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Surface ElectroMyoGraphy (EMG) signals from the forearm used in prosthetic hand and

finger control systems require precise anatomy data of finger muscles that are small and

located deep within the forearm. The main problem of this method is that the signal

quality depends on the placement of EMG sensor, which can significantly affects the

accuracy and precision to estimate joint angles or forces. Moreover, in case of amputees,

the location of finger muscles is unknown and needed to be identified manually for

EMG recording. As a result, most modern prosthetic hands utilize limited number of

muscles with pattern recognition to control finger according to pre-defined grip which

is unable to mimic natural finger motion. To address such issue, we used array EMG

sensors to obtain EMG signals from all possible positions on the forearm and applied

regression method to produce natural finger motion. The signals were analyzed using

independent component analysis (ICA) to find the best-fitted independent component

(IC) that matches the anatomical data taken after the experiment. Next, from the IC and

EMG signals, finger angles were estimated using linear regression model (LRM). Each

finger was assigned EMG and IC component for flexion and extensionmuscles, to assess

the possibility of controlling each finger angle separately. We compared the joint angles

of each finger between calculated from IC and EMG by correlation coefficients (CC) for

all fingers. The average CC values were higher than 0.7, demonstrating the strength of

the linear relationship. The different between IC and EMG methods suggests that the

IC method can reduce noise and increase the signal to noise ratio. The performance

of ICA method showed higher CC value at around 0.2 ± 0.10. In order to confirm

the performance of ICA method, we also tested mathematical musculoskeletal model

(MSM). The result from this study showed that not only array EMG sensors with ICA

significantly improve the quality of signal detected from forearm but also reduce problems

of conventional EMG sensors and consequently improve the performance of regression

method to imitate natural finger motion.

Keywords: array EMG system, multichannel surface EMG, musculoskeletal models, surface ElectroMyoGraphy

(EMG), adaptive mixture ICA (AMICA), finger motion, convolutional pose machines
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1. INTRODUCTION

The human hand consists of five fingers to create intricate
primary tools that we use to interact with the external world.
Thanks to rapid advances in engineering and biotechnology,
prosthetic hands have shown high accuracy in finger control
with force adjustment that can mimic human finger motions.
In order to capture the human intent to control finger,
surface ElectroMyoGraphy (EMG) was used in many researches
(Khushaba and Kodagoda, 2012; Zhang et al., 2014; Haris et al.,
2015; Bai et al., 2016; Kawano and Koganezawa, 2016; Sahoo
et al., 2016). The EMG signal was rectified, and low-pass filtered
to reduce noise. Then, various models were used to extract
hand postures from the processed EMG signal. Recently, one
group succeeded to control fingers and wrist of a robot with
predetermined grips so that the fingers and wrist angles of
robot matched with the hand posture (Hargrove et al., 2013).
However, such method did not reproduce the actual finger
control or show agility to perform rapid motion. A previous
research showed the possibility to convert EMG signal into
muscle contraction force for direct control of the prosthetic
device (Kawase et al., 2012). EMG signals of amputees were
also used successfully to control a prosthetic device (Haris et al.,
2015). However, such methods also encounter the problem of
sensor location that affects the signal quality and consequently
the performance of the algorithm that converts bio-signals to
prosthetic motions.

Knowledge of the muscular and skeletal anatomy is crucial to
identify exact muscle locations. Normally, the placement of the
EMG sensor is based on experience and trial-and-error (Mercer
et al., 2006). Without knowing exact location of the muscles, only
large muscles close to the surface tend to be selected for use. This
reduces the possible target muscles available to control prosthetic
devices, leaving only large flexion-extension muscle pairs in the
shoulder, elbow, and wrist. The small and deeply-located finger
muscles are hard to detect and provide low signal quality for
classifying motions to control the devices. As a result, most finger
motion classifications use small number of muscles to control
a limited predefined finger poses. Moreover, the finger muscles
location may change depending on relative angle between elbow
and wrist, which make EMG detection of a particular finger
muscle more difficult.

