed at the vitamin 
capability group-level.

synthesize specific vitamins (non-nutrient). Strains are grouped by “Vitamin Capability Groups”, based on essential vitamin profiles. 
Capability groups are named based on common requirements: A plus (+) sign next to a functional group name indicates strains in that 
vitamin capability group require one to three extra vitamins (other than the one(s) already indicated in the name); a double plus (++) 
indicates strains in the group require more than three extra vitamins from the environment. Colors assigned to vitamin capability 
groups range from dark green to dark red based on their location in the prototrophic to auxotrophy spectrum, respectively. Additional 
characteristics of each group are also provided (“Additional Information”). Right-most column displays 1) *Number of observed 
vitamins required from the environment (mode) 2) ^Detected vitamins synthesized (average) 3) Number of strains by vitamin 
capability group.

Prevotella

Bacteroides

Figure 3. Phylogenetic tree of AGORA gut strains.29,40 Strain names are highlighted to clade level with the color that corresponds to the 
vitamin capability group they were mapped to; strains in white were not assigned to any vitamin capability groups. Colors assigned to 
vitamin capability groups range from dark green to dark red based on their location in the prototrophic to auxotrophy spectrum, 
respectively. Two independent trees including strains from the Bacteroides and Prevotella genera from our analysis show an important 
difference in terms of vitamin capability group membership.
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Vitamin capability groups reveal marked differences 
between enterotype indicative taxa

To identify if previously observed patterns of com-
munity structure (such as enterotypes) are related 
to our functional categorization (vitamin capability 
groups), we aimed to assess the extent to which 
vitamin metabolic attributes are evolutionarily con-
served. A phylogenetic tree, including 806 strains 
from our sample, was built using the National 
Center for Biotechnology Information’s (NCBI) 
Taxonomy Browser40 (Figure 3). Strains mapped 
to vitamin capability groups were identified within 
this tree revealing that while there is an observable 
consistency at the clade level, there is not 
a consistent evolutionary level of conservation of 
vitamin metabolic attributes. For example, the 
Prototrophs functional group was composed of 
strains from various genera, including 
Streptococcus, Bacillus, Bacteroides, Escherichia, 
and Pseudomonas. On the other hand, strains 
within the same genus were often split into differ-
ent capability groups: for example, members of the 
Blautia genus were mapped to the Prototrophs 
(Blautia hansenii DSM 20583), B1 (Blautia obeum 
ATCC 29174), and B6+ (Blautia hydrogenotrophica 
DSM 10507) capability groups. Interestingly, 
strains from the Prevotella and Bacteroides genera, 
which are often identified as keystone taxa defining 
differential microbial community assemblages or 
“enterotypes” in the human gut,10 were largely 
mapped to different vitamin capability groups. 
Out of the 44 Bacteroides strains in our analysis, 
36 were identified as prototrophs, while five were 
mapped to K+, a highly prototrophic group. 
Meanwhile, Prevotella strains were mostly mapped 
to the B5+ group (17 out of 29) while the rest were 
spread among five other vitamin capability groups 
(Figure 3), most of which displayed a high number 
of essential and a low number of optional vitamins.

Our mapping of vitamin capability groups onto 
enterotype indicators raises the possibility that 
these may reflect processes that drive community 
structure. The marked contrast between the vita-
min capability groups to which enterotype domi-
nant taxa were mapped led us to further explore the 
metabolic attributes of Prevotella strains, aiming to

pinpoint how such attributes may impact commu-
nity structure. Inspection of our vitamin metabolic 
attributes data (Additional file 2) showed that 
members of Streptococcus, Enterococcus, and 
Lachnospiraceae, which have been associated with 
the Prevotella enterotype in a prominent study,10 

present metabolic profiles that complement those 
of the assessed Prevotella strains. Members of the 
Lactobacillaceae and Ruminoccoccaceae families 
were also found to be suitable complements to 
Prevotella vitamin metabolic attributes. For 
instance, Prevotella brevis ATCC 19188 can synthe-
size B2, B3, B5, B6, and B9 but requires a source of 
B1 and K, which can be provided by Lactobacillus 
pentosus KCA1 or Lactobacillus johnsonii DPC 
6026, while both Lactobacillus strains require the 
vitamins Prevotella brevis ATCC 19188 can synthe-
size. Interestingly, there was no complementarity 
between Prevotella strains and members of the 
Bacteroides, Anerostipes, Parabacteroides, Alistipes 
genera or the Enterobacteriaceae family, all of 
which have been associated with the Bacteroides 
enterotype.10,41,42

