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Abstract
Rapid environmental changes impact the global distribution and abundance of spe-
cies, highlighting the urgency to understand and predict how populations will re-
spond. The analysis of differentially expressed genes has elucidated areas of the 
genome involved in adaptive divergence to past and present environmental change. 
Such studies however have been hampered by large numbers of differentially ex-
pressed genes and limited knowledge of how these genes work in conjunction with 
each other. Recent methods (broadly termed “pathway analyses”) have emerged that 
aim to group genes that behave in a coordinated fashion to a factor of interest. These 
methods aid in functional annotation and uncovering biological pathways, thereby 
collapsing complex datasets into more manageable units, providing more nuanced 
understandings of both the organism-level effects of modified gene expression, and 
the targets of adaptive divergence. Here, we reanalyze a dataset that investigated 
temperature-induced changes in gene expression in marine-adapted and freshwater-
adapted threespine stickleback (Gasterosteus aculeatus), using Weighted Gene Co-
expression Network Analysis  (WGCNA) with PANTHER Gene Ontology (GO)-Slim 
overrepresentation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis. Six modules exhibited a conserved response and six a divergent response 
between marine and freshwater stickleback when acclimated to 7°C or 22°C. One 
divergent module showed freshwater-specific response to temperature, and the re-
maining divergent modules showed differences in height of reaction norms. PPARAa, 
a transcription factor that regulates fatty acid metabolism and has been implicated in 
adaptive divergence, was located in a module that had higher expression at 7°C and 
in freshwater stickleback. This updated methodology revealed patterns that were 
not found in the original publication. Although such methods hold promise toward 
predicting population response to environmental stressors, many limitations remain, 
particularly with regard to module expression representation, database resources, 
and cross-database integration.
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1  | INTRODUC TION

Rapid environmental changes predicted by climate models will im-
pact the global distribution and abundance of species, highlight-
ing the urgency to understand and predict how populations will 
adapt or perish under changing environments (Somero, 2010). The 
mechanisms by which species respond to, tolerate, and mitigate 
these changes are fundamentally important toward understand-
ing ecological and evolutionary processes (Bernatchez et al., 2010; 
Dennenmoser, Vamosi, Nolte, & Rogers, 2017; Yeaman et al., 2016). 
With the advent of sequencing technologies, there is unprecedented 
ability to elucidate the molecular variation that explains the visible 
phenotypes on which selection and evolution ultimately act (Dalziel, 
Rogers, & Schulte, 2009; Todd, Black, & Gemmell, 2016). While ge-
nome sequencing has allowed questions based around population 
structure, adaptation, and speciation to be resolved at the level of 
DNA (e.g., Dennenmoser et al., 2017; Rogers & Bernatchez, 2007), 
it is ultimately how the genome is expressed over time and space 
that invokes cellular to organism-wide changes (Pavey, Bernatchez, 
Aubin-Horth, & Landry, 2012; Pfennig & Ehrenreich, 2014) upon 
which evolution can act. Gene expression is shaped by both genetic 
and environmental components and is considered a molecular phe-
notype (Aubin-Horth & Renn, 2009; Pavey, Nosil, & Rogers, 2010). 
Incorporating molecular phenotypes therefore provides an opportu-
nity to test hypotheses on how evolution has shaped the expression 
of genes to result in adaptation and persistence to novel environ-
ments (Gibbons, Metzger, Healy, & Schulte, 2017; Hoke, Adkins-
Regan, Bass, McCune, & Wolfner, 2019; Pfennig & Ehrenreich, 2014; 
Schneider & Meyer, 2017).

Changes in gene regulation have long been hypothesized to 
play a crucial role in driving rapid evolutionary changes (Britten & 
Davidson, 1969; Saetre et al., 2004; Schulte, 2001; St-Cyr, Derome, 
& Bernatchez, 2008). To investigate gene expression as altered by 
some factor(s) of interest, quantification of RNA content is widely 
used as a proxy, though it actually captures the dynamic outcome of 
RNA production, longevity, and degradation. Differential expression 
(DE; the up- or down-regulation of a gene in respect to another en-
vironment, phenotype, etc.) is frequently used to determine genes 
that may be correlated to and possibly be adaptive in response to the 
condition of interest. DE has been used to investigate questions in a 
broad array of systems and evolutionary applications (e.g., Christie, 
Marine, Fox, French, & Blouin, 2016; Harrison, Hammond, & Mallon, 
2015). However, while DE analysis results in a list of genes that may 
be associated with a given phenotype or factor, the results typically 
provide limited clear inference into biological functions or pathways. 
It is also becoming increasingly evident that gene products (mRNA 
and functional noncoding RNA (Gerstein et al., 2007)) often work 
in conjunction with each other (de la Fuente, 2010; Khatri, Sirota, 

& Butte, 2012) in a carefully regulated manner that contributes to 
the tight fits between organisms and their environment—and these 
noncoding RNA may not be measured by gene expression method-
ologies. Additionally, DE depends on the hypothesis that the most 
evolutionarily important genes will be the most expressed, which 
has been shown not to be the case, especially for key regulators 
(Hudson, Dalrymple, & Reverter, 2012). Finally, because DE analysis 
does not necessarily capture all the genes underlying the response 
to the factor, it makes it increasingly difficult to connect the genes 
into biologically meaningful explanations (Hudson et al., 2012).

Pathway analyses may help connect the relationship between 
molecular phenotypes, biological processes, environmental 
changes, and adaptive phenotypes (Gollery et al., 2006; Hudson 
et al., 2012; Khatri et al., 2012). These methods group genes that 
respond similarly to a factor of interest, based on the hypothesis 
that clustered genes may belong to common pathways and be reg-
ulated by the same transcriptional network (van Dam, Võsa, Graaf, 
Franke, & Magalhães, 2017; Eisen, Spellman, Brown, & Botstein, 
1998; Ihmels, Levy, & Barkai, 2004; St-Cyr et al., 2008). Pathway 
analyses span a broad range of techniques—including functional 
classification of genes from different databases (e.g., The Gene 
Ontology (GO) resource containing annotations deduced primar-
ily by sequence similarity to model organisms (Ashburner et al., 
2000; Carbon et al., 2019) and PANTHER GO-Slim database rep-
resenting curated, evolutionarily conserved GO annotations; 
Mi, Muruganujan, Ebert, Huang, & Thomas, 2019), construction 
of gene modules by grouping genes whose expression are posi-
tively or negatively correlated to each other across factors of 
interest (e.g., Weighted Gene Co-expression Network Analysis 
(WGCNA); Langfelder & Horvath, 2008), and detection of known 
pathways which represent the current knowledge of how gene 
products interact, including repressors and transcription factors 
(e.g., The Reactome Knowledgebase; Fabregat et al., 2018 and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database; 
Kanehisa, Sato, Kawashima, Furumichi, & Tanabe, 2016; Ogata 
et al., 1999). Many of these methods (especially GO term assign-
ment) are frequently used in conjunction with each other and with 
DE analysis. For example, Filteau, Pavey, St-Cyr, and Bernatchez 
(2013) used WGCNA and GO terms in lake whitefish (Coregonus 
clupeaformis) to show that bone morphogenetic protein and cal-
cium signaling may be conserved mechanisms that rapidly evolve 
in response to trophic behavior, while Healy, Bryant, and Schulte 
(2017) coupled DE with GO terms and KEGG pathway analysis to 
illustrate that different mitochondrial genotypes may have lim-
ited influence in killifish (Fundulus heteroclitus) response to cold 
acclimation. Additionally, WGCNA has been shown to be powerful 
in capturing coordinated, low-level changes across hundreds of 
genes in response to a stressor where DE analysis failed to detect 
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enough genes to establish biological inference (Orsini et al., 2018; 
Stanford & Rogers, 2018). However, functional annotation of the 
genes in these modules is still limited by current knowledge (e.g., 
Orsini et al., 2018; Rose, Seneca, & Palumbi, 2016).