Array EMG systems have been used to record single muscle

fiber action potentials to investigate properties and firing patterns

of motor units (MUs) (Zwarts and Stegeman, 2003). Using such

devices with High-density (HD) surface electromyogram grids,

we can analyze fatigue of the muscle fiber (Cifrek et al., 2009).
Due to advances in signal processing, there are multiple methods
to analyze signals, whose source are hidden or unknown. The
best example is electroencephalography (EEG) analysis, where
multiple electrodes are placed around the head to detect signals
from neurons that are located deep within the skull. EEG is
a method to detect electrical impulses that occur in the brain
when brain cells communicate with each other (Hjorth, 1970).
Generally, EEG is used to identify problems in the electrical
activity of the brain to diagnose brain disorder such as seizures
and head injuries.

Independent Component Analysis (ICA) is a signal processing
method to separate independent signals that are linearly mixed
in multiple sensors. This method is used in EEG analysis to
reduce noise or remove artifact unrelated to the task such as
blinks, head motion, and signals from facial muscles (Delorme
et al., 2007). The musculoskeletal model (MSM) is the 2-order
linear regression which represented by one degree of freedom
joint for flexion and extension to reduce the complexity of finger
musculoskeletal structure (Shin et al., 2009). Musculoskeletal
models (MSM) required a smaller number of variables and train
data. The variable of MSM will be acquired by finding minimal
error using characteristic of each finger muscles according to the
proposed model (Kawase et al., 2012). Linear regression model
(LRM) was used to predict direction of movement of supination
and pronation (Hahne et al., 2014). In order to reached out to
researcher who might not be familiar with MSM, LRM were used
to predict five finger angle in this study.

This study adapted electroencephalography (EEG) analysis
with EMG measurement to achieve better signal quality from
deep muscles. We built arm mask in consideration of hand
anatomy and experimentation on several method to achieve high
quality signal. The motivation to build such a system came from
effort to standardize EMG signal measurement and to reduce
the affect from operator personal skill. Moreover, we used the
proposed system to overcome (1) anatomy variation of each
subject, (2) disruption of EMG signal caused by adjacent joint
movement, and (3) noise from skin movement.

In this paper, we proposed a new method using ICA and
array EMG system around the forearm. The EMG signals were
extracted from selected areas using anatomical data. The IC
signals estimated from the EMG signal using ICA were plotted to
confirm that the selected IC represents fingermuscles. Finally, the
estimated finger angle and measured finger angle were compared
using correlation coefficients (CC).

2. MATERIALS AND METHODS

2.1. Subjects
Ten healthy, right-handed, human participants (7 males, 3
females), between 24 and 28 years of age (mean 26.2 ± 1.8),
participated in this study. The study protocol was approved by
the ethics committee of the Tokyo Institute of Technology and
was carried out in accordance with the Declaration of Helsinki.
Written informed consent was obtained from each participant
before the experiment.

2.2. Experiment Protocol
Each subject performed 25 experiments (5 experiments per
finger without interruption, in the order of the Thumb, Index,
Middle, Ring, and Pinky) to train the classifier. After theses 25
experiments, further 5 experiments were performed where all
fingers weremoved one after another in each experiment to verify
our classifier’s performance (see Figure 1). In each experiment,
the calibration period was set before any motion to reduce noise.
Each motion consisted of rest, flexion, and extension motions.

The experiment was separated into two parts (1) Training
motion to estimate the parameters of the muscles model
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FIGURE 1 | Each motion composed of 2 s period of finger flexion, rest, extension, rest (sum up to 8 s per motion), One experiment consisted of 6 motions. In train

data, each experiment had isolate finger movement but in test data combine finger movement were performed (Thumb, Index, Middle, Ring, Pinky). In each

experiment we also included calibration period to record data for initial position of finger, offset voltage, and noise level.

(Kawase et al., 2012) (2) Testing motions to verify the
proposed method. The experiment was set up to minimize the
interference between different finger motions to acquire a better
EMG signal.

During train experiment, subjects flexed finger to its
maximum range motion (around 0.9 ± 0.175 rad or 162 ±

10◦) for 2 s, rested for 2 s, extended the same finger to its
maximum range motion (around −0.20 ± 0.175 rad or −36 ±

10◦) for 2 s, and rested for another 2 s. This cycle was repeated 6
times per experiment. Figure 2 shows the first cycle of a sample
train experiment from a single subject. Likewise, in each test
experiment the flexion-extension-rest cycle was repeated twice
per finger, for a total 10 cycles.

Due to the interconnection between finger muscles, no subject
can control each finger in total isolation. When attempting to
move the ring finger, it will likely cause movements in the middle
and pinky fingers. However since our aimwas to study the natural
motion of the human finger, the subjects were instructed to move
a finger without attempting to resist the motion of other fingers,
which should be as relaxed as possible.