Vitamin dependent/independent IMs emerge from 
member strains’ metabolic attributes

Intermediate degrees of organization, what we refer 
to as IMs, can occur between the cellular and 
whole-community levels, and these have also been 
associated with health outcomes.6–8 Hence, relying 
on the vitamin attributes we inferred using 
GEMNAST we tested vitamin exchanges’ potential 
contribution to inferred local networks (IMs). First, 
we aimed to identify co-abundance/co-occurrence 
derived IMs43 that were composed of five or more 
members and where at least 50% of members could 
be matched to one of the strains in our analysis, as 
specified in Methods. Reliable reports of IMs at the 
strain level could not be identified, hence we relied 
on species-level IMs reported by Wang et al.44 and 
Zhang et al.45 which encompass prevalent mice and 
human gut bacteria, respectively. Strains in our 
sample were mapped to corresponding species 
within the reported IMs. Zhang et al. sampled the 
gut microbiome of 19 children with Prader-Willi 
Syndrome and 21 children with simple obesity at
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four and two timepoints, respectively, and assessed 
abundance changes longitudinally (co-abundance). 
Eighteen prevalent IMs (termed Genome 
Interaction Groups, GIGs) were identified, four of 
which met our analysis criteria. Wang et al. 
assessed 101 healthy mice stool samples and iden-
tified five IMs (labeled C1 to C5) based on co- 
occurrence, with three (C1-C3) meeting our analy-
sis criteria (Methods).

Vitamin complementarity networks were built 
from individual vitamin profiles from strains 
mapped to an IM and we identified two networks 
with particular characteristics among the modules 
that fit our criteria. First, the Bacteroides dominated 
GIG7, for which 13 AGORA strains were mapped, 
was largely enacted by vitamin prototrophs and 
three additional strains with a low number of essen-
tial vitamins (Table 2). This suggests that IMs that

Table 2. Vitamin complementarity network, functional redundancy score 
and percentage of prototrophs of GIG 7 as reported by Zhang et al. are 
shown. Original species have been mapped to corresponding AGORA 
strains, with 13 of the original 15 in the module mapped. Metabolic 
attributes (green for essential, red for optional) are shown under the 
corresponding vitamin.

Strains B1 B2 B3 B5 B6 B9 K
Bacteroides xylanisolvens  SD CC 1b
Bacteroides thetaiotaomicron  VPI 5482
Bacteroides xylanisolvens  XB1A
Parabacteroides distasonis  ATCC 8503
Bacteroides ovatus  ATCC 8483
Bacteroides  sp. 1 1 14
Bacteroides dorei  DSM 17855
Bacteroides  sp. 1 1 6
Bacteroides vulgatus  ATCC 8482
Bacteroides fragilis  NCTC 9343
Phascolarctobacterium succinatutens  YIT 12067
Lachnospiraceae bacterium  sp. 5 1 63FAA
Clostridium ramosum  VPI 0427 DSM 1402
Functional redundancy score: 0.76
Percentage of Prototrophs: 76.9%

Table 3. Vitamin complementarity network, functional redundancy score and percen-
tage of prototrophs of group C2 as reported by Wang et al. are shown. Original species 
have been mapped to corresponding AGORA strains, with six of the original eight in the 
module mapped. Metabolic attributes (green for essential, red for optional and white for 
non-nutrient) are shown under the corresponding vitamin.

Strains B1 B2 B3 B5 B6 B9 K

Bifidobacterium pseudocatenulatum  DSM 20438
Bifidobacterium pseudolongum  subsp Pseudolongum  DSM 20099
Olsenella profusa  F019501
Lactobacillus animalis  KCTC 3501
Lactobacillus johnsonii  NCC 533
Parasutterella excrementihominis  YIT 11859

Parabacteroides merdae  ATCC 43184
Flavonifractor plautii  ATCC 29863
Clostridium hathewayi  DSM 13479
Blautia producta  DSM 2950
Blautia wexlerae  DSM 19850

Group C2

Functional redundancy score: 0.24
Percentage of Prototrophs: 0%

Group C3

Functional redundancy score: 0.40
Percentage of Prototrophs: 20%
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are independent of vitamin exchanges can occur in 
the gut microbiome.