Overall, while such pathway analyses have shown promise, test-
ing hypotheses related to the molecular mechanisms that facilitate 
ecological divergence and how populations respond to environmen-
tal stressors remain relatively limited. As gene expression is impacted 
by many internal and external factors which makes elucidating the 
response to the factor of interest difficult, the combination of con-
trolled common garden experiments in association with a ubiquitous 
environmental stressor under an integrated framework of elucidat-
ing pathways may be better suited to reveal the underlying biological 
inference of population responses. This is particularly important as 
environmental stressors can invoke genome-wide changes in gene 
expression (Orsini et al., 2018; Rose et al., 2016); pathway analyses 
can reduce the complexity from thousands of genes that are respon-
sive to a factor to a few hundred groups or pathways (Khatri et al., 
2012).

Temperature, an “abiotic master factor” (Hall, Stanford, & 
Hauer, 1992), is an environmental stressor that influences physi-
ology, behavior, and morphology and can induce changes in these 
associated traits (phenotypic plasticity) (Angilletta, 2009) affect-
ing the distribution and abundance of organisms (Reynolds & 
Casterlin, 1979; Sunday, Bates, & Dulvy, 2012; Viña, 2002). Many 
organisms, especially ectotherms, are particularly vulnerable due 
to their reliance on environmental temperature (Jarrold et al., 
2019). Temperature has been observed to simultaneously alter the 
expression of thousands of genes and different pathways (Healy 
et al., 2017; Long et al., 2013; Metzger & Schulte, 2018) and has 
shaped gene expression plasticity in response to temperature, ac-
tivating or suppressing key genes and pathways (Fuentes, Zuloaga, 
Valdes, Molina, & Alvarez, 2014). This has resulted in adaptive 
variation among species and ecotypes residing in different ther-
mal regimes (Todgham, Hoaglund, & Hofmann, 2007; Tschantz, 
Crockett, Niewiarowski, & Londraville, 2002). Yet, the extent to 
which populations can adaptively respond to forecasted changes 
in temperature is largely unknown (Donelson et al., 2019; Somero, 
2010; Sunday et al., 2012).

Threespine stickleback (Gasterosteus aculeatus) have experi-
enced widespread postglacial colonization of freshwater lakes and 
streams from marine habitats, with marine populations thought to 
closely resemble the ancestral state prior to the last ice age (Bell, 
1977; Hohenlohe et al., 2010; Walker & Bell, 2000; but see Morris, 
Bowles, Allen, Jamniczky, & Rogers, 2018) in contrast to derived 
freshwater populations that exhibit adaptive evolution in response 
to environmental stressors such as salinity change (Gibbons 
et al., 2017; McCairns & Bernatchez, 2010), competition/preda-
tion (Rogers et al., 2012), and different thermal regimes (Barrett 
et al., 2011; Gibbons, Rudman, & Schulte, 2016; Morris et al., 
2014). Lakes often have warmer summer temperatures and colder 
winter temperatures compared to marine habitats, which has 
been reflected in freshwater stickleback evolving larger thermal 

windows (Smith Wuitchik, 2019; Barrett et al., 2011). However, 
this change in thermal limit can be rapidly induced, with marine 
stickleback evolving cold tolerance similar to freshwater stickle-
back within three generations in semi-natural pools (Barrett et al., 
2011) and within a generation when acclimated to simulated fresh-
water winter temperature (Gibbons et al., 2016). Plasticity in gene 
expression also likely plays a role in freshwater sticklebacks’ re-
sponses to a thermally variable habitat. Derived freshwater stick-
leback populations have increased plasticity in gene expression 
compared to marine populations when acclimated to temperatures 
close to their thermal tolerance (Morris et al., 2014). This provides 
evidence that plasticity may be necessary to adaptation to novel 
environment, though it should be noted that suppression of plastic 
response may also be selected for (e.g., Morris & Rogers, 2013; 
Velotta, Ivy, Wolf, Scott, & Cheviron, 2018). Additionally, Morris 
et al. (2014) found that seven of these differentially plastic genes 
showed overlap with regions of divergence between freshwater 
and marine stickleback found in Jones et al. (2012) (Morris et al., 
2014). Yet, despite the intensive research toward understanding 
the role of temperature on gene expression and physiological 
changes, there has been relatively little application linking these 
to the functional pathways that bridge the two that may facilitate 
evolutionary resilience and recovery.

The objective of this study was to test the hypothesis that eco-
type-specific responses to temperature, as initially revealed through 
differential expression analysis, can be related to the modification 
of key biological processes and the pathways that underlie them. 
To do this, we first reanalyzed an experimental dataset that tested 
genomic norms of reaction in response to temperature for two rep-
licate populations of freshwater and marine threespine stickleback 
(Morris et al. (2014). Given that Morris et al. (2014) found support for 
the hypothesis that derived stickleback ecotypes evolved increased 
plasticity in response to temperature, we predicted that relevant 
gene modules (i.e., groups of potentially interacting genes) should 
exhibit parallel responses to temperature across replicate popula-
tions of the same ecotype. We tested these predictions with three 
predominant methods: WGCNA (Langfelder & Horvath, 2008) with 
PANTHER GO-Slim term (Mi et al., 2019) and KEGG pathway over-
representation for the modules (Kanehisa et al., 2016; Ogata et al., 
1999). We predicted (a) that GO term enrichment would return more 
cohesive biological processes as they were run on data-driven mod-
ules of co-responding genes rather than a list of DE genes and that 
there would be less terms returned when using annotations of higher 
quality; (b) that KEGG pathways relating to the GO terms would be 
enriched providing better insight into the mechanisms behind how 
the genes are connected; and (c) that adaptive divergence at seven 
genes known to differentiate ecotypes would be associated with 
those modules and pathways showing different responses between 
freshwater and marine stickleback. Finally, we discuss these results 
in the context of promises and limitations of these analyses and what 
is needed to overcome the challenges they pose in inferring the role 
and biological inference of differential gene expression in evolution-
ary applications.
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2  | METHODS