2.3. Independent Component (IC) Analysis
Independent Component Analysis separates independent
sources linearly mixed in several sensors. As we assumed that
the signal from the muscles should be scattered to many sensors
around the forearm, this method was used to extract the EMG
signal of muscle groups that responded to flexion and extension
of specific fingers.

EMG data were loaded into MATLAB using MoBILAB
toolbox51 and exported to the EEGLAB version 15 (https://sccn.
ucsd.edu/wiki/EEGLAB) to perform the following preprocessing:
re-sampling, band-pass filtering between 5 and 200 Hz and the
data were resampled to 500 Hz to reduce computational time.
Among several ICA algorithms in EEGLAB, we used adaptive
component analysis (AMICA) due to following features (Palmer
et al., 2012):

• Adaptive Source Densities: AMICA uses a mixture of
Generalized Gaussian densitymodel to estimate source density

which results in an extremely good fit between the density
model and the actual density of the source is estimated.

• Multiple/Mixture Models: AMICA allows multiple ICA
models to be learned simultaneously, automatically
segmenting the data into regions of local stationarity,
and returning a set of components for each model. AMICA
can also be set to share components between models to
increase estimation efficiency.

• Data Likelihood (Model Probability): joint probability
distribution of each model is used to allowing rejection of
unlikely data, as well as classification of new data.

• Parallel Implementation: program can use multiple cores in
single workstation (using portable OpenMP code), as well as
multiple nodes in a cluster (using portable MPI code). All
binaries allow multi-core (SMP) execution. Only the Linux
version currently supports clusters (we use the freely available
Rocks / Sun Grid Engine).

All calculation was perform in middle to high end computer with
specification:

• OS Name Microsoft Windows 10 Pro System Type x64-based
PC.

• Processor Intel(R) Xeon(R) CPU E5-1680 v4 @ 3.40GHz, 3401
Mhz, 8 Core(s), 16 Logical Processor(s).

• Installed Physical Memory (RAM) 64.0 GB.
• Intel(R) C610 series/X99 chipset.
• NVIDIA Quadro P2000.

Also AMICA has a capability to learn a mixture of ICA models
including but not limit to the ones related to muscles activity.

In order to determine the source of the IC signal, we
compared its location with the anatomical data. We converted
the weight of each IC into a geometry or topology plot,
where the color indicates the weight a particular IC assigned
to each sensor in the EMG array as shown in Figure 3. the
CC between every IC component with finger flexion and
finger extension were calculated. The IC with the largest
16 CC values was displayed along with its topology plot
to remove motion noise in order to find the best IC
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FIGURE 2 | Time serial data of the first cycle of train experiment from a single subject, separate each period in one experiment according to stimulus signal (trigger) to

observe changing between finger angle (thumb), and EMG signal (sensor channel 2). In each train experiment of our experiments were conduct in the same manner.

FIGURE 3 | Configuration (July 2018) of array EMG system with topology plot display IC weight as color from blue to red. This plot was invented to investigate the

relation between weight of each channel in minimal time.

from the location that corresponds to the anatomical data
(see Figure 4).

2.4. Topology Plot of IC Weight
The topology plot shows the weight of the IC from sensors, which
were separated into two parts that represent flexion (inner arm)
and extension (outer arm) muscle groups, as shown in Figure 3.

Flexion muscle group consisted of A1–A32 and C1–C16.
Likewise, the extension muscle group consisted of B1–B32
and C17–C32. The sensors were arranged in a zigzag pattern due
to the configuration of bio-semi sensor which group sensors into
4 sensors per group and limit the distance between the sensors. In
order to simplify the sensor placement, the image of the topology
plot was used to replace the sensor channel name and showed
the relative geometry location of sensors on forearm. From here
onwards, we described the array EMG system in terms of the
topology plot rather than the sensor channel labels.

The EMG signals acquired from the device were separated
according to the anatomical data of the subject. The general

concept of muscle locations according to finger andmotion of the
finger were shown (see Figure 5). The signal of each monopole
EMG signal was compared with the finger motion to find the
electrode that provided the best-fitted EMG signal for a specific
finger’s flexion and extension.

