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Abstract: Cysteine-rich protein 61 (CYR61) is a matricellular protein in the CCN family
that is involved in cellular adhesion, migration, proliferation, and angiogenesis. CYR61
interacts with integrins α6β1, αvβ3, αvβ5, and αIIbβ3 to modulate tumor progression
and metastasis while modifying the tumor microenvironment. CYR61 exhibits context-
dependent roles in cancer, acting as both a tumor promoter and suppressor. Increased
CYR61 expression is linked to extracellular matrix remodeling, immune modulation, and
integrin-mediated signaling, making it a potential prognostic biomarker and therapeutic
target. Emerging research highlights the utility of CYR61 in liquid biopsies for cancer
detection and monitoring. Integrin-targeted therapies, including CYR61-blocking antibod-
ies and CAR-T approaches, offer novel treatment strategies. However, therapy-induced
toxicity and resistance remain challenges with these strategies. The further elucidation of
the molecular mechanisms of CYR61 may enhance targeted therapeutic interventions and
improve patient outcomes.
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1. Introduction
Cysteine-rich protein 61 (CYR61) is a member of the CCN family of matricellular

proteins and has been shown to play a critical role in cellular communication, adhesion,
and migration [1]. The acronym CCN represents the original members of this family:
cysteine-rich protein 61, Connective Tissue Growth Factor (CTGF), and Nephroblastoma
(NOV) [2]. Originally identified in 1990 as a growth factor-inducible immediate-early gene,
CYR61 has since been recognized as a key regulator of angiogenesis, chondrogenesis, and
fibrogenesis [3–5]. CYR61 interactions with integrins, heparan sulfate proteoglycans, and
low-density lipoprotein receptor-related proteins enable it to modulate cell proliferation,
differentiation, and immune responses [6].

CYR61 consists of conserved domains that mediate its diverse biological functions,
including its ability to bind integrins such as αvβ3, αvβ5 α6β1, and αIIbβ3 [2]. These
interactions influence DNA synthesis, cellular adhesion, and migration, particularly in
vascularized tumors and cancerous environments [7]. Describing the roles of CYR61 in
cancer is crucial, as its dual functions in promoting or suppressing tumorigenesis high-
light the complexity of its biological impact [8–10]. Indeed, CYR61 has been implicated in
various cancers, including breast, prostate, pancreatic, and lung cancers, where it affects
tumor progression, metastasis, and treatment resistance [11–15]. CYR61 has been consid-
ered relevant to cancer progression, specifically. It promotes angiogenesis by interacting
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with integrins and VEGFR2, facilitating the formation of new blood vessels essential for
tumor growth and metastasis [16,17]. Additionally, CYR61 enhances cell migration and
adhesion, contributing to the invasiveness and metastatic potential of cancer cells [18,19].
Its role in apoptosis regulation is significant, as modulating CYR61 activity can increase
the sensitivity of cancer cells to apoptosis-inducing therapies [20]. Furthermore, CYR61
is involved in inflammatory and fibrotic responses, which can create a tumor-promoting
microenvironment; targeting CYR61 can thus alter this microenvironment to be less sup-
portive of cancer progression [21,22]. Lastly, CYR61 expression is linked to chemoresistance,
particularly in triple-negative breast cancer, where it upregulates survivin expression and
activates Wnt/β-catenin signaling, making cancer cells more resistant to chemotherapy [23]
(Figure 1). These diverse functions make CYR61 a promising target for developing novel
cancer therapies.

Given its involvement in multiple pathological processes, CYR61 is being explored as
a potential biomarker for cancer prognosis and as a therapeutic target [24]. Understanding
its molecular mechanisms could aid in the development of targeted therapies that disrupt
CYR61–integrin signaling pathways. Furthermore, as research continues, CYR61′s role in
immune surveillance and tissue repair further underscores its significance in both normal
physiology and disease states.