2.1 | Experimental design

The experimental design and data generation were conducted as 
per Morris et al. (2014). Briefly, threespine stickleback (Gasterosteus 
aculeatus) were collected from two freshwater (Cranby Lake, 
Texada Island, 49°42,000″, 124°30,000″ and Hoggan Lake, 
Gabriola Island, 49°36,000″, 124°01,020″) and two marine (Oyster 
Lagoon, 49°36,048.6″N, 124°1,046.88″ and Little Campbell River, 
49°104″, 122°45,052″) locations on the coast of British Columbia. 
Pure F1 families of ancestral marine and derived freshwater stick-
leback were generated and maintained at 17–18°C as eggs and 
juveniles and were then divided into 7°C or 22°C treatments, rep-
resenting temperatures close to their thermal limit. All fish were 
kept at 5–6 ppt. Multiple replicates per treatment were maintained 
in these conditions for 1,700 growing degree days. Two fish per 
population from each replicate were sampled (44 total). RNA was 
extracted from white muscle (a tissue with well-established plastic-
ity necessary for response to environment; Johnston, 2006) with 
dermal and skeletal tissue using TRIzol (Invitrogen)-chloroform 
(Chomczynski & Sacchi, 1987). cDNA was hybridized to the fully 
vetted, species-specific threespine stickleback microarray (Leder, 
Merilä, & Primmer, 2009), with one array per individual. Each mi-
croarray contained replicates of 20,021 unique transcripts totaling 
61,662 control and feature spots (details in Morris et al., 2014). 
Linear Model for Microarrays (LIMMA, Smyth, 2004, 2005) soft-
ware was used to perform between-array normalization using 
the quantile method on log2-transformed signal intensities. High-
intensity features were kept for further analysis if they passed 
threshold (>2.6 SD) on 85% of the 7 or 22°C arrays. After filtering, 
14,208 genes remained that form the basis of this analysis.

2.2 | Gene module construction

In preparation for using the normalized microarray data for network 
analysis, missing values were imputed through nearest neighbor av-
eraging using the impute.knn function of the impute package in R (v 
1.58; Hastie et al., 1999; Troyanskaya et al., 2001). Gene networks 
were created using the WGCNA package in R (v 1.68; Langfelder 
& Horvath, 2008), as follows. The cor function was used to obtain 
Pearson's correlation for patterns of co-expression between genes 
across samples. Soft thresholding power was chosen using the 
power estimate from the pickSoftThreshold function and the network 
inferred from co-expression data. Modules were detected by first 
building a topological overlap matrix from expression adjacencies 
(using the TOMsimilarity function), converting to a distance matrix, 
and building hierarchical clusters using the hclust function in the 
fastcluster package (Müllner, 2013). Clusters were dynamically cut 
using the cutreeDynamic function in the dynamicTreeCut package 
(Langfelder, Zhang, & Horvath, 2008). Finally, close modules were 
merged using the mergeCloseModules function in WGCNA. After 

modules were created and probes assigned to them, the eigengene 
(first principal component) of each module was calculated using the 
moduleEigengenes function of WGCNA.

2.3 | Association of modules to 
temperature and habitat

Two-way ANOVAs were used to determine associations between 
module eigengene expression and experimental factors (rearing 
temperature (7 or 22°C), habitat (freshwater or marine), and the 
interaction terms). Two-way ANOVAs were calculated for each 
module with both type II and type III sums of squares using the car 
package in R (Fox and Weisberg 2011). Where there was no signifi-
cant interaction, the effect of each treatment was determined from 
Bonferroni-corrected (Bonferroni 1936) type II sums of squares. We 
selected a conservative threshold to focus on the most significant 
results but without necessarily capturing the breadth of genes re-
sponding to the treatment. In modules where the interaction term 
was significant, the effects of individual treatments were tested 
using Bonferroni-corrected type III sums of squares. Interaction sig-
nificance was then assessed for all modules after Bonferroni correc-
tion. Modules showing significant differences in eigengenes across 
temperature, habitat, and/or the interaction after correction were 
selected for further analysis.

2.4 | GO term enrichment for significant modules

Genes contained within significant modules were prepared for 
Gene Ontology (GO) (Ashburner et al., 2000; Carbon et al., 
2019) term enrichment by first converting threespine stickleback 
Ensembl transcript IDs to PANTHER IDs using the getBM function 
in the R biomaRt package (v 2.40.5; Smedley et al., 2015). These 
PANTHER IDs were then loaded into PANTHER (http://panth​erdb.
org/ v 14.1; (Mi et al., 2019; Thomas et al., 2003), and a statis-
tical overrepresentation test was run using PANTHER GO-Slim 
Biological and PANTHER GO-Slim Molecular process annotation 
datasets (released: 2019-03-12) (Mi et al., 2019). Each module was 
tested against a reference list consisting of the PANTHER IDs for 
the 14,208 genes that passed filtering and tested using Fisher's 
exact test (Fisher 1936) and corrected for multiple correction using 
Bonferroni correction.

2.5 | KEGG pathway enrichment for 
significant modules

Threespine stickleback Ensembl transcript IDs for the module 
genes were converted to human and zebrafish (Danio rerio) NCBI 
Entrez IDs for compatibility in Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Kanehisa et al., 2016; Ogata et al., 1999) path-
way enrichment (KEGG does not recognize ENSEMBL IDs). This 

http://pantherdb.org/
http://pantherdb.org/
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conversion was done using the function getLDS in the R biomaRt 
package (v 2.40.5; Smedley et al., 2015). Because there is not a 
1:1 mapping of threespine stickleback Ensembl transcript IDs to 
Entrez Gene IDs (multiple Ensembl IDs map to a single Entrez ID 
and vice versa), we first created a reference list to convert threes-
pine stickleback Ensembl ID (14,208 genes) to Entrez IDs, remov-
ing any ambiguous mapping IDs.

Genes from each significant module were converted to human 
and zebrafish Entrez IDs using the above reference list. The en-
richKEGG function in the R package clusterProfiler (v 3.12.0; Yu, 
Wang, Han, & He, 2012) was used to enrich for KEGG pathways 
with Bonferroni correction for all significant modules. Three 
of these KEGG pathway were used in downstream analyses de-
scribed below.

2.6 | Mapping expression onto three 
KEGG pathways

We selected three significantly enriched pathways to visualize the 
expression profiles for the genes in those pathways (Bonferroni-
corrected p-value < .05). We endeavored to select pathways pre-
viously demonstrated to be involved in temperature acclimation 
of fish (Healy et al., 2017; Long et al., 2013; Metzger & Schulte, 
2018; Scott & Johnston, 2012). We selected spliceosome and ribo-
some biogenesis and oxidative phosphorylation. Log2 differential 
expression was calculated for freshwater and marine stickleback 
setting 22°C as the baseline (positive values thus indicating up-
regulation of genes at 7°C). Differential expression was visual-
ized using the pathview function in the R package Pathview (v 
1.24.0; Luo & Brouwer, 2013). For spliceosome and ribosome 
genes, freshwater and marine stickleback showed similar patterns 
of differential expression and freshwater stickleback expression 
profiles were arbitrarily picked over marines to be displayed. For 
oxidative phosphorylation, freshwater and marine stickleback ex-
hibited different expression changes between 22°C and 7°C and 
both are displayed.