2.5. Realsense With
Convolutional-Pose-Machines Finger
Tracking
To have a ground-truth measurement of the finger angles,
we used the convolutional-pose-machines by tensorflow (Wei
et al., 2016), a state-of-the-art pose estimator, to detect the
finger position in 2D space (see Figure 6). The 21 joints’ 2D
position from the five fingers were fed into a hand-finger-model,
which was trained using example images from a Realsense depth
camera. The default lengths of each finger were recorded in the
calibration period of each experiment (see Figure 2). A low-pass
filter with a cutoff frequency of 1 Hz was applied to the data to
reduce noise and error during pose estimation.
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FIGURE 4 | After compare normalize filtered EMG signal with finger motion, 16 highest CC values was displayed along with its topology plot to remove some

component which likely be motion noise (large area of signal), sensor detach (signal from one sensor with large reverse sensor), and co-contraction of other muscles

(anatomical data that do not match with motion).

FIGURE 5 | For EMG signal, the average of signal from area which co-response to anatomical finger muscles location was used. The area was indicated by red color.

FIGURE 6 | Example of convolutional-pose-machines by tensorflow in the preliminary experiment. The finger angle is the normalized root mean square error (NRMSE)

of finger 2D position detected by convolutional-pose-machines. The direction of finger motion (forward or backward from camera) is indicated by stimulus or trigger

signal.

Finger angle (θf ) is composition of Trigger (Tdir) provide
direction of flexion and extension with Normalized root-mean-
square error (NRMSE) as shown in Equation 1. The value of

Trigger is depended on experiment trigger value, flexion motion
is 2.094 radian or 120 degree and extension motion is −0.523
radian or−30 degree.
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θf = Tdir · NRMSDf (1)

Finally, low-pass and median filters were applied to reduce
noise in the data from both the camera and the estimated
finger positions from the convolutional-pose-machines. In some
subject, adjustment between every rest period was required
because the subjects moved their hand in unexpected direction
and the camera cannot capture the finger motion. The motion
data was recorded throughout the experiment to confirm that
convolutional-pose-machines were able to detect the fingers at
all time. If not, researcher would ask the subject to redo that part
of experiment.

To confirm the performance of the Realsense with
convolutional-pose-machine’s finger tracking, we used
conventional motion tracking using an OptiTrack with Baseline
Upper Body + Fingers (33). However, this system could only
track three fingers (Thumb, Index, and Pinky) at a time. Thus,
the Thumb, Index and Pinky fingers were used to determine
the match in the finger angle between the convolutional-pose-
machine and the Optitrack system. Their CC were high at 0.9040
± 0.1, implying that the convolution-pose-machine provides an
accurate ground-truth measurement of the finger angles.

2.6. EMG Data Acquisition
Participants sat on the chair and were given instructions from
a screen placed 0.5 m in front of them. Subject performed the
finger motion in front of the Realsense camera that captured their
motion. The array EMG system was attached to the right forearm
of the participants.

The experimental program was created usingMATLAB 2015b
(The MathWorks, Inc., U.S.A.), and the visual stimuli were
presented on a 19-inch LCD. We acquired EMG using a Biosemi
Active Two amplifier system with active sensors (Biosemi,
Amsterdam, Netherlands). EMG signals were recorded from 96
positions with 24-bit resolution. Lab Streaming Layer (Kothe,
2014) was used to synchronize the EMG, finger position, and
the experimental program for signal processing. EMG signals
were acquired at a sampling rate of 2048 Hz. The electrodes were
separated into three groups of A, B, and C. Group A represents
flexion muscles located in the inner forearm. Group B represents
extensor muscles, which are located in the outer forearm. Group
C is optional for the subject who has long arm. The electrodes
were separated into two groups of 16-flexion and 16-extension

electrodes. The active and passive reference electrodes (CMS
and DRL electrodes) placed between the hand and upper arm.
However, in subjects that the distance between the hand and
upper arm are too far a part for CMS and DRL electrodes to
activate, the CMS and DRL electrodes were placed on the back of
the subject hand 4 cm apart as shown in Figure 7. This alternative
method might increases noise but is unavoidable.

2.7. Finger Angle Estimation Model
2.7.1. Musculoskeletal Model
Musculoskeletal model was developed from Mykin model (Shin
et al., 2009), represented by flexor and extensor muscles connect
to one joint with tendon, torque of muscles (τi) represented by
muscles contraction (u), string constant (k0 and k1), and length
of muscles (l0 and l1) as shown in Figure 8 (Kawase et al., 2012).
Thus, the torque of joint was expressed by sum of all torques from
flexor and extensor muscles as shown in Equation (2).