A second IM that presented a distinctive config-
uration was C2, where strains displayed metabolic 
complementarity in their vitamin profiles (Table 3), 
leading us to hypothesize that vitamin interdepen-
dencies are driving such a module, where strains act 
as a codependent entity under vitamin limited con-
texts. The rest of IMs that fit our assessment criteria 
displayed vitamin complementarity networks

enacted by different proportions of prototrophs 
and strains with various degrees of auxotrophy. 
Data pertaining other IMs from Zhang et al. and 
Wang et al. can be found in Additional file 5 and 
Additional file 6, respectively. This analysis shows 
that a range of configurations in terms of vitamin 
complementarity can occur in the gut microbiome, 
ranging from organized vitamin complementarity 
to relative independence of vitamin-based 
exchanges.

Figure 4. Random pattern of vitamin network configuration based on percentage of prototrophs and average functional redundancy. 
Randomly generated strain groups clustered at a 0.3 to 0.7 functional redundancy score and 0% to 40% percentage of prototrophs 
region (blue). Outliers not shown. The observed patterns predicted for analyzed IMs (GIG7: cyan circle, C2: light green circle) fall outside 
of this range, suggesting the vitamin patterns we propose have a low probability of being a product of randomness. On the other hand, 
the rest of the assessed IMs (Orange circles) are located remarkedly close to the area where random pattern groups cluster, hinting that 
such network configurations are less likely to be ecologically meaningful. Following our observations we predict that higher order units 
driven by vitamin functional attributes would often present characteristics corresponding to the regions highlighted in green 
surrounding C2 and GIG7. We predict that higher order units with a complementary vitamin profile, such as C2, need to be free of 
prototrophs and present a very low functional redundancy. Meanwhile, higher order units where vitamin biosynthesis is not a keystone 
species attribute should present a vitamin profile with a high functional redundancy and a high percentage of prototrophic strains.
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To determine the likeliness of the observed com-
plementarity networks being ecologically meaning-
ful or products of randomness, we aimed to assess 
the random pattern of vitamin network configura-
tion at the IM-level. To do so, we generated 1000 
sets of nine randomly selected strains and analyzed 
the resulting group-level vitamin complementarity 
networks (Additional file 7). The number of strains 
in these groups was set to nine as this was the 
average size of the IMs reported in Zhang et al. 
and Wang et al. For our assessment, we focussed 
on two readily assessable characteristics of the 
resulting complementarity network: 1) functional 
redundancy score and 2) percentage of prototrophs. 
A total of 930 groups presented from zero to two 
prototrophs, while 958 presented a functional 
redundancy score between 0.3 and 0.7 (Figure 4). 
Most IMs that fit our assessment criteria were situ-
ated in close proximity to the region where random 
groups cluster (random pattern) suggesting that the 
vitamin complementarity networks derived from 
them are random and that these associations are 
mainly driven by factors outside of this nutritional 
dimension. In contrast, four outlier random groups 
presented a functional redundancy score of less than 
0.3 with 0% of prototrophic members, closely 
resembling C2. However, only one of the four dis-
played a complete complementary profile (comple-
mentarity at every vitamin). Similarly, one outlier 
random group displayed characteristics similar to 
GIG7, with a high percentage of prototrophs 
(55.5%), and a high functional redundancy score 
(0.86). These results suggest that the probability of 
GIG7 and C2 vitamin patterns being a result of 
randomness is close to 0.001%, highlighting that 
the vitamin profiles we observe in these IMs are 
ecologically meaningful. Based on these results, we 
predict that naturally occurring IMs strongly driven 
by, and independent of vitamin interactions exist by 
design in the gut microbiome and likely occupy 
similar regions in the prototroph percentage to 
functional redundancy plane as C2 and GIG7, 
respectively (Figure 4). Vitamin exchanges probably 
still occur within every analyzed IM depending on 
the nutritional context; however, other aspects of 
biology are more likely to be driving such groupings. 
Our analysis strongly suggests that vitamin meta-
bolic attributes influence IM structure in the gut

microbiome and provides novel insights of gut ecol-
ogy in this respect.