 
Figure 1. Key biological functions mediated by CYR61. The importance of CYR61 in both normal
physiological processes and various pathological conditions is summarized through various biological
processes. Some of the key functions of CYR61 are angiogenesis [17,25], cellular adhesion, and
migration by interacting with integrins and heparan sulfate proteoglycans [19], wound healing
by promoting cell proliferation and migration [26,27], inflammation and fibrosis [21,22], tumor
progression implicated in tumor growth and metastasis [10,28], and embryonic development [29–31],
particularly in the cardiovascular system. These functions highlight CYR61′s importance in both
normal physiological processes and various pathological conditions. Created in BioRender. Ortiz, G.
(2025) https://BioRender.com/nqb2e1j (accessed on 9 May 2025).

https://BioRender.com/nqb2e1j
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2. Discovery
In 1990, O’Brien and colleagues in the Lau lab successfully cloned a growth factor-

inducible immediate-early gene, CYR61, which encodes a 379-amino-acid polypeptide with
38 conserved cysteines, a molecular mass of 42 kilodaltons, and an N-terminal secretory
signal [3,4,32]. Once associated with the extracellular matrix (ECM), CYR61′s half-life
extends to greater than 24 h, and with high heparin-binding affinity, CYR61 was quickly
theorized to be involved in cell-to-cell communication [6]. Bork recognized structural motifs
in CYR61: CTGF and NOV. This established the designation of “CCN-family proteins”,
which has expanded to encompass six members that regulate other bioactive peptides
through direct binding interactions [2,32]. Kireeva and colleagues in the Lau Lab purified
CYR61 and revealed its function as a chemotactic factor acting on fibroblasts, promoting
cell proliferation, migration, and adhesion to endothelial cells [1,33]. As an angiogenesis-
inducing ligand, CYR61 promotes cell adhesion through several binding interactions with
integrins. Of the integrins with which CYR61 interacts, integrin αvβ3 augments growth
factor-induced DNA synthesis and mediates the adhesion of vascular endothelial cells;
integrin α6β1 binding influences fibroblast cell adhesion; and the αIIbβ3 domain can
promote platelet adhesion and aggregation [7,34]. Early in vitro studies demonstrated
CYR61 involvement in tissue-specific stages of chondrogenesis and, therefore, theorized
that CYR61 aids in mammalian embryonic skeleton development [4,29]. By the early 2000s,
CYR61 was established to be involved in fibrogenesis, angiogenesis, and chondrogenesis, as
well as cell proliferation and differentiation through the direct binding of integrins, heparan
sulfate proteoglycans, and low-density lipoprotein receptor-related proteins [1,30,32,35,36].

Recent findings uncovered the participation of the CCN-family proteins in regulating
the production of cytokines and chemokines through autocrine and paracrine feedback and
directly modifying cellular migratory processes, suggesting a pivotal role in the human
immune-surveillance process [37]. Since the discovery of the roles that CYR61 plays in
inflammation and tissue repair, studies have continued to explore CYR61 as a potential
biomarker for therapeutic targeting and immune surveillance [24,38].

3. Structural Domain and Functions
As members of the CCN protein family, CYR61, CTGF, and NOV share significant

sequence homology with highly conserved intron–exon regions [2,39]. The CYR61 gene
has been mapped to chromosome 1p22.31 and encodes a 381-amino-acid polypeptide with
38 conserved cysteines, a molecular mass of 42 kilodaltons, and an N-terminal secretory
signal [3,39,40]. The first of five exons (with four interspaced introns) encodes a secretory
signal from the N-terminal, while the following four exons encode conserved mosaic CCN-
family domains [19,40–42]. Sequence analysis of these four conserved domains reveals
that they share homology with insulin-like growth factor-binding proteins (IGFBPs), the
von Willebrand Factor type-C domain (vWC), the thrombospondin type-1 repeat (TSR),
and the C-terminal (CT) domains of some types of collagens (e.g., collagen XIII, XXIII, and
XXV) and mucins (e.g., MUC2, MUC5AC, and MUC5B) [2,42,43]. The CCN-family proteins’
conserved secretory signal, insulin-like growth factor-binding protein, vWC repeat, TSR,
and CT domain regions are likely a result of exon shuffling [44]. Adhesion receptors
for CYR61 include the following: αvβ3 and α6β1 with endothelial cells [45], α6β1 with
fibroblasts [46], α6β1 with smooth muscle cells, αMβ2 with monocytes, and αIIbβ3 with
platelets [1,5,34,45–48]. A summary of CYR61 domains, conserved sequences, binding sites,
and ribbon diagrams is shown in Table 1 [40,49–52].
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Table 1. CYR61 domains and binding sites.