2.7 | Assigning genes observed in divergent regions 
between freshwater and marine stickleback to 
modules and pathways

Morris et al. (2014) discovered seven genes (NOD-like receptor 
family CARD domain containing 5 (NLRC5), peroxisome prolifer-
ator-activated receptor alpha a (PPARAa), inhibin, alpha (INHa), 
obscurin-like 1 (OBSL1), insulin-like growth factor binding protein 
2a (IGFBP2a), SPEG, and a novel gene) that showed differential ex-
pression in response to temperature and corresponded to outlier 
regions of adaptive divergence between freshwater and marine 
stickleback found by Jones et al. (2012). To investigate the asso-
ciation of these regions to module and pathway analysis, we deter-
mined which module these genes were assigned to and whether 

they were found in significantly enriched human and/or zebrafish 
KEGG pathways.

3  | RESULTS

3.1 | Sixteen modules were associated with 
temperature, habitat, and/or the interaction

Of the 20,021 genes represented  on the  microarray, 14,208 
passed normalization and filtering. These genes were used to con-
struct the modules with WGCNA. Thirty-four modules were de-
tected (named, in order of most to least genes, ME01 to ME34), 
ranging in size from 20 genes to 4,752. Of these modules, 16 
(total of 10,335 genes; Table 1) were significantly associated with 
temperature, habitat, and/or the interaction between them after 
Bonferroni correction (p < .05) (Table 1).

3.2 | Six modules show response to temperature 
independent of habitat

Modules ME01, ME05, ME11, ME14, ME26, and ME33 were found 
to have eigengenes that differed between temperature treatments 
similarly for both freshwater and marine stickleback (Table 1). At 
7°C, four modules (ME01, ME05, ME11, and ME14) had higher ei-
gengenes and two modules (ME26 and ME33) had lower eigengenes 
when compared to 22°C (Table 1).

3.3 | Five modules responded to 
temperature and habitat

Modules ME02, ME09, ME10, ME22, and ME29 had eigengenes 
that differed between temperature treatments and also exhibited 
different levels of expression between freshwater and marine stick-
leback (Table 1). One module (ME02) had a lower eigengene at 7°C 
compared to 22°C, with freshwater stickleback having higher val-
ues across both temperatures (Table 1). Four modules had higher 
eigengenes at 7°C compared to 22°C, where freshwater stickleback 
had higher eigengenes at both temperatures for two modules (ME09 
and ME10) and lower eigengenes across both temperatures for two 
modules (ME22 and ME29) compared to marine stickleback (Table 1).

3.4 | One module shows response to temperature in 
a habitat-dependent manner

Module ME04 was found to have eigengenes that differed be-
tween temperature treatments in a habitat-dependent manner 
(Table 1). Freshwater and marine eigengenes were similar at 22°C 
with the eigengene for freshwater stickleback increasing at 7°C 
(Table 1).
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3.5 | Four modules responded to habitat in a 
temperature-independent manner

Module ME06 had higher eigengenes across temperatures in 
freshwater stickleback compared to marine stickleback (Table 1). 
Modules ME12, ME17, and ME24 had lower eigengenes across 
temperatures in freshwater stickleback compared to marine stick-
leback (Table 1).

3.6 | GO term enrichment success was variable 
across modules

Over 94% of genes (9,871 of 10,335) were successfully linked to 
a GO term using PANTHER IDs; however, ~60% did not belong to 
a GO term that has of yet been deemed to be evolutionarily con-
served (“unclassified”) in the PANTHER GO-Slim databases (Table 
S1). Though each module contained genes with GO-Slim term as-
signment, significant overrepresentation after Bonferroni correction 
of GO terms varied across modules, with 43.75% (seven modules: 
ME02, ME05, ME09, ME12, ME17, ME29, and ME33) exhibiting no 
significant enrichment of molecular or biological processes (Table 2). 
The remaining modules had overrepresentation for either molecu-
lar processes (ME06, ME11,and ME24), biological processes (ME01 
and ME22), or both (ME04, ME10, ME14, and ME26) (Table 2). Using 

PANTHER GO-Slim biological processes to detect evolutionarily con-
served GO terms in modules associated with temperature returned 
35 overrepresented biological processes (Fishers’ exact test with 
Bonferroni correction p  <  .05; Table 2). Morris et al. (2014) found 
there to be 48 and 54 enriched GO terms for freshwater and marine 
stickleback, respectively, for genes up-regulated at 7°C and 22 and 
10 for genes up-regulated at 22°C (Fishers’ exact test p < .001).

The amount of overrepresented processes varied among mod-
ules. For example, modules ME01 and ME10 were significantly en-
riched for three and 18 biological processes (Fishers’ exact test with 
Bonferroni-corrected p-value < .05), respectively (Table 2). Broadly 
related molecular and biological processes were observed within 
a module (e.g., ATP synthesis in ME10, DNA-related processes in 
ME14).

3.7 | Human and zebrafish show similar KEGG 
pathway enrichment

There were 9,683 genes (68.2%) and 10,861 (76.44%) of the 14,208 
stickleback ENSEMBL IDs that unambiguously converted to human 
Entrez ID and zebrafish Entrez IDs, respectively (Table S1). For the 
significant modules, 7,257 of 10,335 genes (72.8%) mapped to a 
human Entrez ID and 8,035 of 10,335 genes (77.7%) mapped to a 
zebrafish Entrez ID (Table S1).

TA B L E  1   Number of genes and response of modules significantly associated with temperature, habitat, and/or the interaction between 
temperature and habitat

Module
Number of 
genes Temperature Habitat Temperature*Habitat Response

ME01 4,752 x     Higher at 7°C vs. 22°C

ME02 1,791 x x   Freshwater and marine both lower at 7°C. Freshwater higher 
than marine at both 7°C and 22°C

ME04 693 x   x Freshwater and marine similar at 22°C, both higher at 7°C but 
freshwater more so

ME05 565 x     Higher at 7°C vs. 22°C

ME06 471   x   Freshwater higher than marine across temperatures

ME09 389 x x   Higher at 7°C. Freshwater higher than marine at both 
temperatures

ME10 364 x x   Higher at 7°C. Freshwater higher than marine at both 
temperatures

ME11 334 x     Higher at 7°C vs. 22°C

ME12 289   x   Freshwater lower than marine across temperatures

ME14 204 x     Higher at 7°C vs. 22°C

ME17 164   x   Freshwater lower than marine across temperatures

ME22 99 x x   Higher at 7°C vs. 22°C. Freshwater lower than marine across 
temperatures

ME24 82   x   Freshwater lower than marine across temperatures

ME26 66 x     Lower at 7°C vs. 22°C

ME29 48 x x   Higher at 7°C vs. 22°C. Freshwater lower than marine across 
temperatures

ME33 24 x     Lower at 7°C vs. 22°C
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TA B L E  1   (Continued)TA B L E  2   GO term enrichment and KEGG pathway enrichment for the modules significantly associated with temperature, habitat, and/or 
the interaction between temperature and habitat

Module Biological process GO-slim terms
Molecular process  
GO-slim terms Human KEGG pathways

Zebrafish KEGG 
pathways

ME01 Organic substance metabolic process, 
ribonucleoprotein complex biogenesis, 
metabolic process