τi =

2
∑

n=1

an(k0,n + k1,nun)(l0,n + l1,nun − anθi) (2)

The parameter τi was torque of finger i, an denoted moment
arm of muscle n; k0,n, k1,n, l0,n, l1,n parameters defined the
characteristics of muscle n (must be positive value), θi indicated
the joint angles of finger i, where angle in flexion direction was

FIGURE 8 | Musculoskeletal model was developed from Mykin model (Shin

et al., 2009), represented by flexor and extensor muscles connect to one joint

with tendon, torque of muscles (τi ) represented by muscles contraction (u),

string constant (k0 and k1), and length of muscles (l0 and l1).

FIGURE 7 | General position of Bio-semi electrode sensor in all experiment, The active and passive reference electrodes (CMS and DRL electrodes) placed between

the hand and upper arm. However, in subjects that the distance between the hand and upper arm are too far part for CMS and DRL electrodes to activate, the CMS

and DRL electrodes were placed on the back of the subject hand 4 cm apart. This alternative method might increase noise but unavoidable.
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expressed as positive. Direction indicator of moment arm were
expressed as a1 > 0, a2 < 0 due to difference in position of the
muscles (Kawase et al., 2012).

Equilibrium point was defined as the angle, which torque
generated by muscles was balanced to zero and no external force
was applied to the joints as shown in Equation (3) (Kawase et al.,
2012). Equilibrium point was calculated by solving Equation (2)
for the joint angle with condition that τi = 0.

θ
eq

f ,i
=

∑2
n=1 an(k0,n + k1,nun)(l0,n + l1,nun)

∑2
n=1 an(k0,n + k1,nun)

(3)

The parameter θ
eq

f ,i
was equilibrium point which torque generated

by muscles was balanced to zero and no external force was
applied to the joints of finger i.

Parameter k0,n, k1,n, l0,n, and l1,n were estimated with a
nonlinear regression using 2 sets of training data, (1) data from 5
trials of single finger motion (train) (2) data from 1 trial of mix
finger motion (test). In parameter estimation, non-zero values
in a, k0, k1, l0, and l1 were calculated, in order to predict finger
angle so that it minimize the root-mean-squared errors of the
predicted angles.

2.7.2. Linear Regression
LRM is a linear approach to find the relationship between a scalar
response and one or more explanatory variables. In this paper,
LRM modeled the relation between EMG or IC signal and finger
angle as Equation (4).

θ lif ,i = βi,0 + βi,1 ∗ ui,1 + βi,2 ∗ ui,2 + ǫ (4)

Where θf ,i was finger angle (Thumb, Index, Middle, Ring, Pinky).
βi,0 was finger angle-intercept. βi,1 was regression coefficient
for flexor muscles. βi,2 was regression coefficient for extensor
muscles, ui,1 was EMG or IC signal from flexor muscles, ui,2
was EMG or IC signal from extensor muscles, and ǫ was the
error term.

βi was estimated using MATLAB 2015b (The MathWorks,
Inc., U.S.A.), function regress with 2 input and 1 output from
train data and 1 test data. After that variable was used to estimate
finger angle using the Equation (4) without error term.

2.8. Performance Indicators
Due to large number of subjects and trials include in this study,
we would like to represent the performance of our proposed
system using performance indicators average from all subjects.
We select 2 indicators of correlation coefficient (CC) and Root-
mean-square-error (RMSE) with mean and standard deviation.

2.8.1. Correlation Coefficient
The correlation coefficient (CC) is a statistic measurement
of the strength of relationship between two variables. The
number should be between −1.0 and 1.0. Correlation of 1.0
shows a perfect positive correlation (increase and decrease the
same amount). A correlation of 0.0 shows no relationship
between two variables, and a correlation of −1.0 shows a

perfect negative correlation (inverse). The equation represents
correlation coefficient was shown in Equation (5).

r =
1

n− 1

n
∑

i=1

(

xi − x̄

Sx

) (

yi − ȳ

Sy

)

(5)

Where n was number of sample, x and y were two variables, and
S was standard deviation of each variable set.

The strength of relation based on the value of the correlation
coefficient. For example, a value of 0.2 shows weak positive
relationship between two variables and likely insignificant.
Experts do not consider correlations significant until the value
surpasses at least 0.8 and correlation coefficient with an absolute
value of 0.9 or higher represent a very strong relationship.