Domain Conserved Sequence Binding Sites Ribbon Diagram

Insulin-like Growth
Factor-Binding Protein

(IGFBP) [40,50]

TCPAACHCPL EAPKCAPGVG
LVRDGCGCCK

VCAKQLNEDC SKTQPCDHTK
GLECNFGASS TALKGICRAQ
SEGRPCEYNS RIYQNGESFQ
PNCKHQCTCI DGAVGCIPLC
PQELSLPNLG CPNPRLVKVT

GQCCEEWVCD EDSIKDPMED
QDGLLGKELG FDASEVELTR
NNELIAVGKG SSLKRLPVFG

MEPRILYNPL

Insulin-like growth
factor-binding proteins

von Willebrand Factor
Type-C Repeat (vWC) [51] GQKCIVQTTSWSQCSKS

αvβ3
αvβ5
αIIbβ3

Thrombospondin Type-1
Repeat (TSR) [52] GQKCIVQTTSWSQCSKS α6β1

C-Terminal (CT) [2,42] KGKKCSKTKKSPEPVRFTYA
GCSSVKKYRPKY

αvβ3, α6β1-HSPG:H1,
α6β1-HSPG:H2

 

4. CYR61 Interactome
4.1. Integrin α6β1

Integrin α6β1 has binding sites in two domains of CYR61, namely, the TSR and
CT domains (Figure 2 and Table 1). These sites facilitate heparin binding and integrin
α6β1/heparan sulfate proteoglycan (HSPG)-mediated fibroblast cell adhesion. Specifically,
within the TSR domain, the sequence GQKCIVQTTSWSQCSKS (aa 223–239) is identified
as T1. In the CT domain, two sequences are identified: H1, KGKKCSKTKKSPEPVR (aa
280–295), and H2, FTYAGCSSVKKYRPKY (aa 296–314) [53]. Both the α6β1 binding domain
and the cell surface HSPG binding sites work in tandem to support vascular smooth muscle
cell adhesion and chemotaxis, but not chemokinesis [5]. Integrin α6β1 and HSPGs act as co-
receptors in human skin fibroblasts, smooth muscle cells, and endothelial cells to mediate
cell adhesion and support smooth muscle cell migration [53]. The successful binding of
α6β1 and HSPGs leads to a substantial and sustained level of reactive oxygen species
(ROS) and activates the cellular tumor antigen p53 and ERK/MAPK tumor suppression
pathways [38,54]. Integrin α6β1 represents a promising target for antimetastatic therapies
aiming to impair tumor metastasis through platelet-dependent mechanisms [55].