No terms enriched Spliceosome, ribosome 
biogenesis in eukaryotes, 
RNA transport, fatty 
acid metabolism, valine, 
leucine and isoleucine 
degradation, proteasome, 
DNA replication, RNA 
polymerase, mismatch 
repair, peroxisome, 
amino sugar and 
nucleotide sugar 
metabolism, carbon 
metabolism, terpenoid 
backbone biosynthesis

Ribosome biogenesis 
in eukaryotes, 
spliceosome, RNA 
transport, DNA 
replication, mismatch 
repair, RNA polymerase, 
terpenoid backbone 
biosynthesis

ME02 No terms enriched No terms enriched Proteoglycans in cancer No pathways enriched

ME04 Skeletal system development Extracellular matrix 
structural constituent

RNA degradation, protein 
digestion and absorption, 
ribosome

RNA degradation, 
ribosome

ME05 No terms enriched No terms enriched Human T-cell leukemia 
virus 1 infection, 
longevity regulating 
pathway, Fc gamma 
R-mediated phagocytosis

No pathways enriched

ME06 No terms enriched Structural constituent of 
ribosome

Ribosome Ribosome, mitophagy, 
autophagy

ME09 No terms enriched No terms enriched No pathways enriched No pathways enriched

ME10 Oxidation–reduction process, cellular 
respiration, energy derivation by 
oxidation of organic compounds, ATP 
synthesis coupled proton transport, 
energy coupled proton transport 
down electrochemical gradient, proton 
transmembrane transport, oxidative 
phosphorylation, ATP metabolic process, 
inorganic cation transmembrane 
transport, ion transmembrane transport, 
inorganic ion transmembrane transport, 
aerobic respiration, ribose phosphate 
metabolic process, purine ribonucleotide 
metabolic process, ribonucleotide 
metabolic process, mitochondrial ATP 
synthesis coupled electron transport, 
ATP synthesis coupled electron 
transport, metabolic process

Structural constituent 
of ribosome Cofactor 
binding, proton 
transmembrane 
transporter activity, 
proton-transporting 
ATP synthase activity 
rotational mechanism, 
electron transfer activity

Oxidative 
phosphorylation, 
thermogenesis, 
Parkinson disease, 
Huntington disease, 
nonalcoholic fatty 
liver disease, 
Alzheimer disease, 
ribosome, retrograde 
endocannabinoid 
signaling, citrate cycle, 
fatty acid degradation, 
carbon metabolism

Oxidative 
phosphorylation, 
ribosome

ME11 No terms enriched Phosphatase regulator 
activity

MAPK signaling pathway mRNA surveillance 
pathway, ubiquitin-
mediated proteolysis

ME12 No terms enriched No terms enriched No pathways enriched No pathways enriched

ME14 DNA metabolic process, cellular 
macromolecule biosynthetic process, 
DNA biosynthetic process, DNA-
dependent DNA replication, DNA 
replication, nucleic acid metabolic 
process, cellular biosynthetic process, 
cellular response to stress

DNA binding, catalytic 
activity, acting on DNA, 
heterocyclic compound 
binding, sequence-
specific double-stranded 
DNA binding

DNA replication, 
mismatch repair, 
nucleotide excision repair

DNA replication, 
nucleotide excision 
repair, mismatch repair, 
pyrimidine metabolism

(Continues)
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Less than half of the genes in significant modules that unam-
biguously mapped to an Entrez ID have been mapped into a KEGG 
database pathway (42.69% (3,098 of 7,257genes) for human Entrez 
IDs and 34.45% (2,770 of 8,035 genes) for zebrafish Entrez IDs) 
(Table S1). Six modules (ME09, ME12, ME17, ME24, ME29, and 
ME33) did not have enrichment for human pathways and ten 
modules (ME02, ME05, ME09, ME12, ME17, ME22, ME24, ME26, 
ME29, and ME33) did not reveal significant enrichment for ze-
brafish pathways (Table 2). There was similarity in the pathways 
enriched between humans and zebrafish. For example, in ME01, 
all the pathways found with zebrafish Entrez IDs are also found 
using human Entrez IDs, with an additional five pathways (Table 2). 
This module in both cases seems to be enriched for pathways re-
lating to transcription and translation. For ME10, using the human 
Entrez IDs resulted in human disease state pathways. Perhaps the 
most different pathways between the mapped ID types are seen in 
ME11, where human Entrez IDs returned MAPK signaling and ze-
brafish Entrez IDs returned mRNA surveillance and ubiquitin-me-
diated proteolysis (Table 2).

3.8 | Majority of genes up-regulated on two 
pathways in me01

The two most enriched pathways in module ME01 (spliceosome: 
hsa/dre03040 and ribosome biogenesis: hsa/dre03008) showed 
patterns of up-regulation at 7°C in both freshwater and marine 
individuals. For the spliceosome, expression at 7°C for the map-
ping genes shows that 40 genes were up-regulated, five genes 
showed no change, and three genes were down-regulated when 
compared to 22°C (Figure 1). For the ribosome biogenesis path-
way at 7°C, 30 genes were up-regulated, six genes showed no 

change, and three genes were down-regulated when compared to 
22°C (Figure S1).

3.9 | Freshwater and marine stickleback 
exhibit different responses to temperature in 
expression of genes involved in the oxidative 
phosphorylation pathway

For the genes mapping to the oxidative phosphorylation pathway 
(hsa/dre00190), all but one gene (cytochrome c oxidase assembly 
factor heme A:farnesyltransferase; COX10 or cyoE) showed up-reg-
ulation at 7°C for freshwater stickleback (Figure S2). In marine stick-
leback, almost half of the genes showed no change in expression 
(including COX10), one showed slight down-regulation (NADH dehy-
drogenase (ubiquinone) 1 beta subcomplex subunit 9 (NDUFB9)), and 
the remaining showed some up-regulation (Figure S3).

3.10 | Module association of plasticity genes 
implicated in adaptive divergence

Six of the seven genes with divergent plasticity found by Morris et al. 
(2014) were found in modules associated with temperature, habitat, 
and/or the interaction. Three of the genes were found in modules 
associated with temperature and habitat (NLRC5 and INHa in ME09 
and PPARAa in ME10) (Table 3). IGFBP2a was included in ME04, 
which is associated with temperature and the interaction between 
temperature and habitat (Table 3). The novel gene and OBSL1a were 
found in habitat associated modules, ME06 and ME12, respectively 
(Table 3). The remaining gene, SPEGa, was found in a module without 
significant association (ME16) (Table 3). PPARAa was the only gene 

Module Biological process GO-slim terms
Molecular process  
GO-slim terms Human KEGG pathways

Zebrafish KEGG 
pathways

ME17 No terms enriched No terms enriched No pathways enriched No pathways enriched

ME22 Intracellular signal transduction, signal 
transduction, cellular response to 
stimulus

No terms enriched Hepatocellular carcinoma No pathways enriched

ME24 No terms enriched Oxidoreductase activity, 
acting on paired donors, 
with incorporation or 
reduction of molecular 
oxygen

No pathways enriched No pathways enriched

ME26 Response to cAMP, response to 
organic cyclic compound, response to 
mechanical stimulus

Proximal promoter 
sequence-specific 
DNA binding, RNA 
polymerase II proximal 
promoter sequence-
specific DNA binding

Osteoclast differentiation No pathways enriched

ME29 No terms enriched No terms enriched No pathways enriched No pathways enriched

ME33 No terms enriched No terms enriched No pathways enriched No pathways enriched

TA B L E  2   (Continued)
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found in an enriched KEGG pathway (hsa04932: nonalcoholic fatty 
liver disease) (Table 3).