Discussion

Mechanistic drivers of higher order units in the gut 
microbiome, which are responsible for the biologi-
cal processes that impact health, can be identified 
by characterizing the metabolic attributes and 
nutritional requirements of gut strains. Vitamins 
participate in crucial intracellular metabolism but 
also constitute part of the extracellular machinery 
that contributes to community bioenergetic 
balance,11 positioning them as potential mechanis-
tic drivers of gut higher order units. Relying on 
GEMNAST, we have performed a metabolic 
exploration of the vitamin nutritional dimension 
of gut strain metabolism as represented in 
AGORA GSMs to determine the role of this aspect 
of strain metabolism in community structure. By 
applying our framework, we identify essential 
(must be provided by the environment) and 
optional (can be synthesized when not available) 
vitamins, and non-nutrients for 816 gut micro-
biome strains. Eleven vitamin capability groups 
that spread along an auxotrophy to prototrophy 
spectrum and exceed phylogenetic relatedness are 
then derived from such vitamin metabolic attri-
butes. Strains often present complementary vitamin 
attributes, which suggests that vitamins can be 
exchanged between human gut commensals.18,46,47 

Based on this premise, we test vitamin exchange 
potential as one of the explanatory elements pro-
moting the emergence and permanence of higher 
order units within the gut microbiome. Overall, our 
analysis suggests that vitamin metabolic attributes 
play a role shaping both modular and broad com-
munity structure.

Assessment of vitamin metabolic attributes of 
gut strains allowed us to test vitamin exchanges as 
potential drivers of local networks. We identify two 
IM configurations that are fundamentally different 
than the observed random configuration pattern. 
C2 is characterized by vitamin complementarity 
profiles across all members and is hypothesized to 
exist as a codependent entity under vitamin scar-
city. GIG 7, dominated by Bacteroides, represents 
an IM largely independent of vitamin exchanges.
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Bacteroides are characterized by their wide sacchar-
olytic potential,9 making GIG7 a potentially long-
itudinally stable module. It is likely that such 
modules are prevalent in Bacteroides enterotypes, 
which would partially explain their resilience to 
dietary interventions.41,48 We also identify marked 
differences between enterotype indicators’ vitamin 
metabolic attributes when mapped to vitamin cap-
ability groups. Our findings suggest that limited 
environment vitamin availability importantly 
impacts Prevotella strains, unless paired with select 
strains with complementary vitamin biosynthesis 
attributes, while Bacteroides display independence 
in these terms.

Bacteroides enterotypes have been associated 
with long-term high fat/high protein diets,49 

which tend to be low in the majority of vitamins 
we test here.50 Hence, low vitamin environmental 
availability could favor Bacteroides dispersal and 
contribute to the establishment of a Bacteroides 
enterotype. The Prevotella enterotype has been 
associated with agrarian diets and veganism,49,51,52 

which are often also correlated with strains from 
genera/families we identified to have complemen-
tary vitamin functional profiles such as 
Ruminococcaceae, Lactobacillaceae.51,53 Hence, we 
speculate that agrarian diets may contribute to the 
emergence and permanence of the Prevotella enter-
otype, where IMs, enacted by Prevotella and other 
fiber degrading strains, are supported by comple-
mentary vitamin metabolic attributes, among other 
factors.

In our analysis, we find that 43 to 74% of strains 
in our sample can synthesize one of the assessed 
vitamins. A previous analysis based on genome 
annotation reported similar outcomes (40–65%).20 

Although similar, our analysis also allowed us to 
identify vitamins that are non-nutrients for 
a portion of strains. Furthermore, thanks to the 
granular level of control GSMs offer over culture 
media, we can confidently assert that tested strains 
had no access to any of the vitamins, or analogues, 
when these were being examined, complicated to 
guarantee during in vitro assessments. Importantly, 
however, our results are highly dependent on the 
nutritional contexts generated from our UDM and 
alterations to such will change the observed out-
comes. Nevertheless, GEMNAST can be applied to

explore new nutritional contexts as GSMs readily 
allow modeling of diets with detailed nutrient 
composition.