4.2. Integrin αvβ3

The binding sites for integrin αvβ3 reside within the third domain of CYR61 (Figure 2
and Table 1) and have been shown to promote pro-angiogenic activities in activated en-
dothelial cells [44,56]. While there are several αvβ3 binding sites, Asp-125 in the 20-residue
sequence of the vWC domain of V2 is particularly critical for integrin interactions [57].
Upon successful binding, downstream αvβ3-dependent pathways augment growth
factor-induced DNA synthesis within the same cell type, which enables endothelial cell
adhesion [7]. Binding to integrin αvβ3 allows CYR61 to promote cell proliferation, survival,
and angiogenesis through the adhesion of vascular endothelial cells in a manner indepen-
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dent of heparin-binding activity elsewhere on the CYR61 protein [38]. The β3 class of
arginylglycylaspartic acid (RGD)–integrins has α-N-(benzoxycarbonyl)-diaminopropanoic
acid bundles, which contribute to the selectivity of αvβ3 over αvβ5. Although αvβ3
is typically expressed at low or undetectable levels in adults, it is involved in multiple
signaling transduction pathways in cancer and tumor progression, including cell prolifera-
tion, adhesion, migration, stemness, immune escape, drug resistance, and bone metastasis.
Therefore, high expression of αvβ3 in patients presents an opportunity for αvβ3-targeted
therapeutics in biomarker-driven clinical trials [15]. αvβ3 expression in carcinomas such as
pancreatic cancer has been shown to increase lymph node metastases in vivo and enhance
anchorage-independent tumor growth in vitro [13]. Current research addressing αvβ3
antagonist toxicity reduction and limited efficacy explores a new biometric-targeted drug
delivery system utilizing exosomes derived from human umbilical cord mesenchymal
stromal cells (hUCMSCs) to encapsulate triptolide and generate αvβ3-specific chimeric
antigen receptor T cells, both of which have been proven to induce the complete elimination
of melanoma lesions [58].

 
Figure 2. Gene and domain architecture of CYR61. The CYR61 gene undergoes transcription to
produce mRNA, which is subsequently translated into the CYR61 protein. Each exon (1–5), along
with its corresponding RNA transcript and protein segment, is represented as a uniquely colored
rectangle. The full-length protein contains 381 amino acids with an N-terminal secretory signal
peptide (SP) followed by four distinct domains. The CYR61 domains are (from N- to C-termini): the
insulin-like growth factor-binding protein (IGFBP) domain, von Willebrand type-C repeat (vWC)
domain, thrombospondin type-1 repeat domain (TSR), and C-terminal (CT) domain containing a
cysteine-knot motif. Protein modules are labeled beneath each segment. Binding regions for integrins
and heparan sulfate proteoglycans (HSPGs) on the CYR61 protein are indicated. Abbreviations:
UTR—untranslated region; IGFBP—insulin-like growth factor-binding protein domain; vWC—von
Willebrand factor type-C repeat; TSR—thrombospondin type-1 domain; HSPG—heparan sulfate
proteoglycan; SP—signal peptide; CT—C-terminal. Created in BioRender. Ortiz, G. (2025) https:
//BioRender.com/g6e3mf2 (accessed on 9 May 2025).

https://BioRender.com/g6e3mf2
https://BioRender.com/g6e3mf2
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4.3. Integrin αvβ5

CYR61 has distinct expression profiles for three non-small lung cancer (NSCLC) cell
lines (H1155, H460, and H2122), five colorectal cancer cell lines (SW837, SW620, HT-29,
HCA-7, and HCT116), one breast cancer cell line (MCF-7), and one esophageal squamous
carcinoma cell line (TE-7) with enhanced expression of the αvβ5 integrin [11]. Integrin
αvβ5 binding on CYR61 (Figure 2 and Table 1) occurs within the vWC repeat region of
the second domain. The adhesion and proliferation of human breast cancer cells, astrocyte
adhesion to vitronectin, and the migration of fibroblasts to CYR61 are mediated by integrin
αvβ5 [44]. CYR61 tumor necrosis factor-a encounters require αvβ5, α6β1, and syndecan-4
interactions to inhibit the biphasic activation of JNK to induce apoptosis [11,59].

4.4. Integrin αIIbβ3

The αIIbβ3-binding site on CYR61 is within the second domain (Figure 2 and Table 1),
homologous with the vWC repeat [11]. Antibodies from patients who develop thrombocy-
topenia post-treatment with an RGD-mimetic platelet-inhibiting drug similarly recognize
ligand-inducible binding sites at αIIbβ3 [60]. The availability of pure orthosteric inhibitors
of αIIbβ3 presents a tool to further research the mechanisms linking integrin conformation
and deter thrombosis [61].