4  | DISCUSSION

The objective of this study was to test the hypothesis that, if tem-
perature has induced evolutionarily adaptive change at the level 
of the molecular phenotype, this will be reflected in the modifica-
tion of key biological processes and the pathways that underlie 
them. We found that modules of co-expressed genes detected 
by WGCNA revealed conserved and divergent responses to tem-
perature between marine and freshwater stickleback. Enriching 
these modules for GO terms reduced the number of biological GO 
terms compared to DE analysis alone, organizing many into groups 
of functionally related processes. KEGG pathway enrichment 

further refined the results, organizing related genes into the same 
pathway. These analyses provide novel insights to the potential 
mechanisms that underlie the evolutionary changes that differen-
tiate marine and freshwater stickleback ecotypes in response to 
temperature.

4.1 | Almost 10,000 genes are correlated with 
temperature treatment

Temperature induced responses in eigengene expression in 12 
modules that included 9,329 of the 14,208 genes analyzed (66%). 
These results are consistent with temperature as a master factor, 
whereby one of the key characteristics of molecular responses to 
temperature change is that it routinely causes a response from a 
large portion of the genome across taxa and tissue types (Gierz, 

F I G U R E  1   The spliceosome pathway (hsa/dre03040) as enriched in module ME01 (Bonferroni correction < .05). Freshwater and marine 
stickleback exhibited similar expression differences between 7°C and 22°C. Shown is freshwater stickleback log2 differential expression 
where green indicates an up-regulation at 7°C, blue indicates a down-regulation at 7°C, cream indicates no change in expression between 
7°C and 22°C and white means that no information for that gene was present
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Forêt, & Leggat, 2017; Rosell et al., 2014; Seneca & Palumbi, 2015; 
Yakovlev et al., 2014). Indeed, across fish species, shifts in expres-
sion have been observed in dramatic numbers of genes (Healy et al., 
2017; Long et al., 2013; Metzger & Schulte, 2018; Morris et al., 
2014). This is perhaps not surprising when the range of biological 
processes that are impacted by temperature in an ectotherm are 
considered—from enzymatic catalytic function (Kohen & Klinman, 
1998), protein structure integrity (Somero, 1995), metabolic rate 
(Clarke & Johnston, 1999), and cell membrane lipid re-modeling 
(Hazel, McKinley, & Gerrits, 1998), to organism-wide changes such 
as growth (Jonassen, Imsland, & Stefansson, 1999), swimming ability 
(Wang, Tan, Jiao, You, & Zhang, 2014), and thermoregulatory behav-
ior (e.g., Smith Wuitchik 2019). WGCNA has the power to identify 
modules of genes that exhibit coordinated patterns of expression, 
where the module is then tested for significance to treatments and 
is therefore not limited to genes detected as differentially expressed 
(Orsini et al., 2018). This may explain the increased number of genes 
observed to be associated with temperature in this study (over 60%) 
compared to the ~20 to 40% of the transcriptome exhibiting dif-
ferential expression in response to temperature reported by Healy 
and Schulte (2019), although their inclusion of alternative splicing 
and use of RNA-sequencing data (vs. microarray) may be influenc-
ing this comparison. This is a distinct advantage in the detection of 
regulatory genes (e.g., transcription factors) which show lower levels 
of expression than nonregulatory genes (Vaquerizas, Kummerfeld, 
Teichmann, & Luscombe, 2009).

The approach of grouping genes into modules was more informa-
tive for biological inference and pathways compared to the original 
study of Morris et al. (2014). Of all the 16 modules, module ME01 
contained the greatest number of genes (almost 50% of the genes 
sorted into modules) and was observed to be induced at 7°C in a 
conserved manner between marine and freshwater stickleback. This 
module was enriched primarily for biological processes and path-
ways involved in RNA manufacturing, transport and modification, 
and protein translation. Since modules can include both down- and 
up-regulated genes (though an increased eigengene does indicate 
overall higher levels of expression) (Langfelder & Horvath, 2008), 
we investigated the expression profiles for the two most enriched 
pathways (spliceosome and ribosome biogenesis) in ME01 more 
closely. These pathways were observed to have similar patterns of 
expression between marine and freshwater stickleback, which was a 
general up-regulation at 7°C. Up-regulation of genes at colder tem-
peratures involved in these processes is observed in many species 
of fish (e.g., larval zebrafish (Long et al., 2013), killifish (Healy et al., 
2017), threespine stickleback (Metzger & Schulte, 2018) but see 
Fuentes et al., 2014 in carp (Cyprinus carpio). It is also frequently seen 
that cold acclimation induces more genes than warm acclimation 
(e.g., Healy et al., 2017; Morris et al., 2014; Scott & Johnston, 2012; 
Healy & Schulte, 2019; but see Metzger & Schulte, 2018) and rate 
of protein synthesis has been demonstrated to decrease in cold-ac-
climated spotted wolffish (Anarhichas minor Olafsen) (Lamarre, 
Le Frangois, Driedzic, & Blier, 2009). Cold-adapted Antarctic fish 
have higher levels of ubiquitin-conjugated proteins (marking them TA
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for degradation) (Todgham et al., 2007), and longjaw mudsuckers 
(Gillichthys mirabilis) exhibit increased levels of protein degradation 
when cold-acclimated (Somero & Doyle, 1973). Potentially, up-reg-
ulation of mRNA transcripts and protein synthesis machinery may 
be necessary to ensure appropriate amounts of functional proteins. 
Cold acclimation has also been shown to result in alternative splicing 
of mRNA, which may explain the up-regulation of the spliceosome 
pathway (Healy & Schulte, 2019). Morris et al. (2014) found enrich-
ment of GO terms related to RNA processing and tRNA metabolic 
processes in genes up-regulated at 7°C in marine and freshwater 
stickleback and RNA modification and translational initiation in ma-
rine and freshwater, respectively. While these GO terms are related 
to the functions shown in module ME01, use of WGCNA coupled 
with KEGG pathway analysis was observed to create functional 
groupings of pathways that aided in detection of biological signal. 
However, ultimately, more research is necessary to explain how the 
patterns of gene expression observed here and across fish species 
potentially facilitate species persistence to cold.