2.8.2. Root-Mean-Square-Error
The root-mean-square-error (RMSE) is a frequently used
measurement of the difference between 2 variables. The RMSE
represents the square root of the differences between predicted
values and observed values. In other words, it represented the
concentration of data around the line of best fit. The equation
represents root-mean-square-error was shown in Equation (6).

RMSE =

√

∑n
i=1

(

xi − yi
)2

n
(6)

Where n was number of sample, x and y were two variables.

3. RESULTS

The flow of signal processing started with the collection of
monopole EMG data from the 96 channel Bio-semi sensor.
These raw signals required re-reference (using average reference)
and band-pass filtering between 5 and 200 Hz to reduce noise
(Shaw and Bagha, 2012). The EMG channels for each finger were
selected with two criteria: (1) It has to be within the area where
we expect the muscle to be located as shown in Figure 5; (2)
That channel has the highest correlation between EMG signal and
ground-truth finger motion.

The selected EMG channels were fed into AMICA to find the
ICs. Using the topological plots, the IC signal that matched with
the general anatomical data was selected and used as candidate
for themuscle signal. After AMICA, the EMG and IC signals were
rectified and low-pass with cut-off frequency about 3 Hz filtered
(Koike and Kawato, 1995).

The EMG and IC signals were fed into the MSM and
LRM to obtain estimation of the finger angle from each
method (see Figure 9). These estimation were compared with the
ground-truth finger angles from the convolution-pose-machine
to calculate the CC (see Figure 10). In order to test the hypothesis
that the CC value of IC and EMG were significantly different, a
paired t-test was used. The p-values of CC value between IC and
EMG were below 0.05 which considered statistically significant.

From now on, statistic analysis result from MSM using
EMG and IC signal will be called MSM-EMG and MSM-
ICA, respectively. Likewise, statistic analysis result from LRM
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FIGURE 9 | Time series data of estimate finger angle and the ground-truth finger angle from the convolution-pose-machine.

FIGURE 10 | Signal processing flow. Bio-semi sensor collected surface EMG signal from subject and converted to EMG signal using average reference and band

pass filter between 5 and 200 Hz. The selected EMG channels were fed into AMICA to find the IC. Both EMG and IC were used to find muscle variables and

regression coefficient using ground-truth finger angle from convolutional-pose-machines. Finally, statistical analysis between MSM-EMG, MSM-ICA, LRM-EMG, and

LRM-ICA with ground-truth finger angle were performed to confirm the performance of our proposed method.

using EMG and IC signal will be called LRM-EMG and LRM-
ICA, respectively.

Figures 11, 12 showed the CC values in a boxplot and RMSE
value in barplot from all subjects for each finger. MSM-ICA

was represented in red boxplot with red area, and MSM-EMG

was represented in red boxplot with green area. Likewise, LRM-
ICA was represented in blue boxplot with red area, and LRM-
EMG was represented in blue boxplot with green area. Here,
the train data were used to determine the parameters of the
MSM, and also to find the ICs. Then, the estimated finger angles
were obtained from the test experiment for each of method.
The correlation between these estimated finger angles and the
ground-truth finger angles were computed (see Figure 11).

The first analysis used train data to find finger muscle
variables and regression coefficient in each finger. Then we
used test data to estimate finger angle (see Figure 11) and
did statistical analysis. The result was CC value comparison
between estimated finger angle from MSM, LRM methods and
ground-truth finger angle from Realsense with convolutional-
pose-machines finger tracking.

The second analysis used one test experiment only to
determine finger muscle variables and regression coefficient in
each finger. The estimated finger angles from the MSM and
LRM were compared with the ground-truth finger angle from

the remaining test experiments (see Figure 12). This analysis was
done to demonstrate the proposed algorithm’s ability to estimate
finger angles using a smaller dataset.

4. DISCUSSION

Although the EMG signals in combination with MSM and LRM
were highly correlated with the ground-truth, the ICA combined
with the MSM was even better at estimating the finger angles.
This difference between the MSM-ICA and MSM-EMG, LRM-
ICA and LRM-EMG is explained by the robustness of the
ICA approach to reject noise and motion artifacts in the EMG
signal. Table 1 show summary of measured performance of our
proposed method, we use two indices of performance for the
two estimation methods: correlation coefficients (CC) and the
root-mean-squared error (RMSE).