5. CYR61 Roles in Cancer
The expression of CYR61 is multifaceted and is most often associated with tumori-

genesis, but can also enable tumor suppression, such as in NSCLC [14]. In certain cases,
such as hepatocellular carcinogenesis, CYR61 induces pathways that generate ROS, which
may both promote and inhibit tumorigenesis [62–65]. One study demonstrated that while
CYR61 expression is decreased in endometrial cancer, endometrial adenocarcinoma cell
lines (MDA-MB-231, AN3CA, HEC1A, HEC1B, KLE, and RL95–2) overexpressing CYR61
resulted in reduced tumor formation in nude mice [66]. This can be a result of the truncated
isoform morphology of CYR61 more often having oncogenic properties, while full-length
CYR61 often exhibits antiproliferative effects [41].

Somatic cells can secrete matricellular proteins into the extracellular space to join other
matricellular proteins, soluble factors, and stromal cells to comprise a tumor microenviron-
ment that is capable of the mechanical modulation of cellular activities [67]. CYR61 is highly
expressed in various tumor microenvironments and can influence tumor progression by
modulating the ECM to affect the adhesion, migration, and survival of cancer cells [68].
One study showed that CYR61 facilitates tumor progression in the pancreas by changing
the morphology of pancreatic islets, altering the cellular microenvironment, and enabling
tumor-promoting properties [69]. The expression of CYR61 in its secreted endogenous
phosphorylated form is associated with aggressive metastatic phenotypes and poor prog-
nosis in breast cancer and correlates with more advanced clinical stages, larger tumor
sizes, and lymph node positivity, indicating a role in promoting tumor aggressiveness [70].
CYR61 also promotes survival in endothelial cells through integrin αvβ3 binding and
induces p53-dependent apoptosis in fibroblasts through the engagement of α6β1-HSPG
binding domains [53,71,72]. The increased expression of CYR61 is associated with more
frequent binding of integrin avβ3, which has been shown to play a major role in breast
cancer progression through the pro-angiogenic activity of tumor vascularization. There-
fore, the overexpression of αvβ3 can be a biomarker for poor prognosis and a therapeutic
target in breast cancer [70,73,74]. While CYR61 levels are low in healthy prostate tissue
and increase during prostate cancer development within the epithelium, decreased serum
CYR61 expression in patients after surgical treatment of prostate cancer is associated with a
greater risk of relapse [75]. This increased expression has been shown to promote prostatic
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cell proliferation and, conversely, enhance the cytotoxicity of tumor necrosis factor-related
induced apoptosis that selectively kills cancer cells [76–78]. The ambiguity of boundaries
between tumors and surrounding tissue has resulted in mixed findings regarding the
participation of CYR61 in different stages of various cancers [79]. Patients with ovarian
epithelial carcinoma, however, had significantly higher CYR61 expression compared to
patients with benign ovarian tumors, indicating a role in regional lymph node metastases
and the progression of clinical disease stage [80].

CYR61 also plays a multifaceted role in hematological cancers, significantly impacting
drug resistance, cell survival, and progression. Elevated levels of CYR61 in the bone marrow
microenvironment of patients with acute lymphoblastic leukemia (ALL) have been shown
to enhance the survival of leukemic cells [41]. Specifically, CYR61 is implicated in enhancing
the survival of leukemic cells within the bone marrow microenvironment, contributing
to drug resistance and poor treatment outcomes [41]. The CYR61 protein promotes cell
survival and proliferation through key signaling pathways, including integrin-linked kinase
(ILK) and Akt signaling, which are essential for leukemic cell growth and resistance to
apoptosis [81]. Notably, CYR61′s interaction with integrins and its involvement in the
modulation of the tumor microenvironment further highlight its importance in cancer
biology [82]. In B-cell acute lymphoblastic leukemia (B-ALL), CYR61 has been shown to
modulate chemosensitivity, with increased levels of CYR61 in the bone marrow leading
to reduced sensitivity to chemotherapeutic agents such as daunorubicin (DNR) [82]. This
mechanism involves the CYR61-mediated upregulation of anti-apoptotic proteins like
B-cell lymphoma-2 (Bcl-2), which helps leukemic cells evade drug-induced apoptosis [82].
Additionally, CYR61 production in B-ALL cells is induced by DNA damage responses
through the ataxia–telangiectasia mutated-dependent nuclear factor kappa B (NF-κB)
pathway, further contributing to chemoresistance [82]. These findings underscore the
potential of targeting CYR61 and its associated signaling pathways as therapeutic strategies
to overcome drug resistance and improve treatment efficacy in ALL and B-ALL.