4.2 | Freshwater stickleback may have increased 
plasticity in gene expression

Freshwater and marine stickleback exhibited different eigengene 
expression in six modules that were responsive to temperature. One 
module (ME04), that contained almost 700 genes, was determined 
to have a significant interaction between temperature and habitat 
representing a freshwater stickleback-specific response to cold ac-
climation (limitations of detection for the other modules discussed 
below). This module was enriched for the GO biological process term 
skeletal system development and KEGG pathways involved in pro-
tein and RNA degradation and the subunits of the ribosome, effec-
tively compressing these genes into a few processes and pathways 
(Khatri et al., 2012). None of the genes predicted to be under selec-
tion between freshwater and marine stickleback (from past genome-
wide outlier analysis by Jones et al., 2012 and exhibiting plastic 
expression in Morris et al., 2014) were observed in this module.

Although freshwater stickleback may have evolved greater plas-
ticity, as represented by module ME04, it also seems that the evolution 
of the height of reaction norms (Castric, Billiard, & Vekemans, 2014) 
has been an important component of freshwater stickleback evolution 
to temperature. Four of the six modules showed higher eigengene val-
ues at both temperatures for freshwater compared to marine stickle-
back, and two modules (ME22 and ME29), enriched for cell signaling 
and response processes, appear to be down-regulated in freshwater 
stickleback. Although several of these modules were not enriched for 
biological processes and/or pathways, module ME10 appears to be in-
volved in modification of energy production. It would seem reasonable 
then that although both ecotypes respond to temperature by up-reg-
ulating genes at 7°C, freshwater stickleback have evolved the capacity 
to boost transcription above marine levels at cold temperatures, but 
only by shifting their reaction norms rather than changing the slope. It 
is unclear how this shift would correspond to fitness at 22°C, as both 

ecotypes presumably have similar critical thermal maxima (Barrett 
et al., 2011). Importantly, only WGCNA analysis with GO enrichment 
could elucidate this evolutionary process.

4.3 | Limitations of module analysis

Eigengene values endeavor to capture the expression profile of 
hundreds or thousands of genes in a single value while explaining 
as much variation as possible. As such, they may not accurately rep-
resent individual gene's or pathway's expression profile changes 
(Langfelder & Horvath, 2008). For instance, module ME10 was 
significantly associated with temperature and habitat but not the 
interaction implying there was no habitat-specific response to tem-
perature. However, further investigation of the oxidative phospho-
rylation pathway showed that freshwater and marine stickleback 
exhibited different levels of fold change in gene expression response 
at 7°C, illustrating how the eigengene lacks resolution, and more 
detailed investigation of the pathways contained is necessary. The 
oxidative phosphorylation pathway is comprised of five complexes 
which ultimately lead to the synthesis of ATP from products gener-
ated from glycolysis, fatty acid oxidation, and the citric acid cycle 
(Chaban, Boekema, & Dudkina, 2014). As catalytic rate of enzymes 
is decreased at colder temperature, a potential strategy to cope seen 
in cold-adapted fish is to up-regulate mRNA and protein translation 
for key enzymes (O’Brien, 2011; Somero, 1995). Freshwater stick-
leback have increased cytochrome c oxidase (COX; 1.9.3.1) activity 
(characterized by the amount of substrate turned over per minute 
per gram of wet tissue) in response to cold acclimation, likely due 
to an increase in the amount of COX present in the cell (Orczewska, 
Hartleben, & O’Brien, 2010). Enzyme activity has be shown to be 
variable between related species and between enzymes within a 
species in response to acclimation temperature indicating that even 
within closely related species, thermal response may evolve inde-
pendently (Tschantz et al., 2002). Altogether, this illustrates that 
while eigengene values are appropriate for associating modules to 
treatments, further analysis may be necessary to detect shifts in ex-
pression in individual processes and pathways.

4.4 | The limitations of GO term analyses

Many of the molecular and biological processes arising from GO 
analyses assume an independence between genes (Khatri et al., 
2012) that is unlikely to exist. For instance, though module ME10 
was observed to have 18 biological processes associated with it, 
they arise due to multiple related GO terms which are nested under 
each other in the GO Tree, such as metabolic process > ATP meta-
bolic process > oxidative phosphorylation > ATP synthesis coupled 
electron transport (http://www.infor​matics.jax.org/vocab​/gene_
ontol​ogy/GO:0008152).

There remain limitations when trying to determine and in-
terpret the annotation for protein coding genes responding to 

http://www.informatics.jax.org/vocab/gene_ontology/GO:0008152
http://www.informatics.jax.org/vocab/gene_ontology/GO:0008152
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temperature. GO term annotations in nonmodel organisms are 
frequently deduced from regions of sequence similarity with an-
notated genes in model species (Pavey et al., 2012), and func-
tion is not confirmed by experiments (Gaudet, Livstone, Lewis, 
& Thomas, 2011). Here, we used a carefully curated database 
that only includes GO term functions that are judged to be evo-
lutionarily conserved (Mi et al., 2019). While only ~40% of the 
GO terms assigned to the genes of interest had inferred function, 
the database is continually expanding to annotate and organize 
more genes (Mi et al., 2019). However, the functions vary in spec-
ificity of molecular or biological process (e.g., 28 genes in ME01 
mapped to the same molecular function GO term for GTPase ac-
tivity (GO:0,003,924)). One would not necessarily expect to have 
an “enrichment” for GO terms that share domains such as these, 
as the genes are not necessarily in the same pathway or even ac-
tivated in response to the same stimuli. For instance, GTPase is 
a large superfamily of proteins (Bourne, Sanders, & McCormick, 
1991), which play integral roles in the communication of signals 
from the cell membrane and belong to various pathways and reg-
ulate specific biological processes (Bourne et al., 1991; Neves, 
Ram, & Iyengar, 2002). This is not an inherent problem to GO 
terms but rather that detailed annotation of genes, especially in 
nonmodel organisms, is limited. Many taxonomically conserved 
genes of interest (e.g., crustacean specific stress response in 
Orsini et al., 2018) lack sequence similarity to a characterized 
domain, which prevents assignment of even predicted molecular 
function (Bossi et al., 2017; Gollery et al., 2006).

4.5 | Limitations of kegg pathway analysis

In contrast to GO terms, KEGG is a carefully curated database 
that represents the best in our current knowledge of gene path-
ways (Kanehisa et al., 2016; Ogata et al., 1999). Less than half of 
the genes in the significant modules reported above have been 
included in pathways, which does not imply that the remaining 
genes are not important, but rather that they represent the limits 
in our current understanding. For example, peroxisome prolifera-
tor-activated receptor alpha a (PPARAa) is a gene that has been im-
plicated in freshwater and marine stickleback divergence (Morris 
et al., 2014) and is also induced by cold in zebrafish (Scott & 
Johnston, 2012). However, though zebrafish have been proposed 
as a model to research PPARAa's role on adipogenesis and obesity 
(Den Broeder, Kopylova, Kamminga, & Legler, 2015), it has yet to 
be fit into any pathways for zebrafish on KEGG. However, it has 
been fit into seven human pathways, including the enriched path-
way nonalcoholic fatty liver disease, though KEGG does not indi-
cate how genes are involved in disease states (Khatri et al., 2012). 
PPARAa (orthologous with PPARA in humans; Den Broeder et al., 
2015) is a transcription factor expressed in cells with high levels 
of fatty acid oxidation, including skeletal muscle tissue (Loviscach 
et al., 2000; Pawlak, Lefebvre, & Staels, 2015), that regulates the 
expression of enzymes involved in this process, though fatty acid 

metabolism was sorted into module ME01. Transgenic mice over-
expressing PPARA were observed to have increased fatty acid 
oxidation rates, decreased glucose uptake, and, interestingly, up-
regulation of mRNA for components of the oxidative phosphoryla-
tion pathway (Finck et al., 2005). PPARA is related to nonalcoholic 
fatty liver disease because deficiency in PPARA leads to lipid ac-
cumulation in the liver and researchers have proposed up-regula-
tion of its activity may be an effective treatment for nonalcoholic 
fatty liver disease (Pawlak et al., 2015). While PPARA has been well 
characterized in mouse and human models, there remains limited 
information on the pathways it is involved in on KEGG, decreasing 
the usefulness of this database in uncovering its role in adaptive 
divergence between freshwater and marine stickleback.