The first analysis (Figure 11) used test data to find the variable
and train model then used such variable and model to estimate
finger angle and compared with test data. The objective was to
find the performance in an optimal situation that the variable or
model was already trained and used for finger angle estimation.
This analysis confirmed the performance of MSM-EMG with
average CC value at 0.90 ± 0.30 due to high signal to noise
ratio of EMG signal itself and clearly distinguishable activation

Frontiers in Neurorobotics | www.frontiersin.org 8 September 2019 | Volume 13 | Article 75

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Stapornchaisit et al. Finger Angle From Array EMG

FIGURE 11 | The correlative coefficient value in boxplot manner and root-mean-squre-error in barplot manner of all subjects each performed test experiment (number

of data = 50) using variables estimated from train data (5 experiments for each finger) with cross variable. Comparison of four type data between musculoskeletal

model (MSM) using ICA (MSM-ICA), musculoskeletal model (MSM) using EMG (MSM-EMG), linear regression model (LRM) using ICA (LRM-ICA), linear regression

model (LRM) using EMG (LRM-EMG).

pattern. LRM-EMG performed worst with average CC value
at 0.55 ± 0.05 due to the fact that relation between EMG
signal and finger angle was not completely linear. Considering
RMSE, although MSM-ICA and MSM-EMG showed higher
RMSE around averagely 2.0◦. The impact of ICA still visible in
comparison. As a result, the MSM-ICA and LRM-ICA method
was able to provide small increase in performance due to noise
reduction and better signal to noise ratio.

The second analysis (Figure 12) used test data from one
experiment to find the variable and train model. Then we used

such variable and model to estimate finger angle and compared

with other test experiment data (do not use in training). This
method mimic the actual prosthetic hand control training model

as the train data should be minimize while subject might not

fully understand the stimulus and move finger randomly. This
analysis also confirmed the performance of MSM-EMG when
used with low signal to noise ratio with CC value at 0.70 ± 0.10
and LRM-EMG with CC value at 0.55 ± 0.10. In this case, the
MSM-ICA and LRM-ICA show significant higher performance
and better robustness with CC value at 0.84 ± 0.10 and 0.76 ±

0.06, respectively. Considering RMSE, MSM-ICA shows lower

error of 3.0 ± 1.0, 2 ± 1.0, and 4.0 ± 1.0 degree compare to
MSM-EMG, LRM-ICA, and LRM-EMG, respectively.

The performance between MSM-ICA and MSM-EMG
method showed 10% (CC 0.10) increased in CC values and
3.0−5.0◦ lower average RMSE. On all fingers, most CC
values were higher than 0.7, which indicated a strong uphill
linear relationship.

Likewise, the performance of LRM-ICA and LRM-EMG
method showed 20% (CC 0.20) improved performance with
1.0–3.0 degree lower average RMSE.

The difference between ICA and EMGmethods indicated that
the ICA method can reduce noise and increase the signal to
noise ratio for the MSMmodel with high reliability. However the
ICA method needs human supervision, as the motion artifact of
muscles are higher when size of muscles increased.

5. CONCLUSIONS

In this research, we proposed new method to replace
conventional EMG sensor placement with array EMG system.
The array EMG system covered forearm by Bio-semi sensor and
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FIGURE 12 | The correlative coefficient value in boxplot manner and root-mean-square-error in barplot manner of all subjects each performed test experiment

(number of data = 40) using variables estimated from test data (1 experiments for each finger). Comparison of four type data between musculoskeletal model (MSM)

using ICA (MSM-ICA), musculoskeletal model (MSM) using EMG (MSM-EMG), linear regression model (LRM) using ICA (LRM-ICA), linear regression model (LRM)

using EMG (LRM-EMG).

detected the signal simultaneously. The signal source can be
determined after the experiment. And the IC can be analyzed
to find better source of signal. The setup time of this system is
about 30 min with two operators. There is no need to find the
location of muscles which is advantageous in case of the multiple
number of muscles or unknown location. In post experimental
analysis, the problem of muscle movement under the skin do not
affect the signal acquisition as in the conventional EMG sensor.
Also the proposed method provided overall better signal to noise
ratio and was able to use ICA to estimate inside muscles activity
(see Table 2).