A summary of cancers associated with CYR61 domains and their respective ligands is
shown in Table 2.

Table 2. Cancers associated with CYR61 binding domains and corresponding ligands.

Ligand Binding Domain Associated Cancers

α6β1 [38,53–55,71,72] TSR, CT Breast, ovarian, lung, lung metastasis,
and prostate.

αvβ3 [13,15,38,44,56,58,70,73,74] vWC
Bone metastasis, breast, cervical, colon,

melanoma, non-small-cell lung, ovarian,
glioblastoma, prostate, and pancreatic.

αvβ5 [11,44,59] vWC Breast, colorectal, gastric, liver metastasis,
ovarian, glioblastoma, pancreatic, and prostate.

αIIbβ3 [7,34,60,61] vWC Breast, ovarian, and prostate.

6. CYR61 in Liquid Biopsies
Liquid biopsies can facilitate the monitoring of treatment responses over time. There-

fore, changes in CYR61 levels in serum may reflect the effectiveness of therapeutic in-
terventions, allowing for the real-time assessment of patient status and adjustment of
treatment plans accordingly. Liquid biopsy of serum CYR61 has potential as a diagnos-
tic and prognostic biomarker, aiding in the detection, monitoring, and management of
cancer through non-invasive means. Measuring CYR61 levels in serum presents a poten-
tially minimally invasive and inexpensive clinical biomarker that is independent of the
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prostate-specific antigen and correlates with worse prognosis for colorectal cancer, breast
cancer, and prostate cancer [12,54,70,83–86]. Enzyme-linked immunosorbent assays have
revealed an increase in serum CYR61 levels in patients with colorectal cancer compared
to patients with colorectal adenomas and healthy controls [85]. Detecting elevated serum
CYR61 can improve diagnosis and decipher the clinicopathological status of patients with
breast cancer [87]. In prostate cancer, higher serum CYR61 levels have been observed in
patients with non-organ-confined disease compared to those with organ-confined disease,
suggesting its utility in differentiating between disease stages [12]. In a study, the breast
cancer mesenchymal disseminated tumor cell (mDTC) line, BC-M1, had high CYR61 levels
associated with a change in microenvironmental conditions caused by viable circulating
tumor cells [88].

Recently, CYR61 has emerged as a promising soluble biomarker for NSCLC, as demon-
strated in a pilot study by Ackar et al. [89]. The study revealed that plasma concentrations
of CYR61 were significantly elevated in patients with NSCLC compared to healthy controls,
with mean levels of 13.7 ng/mL and 0.29 ng/mL, respectively. This marked difference
underscores the potential of CYR61 as a diagnostic tool for NSCLC. The study further
highlighted that CYR61 exhibited a sensitivity of 84% and a specificity of 100% in male
patients with lung cancer, suggesting its robust performance in this subgroup. However,
the sensitivity in female patients was notably lower at 27%, indicating a need for further
research to optimize its diagnostic utility across different demographics. These findings
support the potential of CYR61 as a circulating biomarker for the early detection of NSCLC,
particularly in male patients, and warrant further investigation to validate and refine its
clinical application [89].