According to our model-based findings, vita-
mins are not actively exported to the extracellular 
space. If true, this leads us to hypothesize that 
mechanisms of vitamin exchanges may occur pas-
sively, for example, following cell lysis.13 We note 
that undescribed active mechanisms mediating 
vitamin sharing would not be captured by 
AGORA. For example, Faecalibacterium sp. 
KLE1255 failed to grow under commercially avail-
able quinones but did grow when cocultured with 
Escherichia coli, leading to the hypothesis that the 
later can deliver the extremely hydrophobic qui-
nones to the former through membrane vesicles.28 

Released vitamins are likely to be in their respective 
active forms, which might not be usable by every 
strain unless they present specialized transport 
mechanisms. For example, we find that the most 
actively synthesized form of B1 is thiamine pyro-
phosphate (TPP), which cannot freely diffuse 
through the cell membrane. However, there is evi-
dence that some bacteria can uptake TPP through 
specific transmembrane channels.54 We also iden-
tify that B12 (cobalamin) is an optional vitamin for 
a large proportion of strains, while essential for 
none. Our analysis includes three B12 analogues, 
however, eight corrinoids (B12-like molecules) 
have been identified in the human gut46 and 
Bacteroides thetaiotaomicron transporters are com-
patible with such compounds.19 This suggests that 
corrinoids might serve as exchange currencies in 
the gut. AGORA does not capture this aspect of the 
dimension which might explain the high number of 
cobalamin-independent strains. Moreover, studies 
have shown that cobalamin requirements can be 
replaced with the addition of methionine to the 
media,55 an important component of UDM.

Despite its many practicalities, GSMs-based 
assessment carry certain caveats. Requiring conver-
gence from other fields of research, GSMs suffer of 
similar limitations such approaches face, resulting 
in potential inaccuracies even after thorough cura-
tion. For example, GSMs rely on upper rate bounds 
to model cellular metabolism which are mostly 
known only for model organisms.56 In addition, 
in vitro experimentation is required to ascertain

e2118831-12 J. P. MOLINA ORTIZ ET AL.



such rates, which will not only help increase GSM 
accuracy but will allow them to capture the biolo-
gical nuances we observe around growth rate 
proxies, such as variation in OD. In addition, raw 
AGORA models face limitations when performing 
quantitative predictions without prior manual 
curation due to a tendency of some of the models 
to predict inflated growth rates.57 As our under-
standing of the biology of gut microbes increases, 
along with the development of more efficient com-
putational tools, the time-demanding model cura-
tion of the 816 AGORA strains will become more 
feasible. Nevertheless, the current models are an 
invaluable resource to perform the extremely high- 
throughput analysis we describe here. We rely on 
a conservative minimum growth rate threshold of 
0.09/h, as failure to surpass such a threshold 
strongly implies that a given strain does not have 
adequate metabolic means to sustain growth in the 
explored nutritional environment, conveying 
a high specificity to our results.55 Finally, current 
GSMs struggle to represent other relevant aspects 
of gut biology such as host-derived pressures and 
nutrient heterogeneous distribution. Such factors 
need to be addressed to more accurately recapitu-
late inter-strain interactions in the gut. Future 
efforts should account for such nuances when 
exploring vitamin metabolism.

The body of work we present here constitutes an 
important step toward understanding the emergent 
dynamics and structures within the gut micro-
biome. Analysis of the metabolic attributes of indi-
vidual gut strains in an underexplored nutritional 
dimension allowed us to propose plausible 
mechanistic explanations that support enterotype 
identity and the observed co-abundance profiles 
within the gut, offering a novel perspective into 
the gut ecosystem. Further, the database we have 
generated can be used to inform future efforts 
including the design of minimal media for specific 
strains, which will in turn allow us to curate and 
assemble more accurate GSMs. Finally, GEMNAST 
can be employed to survey other relevant nutri-
tional dimensions and provide a more comprehen-
sive understanding about the survival strategies 
that explain the origin of the community-level out-
puts that modulate health.