KEGG assumes independence between pathways and will return 
pathways that share an overlapping gene set (Khatri et al., 2012), 
which was observed for several of the pathways in module ME10. 
The assumption of independence requires the researcher to be 
aware that enrichment of certain pathways and GO terms does not 
necessarily mean a stronger signal for related processes.

We also encountered lack of integration across gene data-
bases, which resulted in the exclusion of thousands of potentially 
interesting genes from further analysis. With increasing number 
of expression studies and increased prevalence of noncoding RNA 
which are often classed as “novel transcripts” though they have 
been characterized in a different database, methods that address 
convergence of databases are necessary (Weirick, John, & Uchida, 
2017).

4.6 | Moving forward

Our knowledge of how evolution shapes molecular phenotypes to 
respond to environmental change has grown considerably in re-
cent years. In this study, we illustrated how pathway analyses can 
increase biological inference in regard to potentially adaptive dif-
ferences between freshwater and marine stickleback in response 
to temperature. To continue linking these to adaptive differences, 
we must now focus on understanding the functional molecular 
mechanisms underlying such adaptive evolution (Dalziel et al., 
2009). Newer methods are investigating the clusters and networks 
themselves, with the general idea of searching biological path-
ways for subnetworks of genes that directly interact with each 
other and that present unusual evolutionary features (Gouy, Daub, 
& Excoffier, 2017; Rougeux, Gagnaire, Praebel, Seehausen, & 
Bernatchez, 2019). Interrupting candidate genes (such as PPARAa) 
via CRISPR (Wucherpfennig, Miller, & Kingsley, 2019) or modifying 
their expression via small, interfering RNA (Giacomotto, Rinkwitz, 
& Becker, 2015) could help infer molecular function, providing bet-
ter annotation (a limitation detected in this study) and aid their in-
tegration into pathways. For example, transgenic stickleback have 
been used to show that regulatory changes in pituitary homeobox 
1 (PITX1) underlie the repeated evolution of pelvic reduction (Chan 
et al., 2010), that changing levels of ectodysplasin (EDA) directly 
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impact plate development (Colosimo et al.., 2005), and that paral-
lel evolution in DNA regulation allows freshwater stickleback to 
alter EDA expression in armor plates (O’Brown, Summers, Jones, 
Brady, & Kingsley, 2015). Increased knowledge about the impor-
tance of regulatory noncoding RNA in the evolution of more com-
plex traits (Barrett, Fletcher, & Wilton, 2012; Mattick, 2004; Taft, 
Pheasant, & Mattick, 2007) has seen the creation of innovative 
databases (e.g., the ZFLNC (Hu et al., 2018) and RegenDbase (King 
et al., 2018)), which will be helpful to fill in gaps in our current 
regulatory pathway knowledge. Pairing sequencing methods, such 
as ATAC-seq which returns the level of accessibility across the ge-
nome (Buenrostro, Wu, Chang, & Greenleaf, 2015), could present 
a link to understanding plasticity in the ecology and evolution of 
gene expression. While we frequently focus on gene expression 
(as in this manuscript), mRNA abundance is a proxy for protein 

abundance, influenced by post-transcriptional and post-trans-
lational level regulation (Payne, 2015; Vogel & Marcotte, 2012). 
Proteomics is necessary to determine whether the alteration in 
RNA content (as seen in the three pathways explored here) results 
in increased proteins (Payne, 2015; Vogel & Marcotte, 2012) and 
integrating metabolomics would help determine the biochemi-
cal outcomes of these changes (Lankadurai, Nagato, & Simpson, 
2013). Ultimately, we must endeavor to link molecular phenotypes 
to observable phenotypes, such as thermal performance curves 
(Schulte, 2015), measures of fitness (e.g., reproductive fitness 
(Schreck, 2010)), and swimming ability (Scott & Johnston, 2012) 
to elucidate how evolution has acted on these molecular mecha-
nisms to facilitate population persistence and evolution. As Louis 
Bernatchez has championed, an integrated approach to studying 
these questions will help in achieving these goals (Box 1).

BOX 1 

My first memory of Louis stems from an email I sent 
to him in 1996 (using PINE) asking for assistance in scor-
ing the “SFO-23 microsatel- lite locus”. True to form, he 
replied right away, telling me “I do not have time for your 
interrogations”. I was sure that my aspirations of work-
ing with Louis were over, but relieved to eventually 
learn that “interrogations” does not translate directly to 
English very well.
Louis has always had a large, dynamic group that was an 
exhilarating research envi- ronment for his students. 
The combination of field work, wet lab facilities in the 
world renowned LAboratoire de Recherche en Sciences 
Aquatiques (LARSA), and molecular ecology lab (at 
a time when the field of Molecular Ecology was just 
taking off) at Université Laval was more than a new PhD 
student could dream for.
Personally, I have always been amazed at Louis’ capac-
ity to advance research in ecology and evolution in a 
myriad of important ways. Part of the inspiration for 
our present contribution stemmed from a conversa-
tion I remember having with Louis in 2005 when he was 
preparing for one of his invited seminar presentations. Louis placed a lot of importance on providing new data and ideas in his 
talks, and encouraged this practice with his students. In this particular presentation, Louis’ background information included King & 
Wilson's (1975) influential study arguing that protein comparisons between human and chimpanzee showed too few differences to 
account for their observed phenotypic differences, speculating that this diversity may be explained by the evolution of gene regula-
tion. Of course, Louis went on to examine how quantitative variation in gene expression relates to phenotypic variation in a variety 
of adaptive traits, with several influential contributions from his group in the lake whitefish system that have since found tremendous 
support for this hypothesis, while highlighting that we still have much to learn with respect to the evolution of gene regulation. In this 
regard, Louis has always encouraged his students to be avid readers of the literature, keep an open mind and observe when it comes 
to biological variation in all forms, and be fearless when it comes to new areas of inquiry – especially when you are doing something 
you enjoy that improves science and society. The co-authors in this contribution reveal that his philosophy will continue to inspire 
future generations of scientists and conservation practitioners.

Sean Rogers (left) and Louis Bernatchez (right) in
Juneau, Alaska in June 2002 at the Alaska SeaGrant
Conference in the Genetics of Subpolar Fish and
Invertebrates (20th Lowell Wakefield Fisheries
Symposium)
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