7. CYR61 as a Potential Target in Cancer
Due to its dual role in promoting apoptosis and influencing tumor cell behavior,

CYR61 may serve as a potential biomarker and therapeutic target in cancer prognosis
and treatment. Modulating its activity could aid in developing strategies to enhance the
efficacy of cancer therapies that rely on inducing apoptosis in tumor cells [68]. Current
strategies to target CYR61 include gene silencing techniques such as RNA interference
(RNAi) and CRISPR/Cas9, which effectively downregulate CYR61 expression, thereby
inhibiting its pro-tumorigenic functions, like angiogenesis and cell migration [90,91]. In
addition, small-molecule inhibitors that prevent CYR61 from binding to its receptors and
disrupt its signaling pathways involved in cancer progression have been studied [92].
Another approach combining CYR61-targeted therapies with conventional treatments like
chemotherapy or immunotherapy can enhance overall therapeutic efficacy and overcome
resistance mechanisms [23] (Figure 3).

Specifically, CYR61 has been established as a critical factor in breast cancer progression,
influencing tumor growth, invasiveness, and therapy resistance. CYR61 is also implicated
in promoting neovascularization, as it enhances the expression of vascular endothelial
growth factor (VEGF), which is crucial for tumor blood supply and growth. Cells expressing
CYR61 acquire an antiestrogen-resistant phenotype, presenting a clinical challenge in breast
cancer treatment [8]. This study also found that the pro-angiogenic effects of CYR61 are
dependent on the VEGF/VEGF-receptor 2 (VEGF-R2) signaling pathway, and blocking
this pathway with an anti-VEGF-R2 antibody abolishes the angiogenic effects of CYR61,
decreasing the invasiveness of β tumors through enhanced integrin function [69]. Huang
et al. identified CYR61-β1 integrin–AMPKα as a potential therapeutic target to mitigate
participation in facilitating tumor cell extravasation and regulating anoikis migration of
breast cancer metastasis to the lung [10]. Utilizing a blocking antibody against integrin
αvβ3 is capable of inhibiting heregulin (HRG) induction of the aggressive phenotypes of
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breast cancer cells in vivo [8]. Because heparin is often targeted in malignant diseases for
antithrombotic prophylaxis, CYR61 is a potential target to interfere with the migration
of PC-3 cells [78,93]. Even though integrins can be important therapeutic targets, current
RGD-based anti-integrin drugs induce conformational changes that trigger incongruous
cell adhesion and potentially fatal immune reactions [94].

 

Figure 3. Diverse and innovative strategies developed to target CYR61 in cancer therapy and future
strategies. Current strategies to target CYR61 involve gene silencing, the use of monoclonal antibodies,
small-molecule inhibitors (SMIs), and a combination of therapies. For instance, gene silencing using
RNAi targeting CYR61 in tamoxifen-resistant breast cancer cells decreases invasion and increases
tamoxifen sensitivity. Monoclonal antibodies that block CYR61′s interaction with integrins and
VEGFR2 significantly reduce tumor growth and metastasis. SMIs have shown a disruption of CYR61
receptor binding, effectively blocking cancer cell proliferation and migration. As future strategies
to target CYR61, CAR-T cells engineered to target CYR61 offer a personalized treatment option for
cancers with high CYR61 expression, such as triple-negative breast cancer. In addition, nanoparticles
designed to deliver CYR61-targeting agents directly to tumors are a great avenue to improve drug
delivery and reduce systemic toxicity. Personalized medicine approaches, including biomarker
identification, enable tailored treatment plans that predict response to CYR61-targeted therapies,
improving clinical outcomes. Created in BioRender. Ortiz, G. (2025) https://BioRender.com/e61pin6
(accessed on 9 May 2025).

Future strategies to target CYR61 in cancer therapy are promising and diverse. Ad-
vanced gene editing tools, such as next-generation CRISPR systems, aim to improve the
specificity and safety of gene editing for cancer therapy [95,96]. CAR-T cell therapy rep-
resents a groundbreaking approach, where T cells are genetically engineered to express
chimeric antigen receptors (CARs) that specifically recognize CYR61 on cancer cells, en-
abling them to attack and destroy CYR61-positive tumor cells [97]. Nanotechnology offers
innovative solutions, using nanoparticles to deliver CYR61-targeting agents directly to
tumor sites, improving specificity and reducing systemic side effects [98]. Personalized
medicine approaches, including biomarker identification, allow for more tailored and
effective treatment plans by analyzing a patient’s tumor to identify unique molecular
targets [99]. These strategies highlight the potential of targeting CYR61 to disrupt cancer
progression and improve therapeutic outcomes (Figure 3).