Materials and methods

Computational resources

Genome scale models used in this study are part of 
AGORA (Automatically generated genome-scale 
metabolic reconstructions)29 which in total is com-
posed by 818 strains. Currently, two versions of 
AGORA are available for download from the 
Virtual Metabolic Human database;58 here we 
employ the without mucins version. We included 
816 of the available AGORA strains in our analysis 
with two excluded due to inconsistencies as 
describe below. Metabolite flux for each GSM was 
modeled using the constraint-based reconstruction 
and analysis (COBRA) toolbox for the Python cod-
ing language (cobra.py).36 Metabolite flux analysis 
was performed using cobra.py and Flux Balance 
Analysis (FBA). FBA calculates growth in terms of 
biomass generation in grams of dry weight per hour 
(gDW/h) based on nutrient fluxes. Cobra.py 
further allows a) inspection of individual metabolic 
reactions and metabolite consumption and genera-
tion and b) seamless addition or removal of specific 
molecules to growth media.

Universally defined media (UDM) design and 
experimental design

Universally defined media (UDM) was designed by 
generating anaerobic minimal media for every 
strain in AGORA. The minimal_medium method 
in the cobra.py library was employed to generate 
media with the basic set of nutrients required for 
each strain to achieve a growth rate of 0.8 h¯1 (value 
suggested in the minimal_medium documenta-
tion), a proxy for optimal growth rate. 
A determined set of nutrients for strain 
Lactobacillus helveticus DPC 4571 could not be 
generated which led to the exclusion of this strain 
from further analyses. The resulting set of nutrients 
for each strain was broken into its constituents and 
these were compiled into anaerobic UDM 
(Figure 5). Nutrients were categorized into 11 
groups: simple sugars, amino acids, dipeptides, 
fatty acids, bile acids, cations, anions, metals, 
main vitamins (those explored in this study), sec-
ondary vitamins and other. A detailed list of the
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components in our UDM can be found in 
Additional file 8. The resulting anaerobic UDM 
was used as a base for our growth experiments. 
An initial growth test using UDM was performed 
where we confirmed that every strain was capable 
of growing in it.

GSM structure and vitamin selection

GSMs are mathematic reconstructions of the meta-
bolic reactions encoded in an organism’s genome, 
including reversible and irreversible exchange/ 
transport reactions. GSMs allow for the modeling 
of two virtual compartments: an extracellular one 
and an intracellular compartment. During meta-
bolic modeling, strains can interact (uptake, 
secrete) with metabolites in the media if it presents 
the corresponding exchange/transport ‘reactions’. 
Similarly, if a GSM contains reactions that lead to 
the synthesis of a given metabolite, it will be capable 
of synthesizing it under the right media.

Importantly, GSMs can be constrained to consume, 
synthesize, or export a specific metabolite if they 
have the appropriate reactions.

Exploration of reactions within AGORA strains 
identified vitamins from the vitamin B family and 
Quinones (Menaquinones and Ubiquinone) and 
their analogues (Table 1) taking part of such meta-
bolic networks; other vitamins (A, C, D, and E) as 
well as other quinones were not identified and were 
not considered for our analysis. A preliminary ana-
lysis showed that biotin (B7) did not play 
a meaningful role among AGORA strains, which 
we considered to be a biological inconsistency, and 
consequently it was excluded from our current 
analysis.

Determining essential and optional vitamins

To infer essential nutrients of strains, we devel-
oped a Python pipeline that models strain 
growth in defined media and compiles outcomes