The actual finger angle was calculated from the NRMSE
of convolutional-pose-machines-tensorflow with the trigger to
determine the direction of finger motion. The EMG signal
from flexor and extensor muscles were determined by CC value
between finger motion and EMG signal. IC was extracted from
all EMG signals using AMICA (Palmer et al., 2012). The EMG
and IC signals that most fitting flexion period were considered
the EMG and IC signal of flexor muscles. Likewise, the EMG
and IC signals that most fitting extension period were considered

the EMG and IC signal of extensor muscles. The performance of
our method showed relatively higher CC value using MSM-ICA
and LRM-ICA to estimate finger angle. For practical application
in robotic hand, we designed the experiment so that all fingers
move in flexion and extension manners continuously without
interruption. This experiment showed performance according to
the subject within the acceptable range of CC value: 0.7 ± 0.2.
In the case of prosthetic hand control for amputee subject, the
muscle locations can be differ from general anatomy data and
result in difficulty to find the best location for finger muscles.
The proposed system provided a bypass method to collect
the data from the entire forearm and estimated the location
of muscles.

The advantages of our system over conventional EMG
system are:

• Standard protocol for all subjects participate in the experiment
(Reduce complexity).

• Reduce time used for select location of EMG sensor due to
anatomy variation of each subject.
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TABLE 1 | Average statistic value (10 subjects) of Figures 11, 12.

Exp Value
Thumb Index Middle Ring Pinky

IC EMG IC EMG IC EMG IC EMG IC EMG

MSM

train

V

test

CC mean 0.861 0.805 0.936 0.800 0.905 0.850 0.910 0.858 0.941 0.892

CC std 0.180 0.169 0.042 0.185 0.086 0.127 0.112 0.147 0.042 0.108

RMSE mean 15.81 18.36 12.58 17.95 15.13 17.95 14.38 16.75 13.02 15.56

RMSE std 7.430 5.880 3.100 5.540 5.350 5.120 4.570 5.730 3.580 4.570

LRM

train

V

test

CC mean 0.734 0.599 0.662 0.460 0.729 0.568 0.767 0.640 0.785 0.601

CC std 0.134 0.183 0.180 0.174 0.106 0.156 0.133 0.190 0.101 0.201

RMSE mean 14.75 15.25 15.02 15.19 14.37 15.11 14.30 14.86 14.13 14.68

RMSE std 3.222 2.638 2.193 2.241 2.459 2.709 1.548 1.638 1.412 1.579

MSM

test

V

test

CC mean 0.843 0.673 0.803 0.650 0.858 0.681 0.860 0.772 0.907 0.725

CC std 0.142 0.229 0.191 0.210 0.103 0.188 0.172 0.189 0.055 0.205

RMSE mean 10.01 13.72 10.43 13.09 9.69 13.90 8.85 10.46 7.25 12.77

RMSE std 6.037 6.156 7.095 5.425 6.228 6.193 5.642 4.936 1.801 7.299

LRM

test

V

test

CC mean 0.730 0.607 0.709 0.480 0.726 0.554 0.785 0.680 0.815 0.616

CC std 0.177 0.170 0.173 0.200 0.112 0.146 0.134 0.183 0.087 0.206

RMSE mean 12.20 14.85 11.70 15.43 14.10 15.16 10.32 12.15 9.80 14.36

RMSE std 5.477 6.550 4.121 6.785 9.210 6.049 2.884 3.502 2.750 7.852

TABLE 2 | Array EMG system compare to conventional EMG sensor.

Array EMG system EMG sensor

Do not need information of

muscles location

✓ ✗

Do not need predefined

number of muscles

✓ ✗

Can handle muscles

location changes during

experiment

Post analysis adjustment ✗

Use ICA to reduce noise ✓ ✗

Signal to noise ratio 3.0–100.0 1.2–4.5

• Able to detect deep muscle (such as finger muscles) EMG
signal using multiple sensors and signal processing.

• Able to compensate for muscle movement under skin that
generate disruption of EMG signal caused by adjacent
joint movement.

• Higher overall performance using the same
regression method.

• Do not limit number of muscles.

And the disadvantages are:

• Require at least 30 min before experiment to attach sensors.
• Target area should not move during experiment.

In the future, we would like to combine many sensor
signals into two groups of single joint motion by developing
the MSM model to be able to use multiple muscles to
estimate joint angle. The machine learning and deep learning
also able to utilize Array EMG system better than normal
linear regression.
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