https://BioRender.com/e61pin6
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8. Challenges
Current gaps in knowledge of the role of CYR61 in cancer include addressing integrin

antagonist toxicity reduction and precisely understanding the mechanisms by which CYR61
promotes aggressive cancer phenotypes [58,100]. The complexity of integrin functions and
their sometimes-opposing characteristics pose challenges in developing effective integrin-
targeting therapies [101]. Cancer cells have the ability to change their integrin repertoire
and become resistant to drug treatments, which may be overcome through antagonist
targeting of multiple binding integrins [102].

Recently, to overcome these challenges, integrin αvβ3 CAR-T cells have emerged as a
therapeutic target to halt the survival and metastasis of solid tumors such as melanoma,
glioblastoma, breast, pancreatic, and prostate cancer [103]. The αvβ3 integrin is highly
expressed on various tumor cells and tumor vasculature, making it an attractive target
for CAR-T cell-mediated immunotherapy [104]. CYR61 plays a pivotal role in enhancing
the efficacy of CAR-T cell approaches targeting the αvβ3 integrin in cancer therapy. For
instance, in glioblastoma models, CAR-T cells targeting αvβ3 integrin demonstrated rapid
tumor regression and prolonged survival in preclinical studies [104]. CYR61 is known to
interact with αvβ3 integrin, promoting cell adhesion, migration, and survival [105]. In
Schwann cells, CYR61 has been shown to regulate c-Jun expression, which is crucial for
cell proliferation and migration, further highlighting its role in enhancing the therapeutic
potential of CAR-T cells [105]. This interaction enhances the binding and persistence
of CAR-T cells targeting αvβ3, thereby improving their cytotoxic efficacy against tumor
cells [104]. Additionally, CYR61 modulates the tumor microenvironment by influencing
the expression of cytokines and growth factors that support CAR-T cell function and
proliferation [105]. These combined effects underscore the potential of CYR61 to augment
the therapeutic outcomes of CAR-T cell therapies targeting αvβ3 integrin, offering a
promising strategy for improving the treatment of solid tumors.

9. Conclusions
As a key member of the CCN protein family, CYR61 plays a vital role in regulating cell

adhesion, migration, proliferation, and angiogenesis through interactions with integrins
and heparan sulfate proteoglycans [5]. Its ability to modulate the ECM and influence
tumor microenvironments has positioned CYR61 as a critical factor in both normal cellular
function and pathological conditions [67]. While its role in tissue repair and immune surveil-
lance highlights its physiological importance, CYR61′s involvement in tumor progression
and metastasis underscores its dual nature in cancer biology [24,37,68]. The expression of
CYR61 has been linked to both tumor-promoting and tumor-suppressive effects, depending
on the cancer type and cellular context [62–65]. In cancers such as breast, prostate, and
pancreatic cancer, CYR61 enhances tumor growth, invasion, and resistance to therapy,
making it a promising biomarker for disease progression [8,12,13,15,102]. However, its
apoptotic effects in fibroblasts and its association with tumor suppression in NSCLC in-
dicate a more complex regulatory function [14]. Targeting CYR61–integrin interactions
presents an opportunity for novel therapeutic strategies, particularly in integrin-mediated
tumor progression [56,59,93,106]. Current challenges in CYR61 research include mitigat-
ing integrin antagonist toxicity and understanding the molecular mechanisms driving
its pro-tumorigenic versus tumor-suppressive effects [107]. Advancements in targeted
therapies, including integrin αvβ3–CAR T cells and CYR61-blocking antibodies, offer new
possibilities for cancer treatment [103,105,108]. As research continues, further exploration
of CYR61′s role in cancer biology and immune modulation may lead to breakthroughs in
precision medicine and targeted therapy development.
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