Figure 5. Simplified Universally Defined Media (UDM) design: Sets of nutrients required for three individual hypothetical AGORA strains 
to achieve optimal growth are combined to generate a hypothetical, simplified version of the UDM we utilized for our study. Yellow 
boxes exemplify UDM ingredients other than vitamins while blue boxes exemplify whole vitamin families. Vitamin-free UDM (VFM), is 
used as base media to infer strain essential vitamins. UDM-1 (a group of eight different media) were also derived from UDM by 
removing a single vitamin family shown in Table 1 from UDM. UMD-1 were employed to identify optional vitamins.
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in a single Boolean table. The script requires 
three inputs: a) a directory where to read strain 
names and GSMs from; b) a list of media ingre-
dients to serve as base media; and c) a set of 
nutrients on which to determine nutritional 
requirements which should not be part of the 
base media. A minimum growth rate threshold 
can also be determined within the script. 
Nutritional environments are designed based on 
the number of explored nutrients (input c) fol-
lowing a combinatorial design where nutrients 
are introduced individually or in combination to 
comprehensively explore every possible combi-
natorial scenario. Starting with base media, 
a first strain is cultured, its growth rate is 
assessed, and an outcome is recorded. The 
cycle continues by adding first individual nutri-
ents (input b) and then increasingly complex 
combinations of them to base media, which are 
removed after growth rate assessment, before 
starting a new round (Figure 1a). Strains are 
explored one by one, one nutritional environ-
ment at a time and growth rate (gDW/h, bio-
mass generation) is calculated in every culture. 
The main output from this analysis is a comma 
separated values (.csv) file that contains 
a Boolean table with strains as rows and nutri-
tional environments as columns. If a strain’s 
growth rate is higher than the defined threshold 
a positive outcome is recorded in the Boolean 
table,1 otherwise a negative outcome (0) is 
recorded. Our incremental approach (from zero 
to all the explored nutrients) expedites the iden-
tification of the minimal requirements a strain 
has in terms of the explored set of nutrients; 
unless a strain is capable of growing under 
a variety of explored conditions the first instance 
where a strain presents meaningful growth is the 
one that introduced the set of required nutrients 
to the media. To explore extrinsic vitamin 
requirements we removed the vitamins of inter-
est from our original UDM obtaining vitamin- 
free UDM (VFM, Figure 5) which was used as 
base media (input b). Since our UDM was pur-
posefully designed to be a rich medium, removal 
of the explored vitamins ensured these were the 
only limiting nutrients. Clostridium sporogenes 
ATCC 15579 displayed an incompatibility with

the employed solvers and irregular results, lead-
ing us to exclude it from our study. A total of 
816 AGORA strains were assessed for their 
essential vitamins (input a). A threshold of 0.09 
gDWh¯1 growth rate (six to eight hours dou-
bling time) was established on the basis that 
any strain growing at a lower rate would present 
relatively low probabilities of surviving in the 
human gut, where transit time can be shorter 
than 14 hours in some individuals.59 Therefore, 
this threshold represents a theoretical minimum 
growth rate for gut survival as less than two 
replication cycles would not guarantee perma-
nence in the colon. The vitamin families speci-
fied in Table 1 were selected for our 
combinatorial analysis (input c) in order to 
determine which combination of vitamins 
a particular strain needed for growth 
(Figure 1d, “Require”).

A second pipeline was developed to infer 
optional nutrients of strains, given that our 
essential nutrient analysis does not differentiate 
strains that biosynthesise nutrients for them-
selves from those that simply do not require 
the nutrient for growth. Similar to our essential 
nutrients analysis, this script requires three 
inputs: a) a directory where to read strain 
names and GSMs from; b) a list of media ingre-
dients to serve as base media; and c) a set of 
nutrients of interest which should be part of the 
specified base media. This assessment also ana-
lyses one strain at a time but does not perform 
a combinatorial analysis. Instead every time 
synthesis of a metabolite is assessed, the nutri-
ent and its analogues are removed from base 
media (UDM – 1). Following nutrient removal, 
a strain is cultured in the resulting media. The 
pipeline assesses two aspects of strain metabo-
lism: its capability to synthesize the nutrient in 
question while growing above a previously spe-
cified threshold. To identify if a metabolite was 
synthesized, the metabolic network is assessed 
in search for reactions that led to synthesis and 
utilization of the nutrient of interest. Outcomes 
are registered in a Boolean table with strains as 
rows and resulting nutritional environments as 
columns where cultures in which strains grew 
above the determined threshold and synthesized
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Figure 6. GEMNAST flowchart and its integration with AGORA and cobra.py. AGORA GSMs and cobra.py libraries and methods were 
employed in the design of UDM and GEMNAST. GEMNAST is composed of two branches that complement each other: nutritional 
requirements and biosynthetic capabilities analyses. GEMNAST’s nutritional requirements analysis assesses growth vs no growth and 
performs a combinatorial analysis. GEMNAST’s biosynthetic capabilities analysis assesses growth and synthesis and does not requires 
a combinatorial analysis. Base media for each analysis are fundamentally different. Each branch compiles outcomes in individual 
Boolean tables.
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the nutrient in question are assigned a value of 
one1 (Figure 1d, “Synthesises”). If the reported 
growth rate is below the given threshold and/or 
if the strain did not synthesize the assessed 
compound a zero (0) is assigned to that culture. 
To infer optional vitamins, we utilized our 
UDM as a base which included all the explored 
vitamins (input b) and the same growth thresh-
old specified above (0.09 gDWh¯1). The vitamin 
families specified in Table 1 were selected for 
this analysis in order to determine which were 
synthesized by a particular strain (input c). 
Eight hundred and sixteen AGORA strains 
were assessed (input a). There was a small 
number of cases where a strain presented ‘non- 
nutrient’ vitamins, categorized as “None” in 
Figure 1, panel D. A modified version of 
our second pipeline was employed to assess 
vitamin export capabilities with the only differ-
ences that 1) growth and secretion would be 
assessed instead of growth and synthesis 
and 2) strains were constrained to export the 
vitamin assessed to cover for contexts where 
secretion was optional. Together, this method 
to explore GSM nutritional requirements, bio-
synthetic capabilities, and metabolite export is 
termed GEMNAST (Genome scale model 
Metabolic and Nutritional AssessmenT). 
Scripts can be accessed online: https://github. 
com/jmol0917/GEMNAST_pub.git. A flowchart 
summarizing the main aspects of GEMNAST, 
AGORA, cobra.py and the methods involving 
UDM, VFM, and UDM-1 is provided in 
Figure 6.

Determining vitamin requirement in vitro

Soto-Martin et al. determined maximum optical 
density (maxOD) by culturing strains in the 
study in media with all the explored vitamins. 
Strains were later cultured in media with a single 
missing vitamin and OD was compared against 
maxOD. To validate our results, we considered 
that a strain that achieved over 80% maxOD 
(optimal growth) did not require the missing 
vitamin to be externally sourced, while anything 
below 20% was interpreted as it requiring the 
vitamin from an external source; values between

20% and 80% maxOD were considered as incon-
clusive (Additional file 1).

Clustering and kernel density estimation (KDE)

Strains were clustered based on individual growth 
profiles using the clustermap method from the 
Python data visualization library Seaborn60 

which generates a matrix dataset and 
a hierarchically clustered heatmap. The two data 
visualization tools, t-distributed stochastic neigh-
bor embedding from the TSNE scikit-learn Python 
module,61 and kernel density estimation, form the 
SciPy library for Python,62 were used for cluster 
and cluster density visualization on a two- 
dimensional plane (Additional file 4). Resulting 
matrixes contributed to the vitamin capability 
groups curation process.

Phylogenetic tree assembly

Taxonomy IDs of 806 strains in our dataset were 
retrieved from the Virtual Metabolic Human 
database58 and were used to assemble a .phy file 
using NCBI’s online taxonomy browser.40 The 
interactive Tree Of Life online tool63 was accessed 
to create a graphic representation of the resulting 
phylogenetic tree and strain names were high-
lighted based on the vitamin capability group they 
were mapped. Strains that were not mapped to any 
group are not highlighted.

Vitamin interaction module assessment

Interaction module tables were generated from 
IMs from Wang et al.44 and Zhang et al.45 

that 1) were composed of five members or 
more and 2) at least 50% of members could be 
matched with one of the strains in our analysis. 
If multiple strains could be mapped to the same 
species multiple versions of the same IM were 
generated, one with each of the potential candi-
dates and the network configuration of each 
version was assessed. The strain-level IMs pre-
sented in this study either showed minimal 
inter-version variation or only a single version 
could be generated from its original IM.
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A Python script was developed to generate 
random groups of strains together with their 
vitamin requirements and biosynthetic capabil-
ities using the pandas data analysis and manip-
ulation tool.64 Scripts employed to generate 
interaction tables and randomly generated 
groups can be accessed online: https://github. 
com/jmol0917/fcmmtGSM.git. The jointplot sea-
born class60 was used to generate a bivariate plot 
(Figure 4) of the 1000 random groups. To obtain 
the average functional redundancy of the ran-
domly generated group and IMs, we employed 
the following formula: 

vs=nv
nm 

Where vs corresponds to total number of vita-
mins synthesized per group/IM; nv is the num-
ber of assessed vitamins, in this case seven; and 
nm corresponds to the number of members in 
a group/IM.
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