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ABSTRACT

Pax6 and its Drosophila homolog Eyeless (Ey) play
essential roles during eye development. Ey/Pax6 con-
tains two distinct DNA binding domains, a Paired
domain (PD) and a Homeodomain (HD). While Ey/Pax6
PD is required for the expression of key regulators of
retinal development, relatively little is known about the
HD-dependent Ey function. In this study, we used the
UAS/GAL4 system to determine the functions of differ-
ent Ey domains on cell growth and on retinal develop-
ment. We showed that Ey can promote cell growth,
which requires the HD but not the PD. In contrast, the
ability of Ey to activate Ato expression and induce
ectopic eye formation requires the PD but not the HD.
Interestingly, deletion of the HD enhanced Ey-dependent
ectopic eye induction while overexpression of the HD
only Ey forms antagonizes ectopic eye induction. These
studies revealed a novel function of Ey HD on cell
growth and a novel antagonistic effect of Ey HD on Ey
PD-dependent eye induction. We further show the third
helix of the Ey HD can directly interact with the RED
subdomain in Ey PD and that deletion of the HD
increased the binding of Ey PD to its target. These
results suggest that the direct interaction between the
HD and the PD potentially mediates their antagonistic
effects. Since different Ey splicing forms are expressed
in overlapping regions during normal development, we
speculate that the expression ratios of the different Ey
splice forms potentially contribute to the regulation of
growth and differentiation of these tissues.
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INTRODUCTION

Pax6 is an evolutionary conserved transcription factor and is
indispensable for eye development. Mutations in Pax6
genes cause eye developmental defects in a wide range of
species. In Drosophila and mouse, null mutations of Pax6
orthologs eyeless (ey) and small eye (Sey) cause severe
defects in the eye (Hill et al., 1991; Quiring et al., 1994). In
humans, heterozygous Pax6 gene mutations are associated
with eye disorders such as aniridia, Peters anomaly, and
keratitis (Glaser et al., 1992; Jordan et al., 1992; Mirzayans
et al., 1995; van Heyningen and Williamson, 2002). The
Pax6 proteins contain two highly conserved DNA binding
domains, a paired domain (PD) and a homeodomain (HD),
and a transactivation domain in the C-termini. Interestingly,
many Pax6 mutations that cause eye developmental defects
have mutations that disrupt the PD (van Heyningen and
Williamson, 2002). In addition, the PD but not the HD of Ey is
shown to be required for ectopic eye induction in Drosophila
(Punzo et al., 2001; Punzo et al., 2002). The PD is com-
posed of a bipartite DNA binding domain that consists of two
helix-turn-helix motifs, the PAI and the RED subdomains.
Individual PAI and RED subdomains make contact to the
known consensus Pax6 DNA binding sequences:
WWNMCRMNTSANTGRRY and both PAI and RED subdo-
mains contribute to the overall binding of the PD (Czerny
et al., 1993; Epstein et al., 1994a, 1994b; Treisman et al.,
1991; Xu et al., 1999; Xu et al., 1995). PD binding sites have
been identified in the enhancer regions of the retinal deter-
mination factors (RD factors) including Sine Oculis (So),
Eyes absent (Eya), Optix, and in the 3′ eye enhancer of the
proneural gene Atonal. Targeted disruptions of the PD

Electronic supplementary material The online version of this
article (doi:10.1007/s13238-014-0101-9) contains supplementary

material, which is available to authorized users.

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

Protein Cell 2015, 6(1):68–78
DOI 10.1007/s13238-014-0101-9 Protein&Cell

P
ro
te
in

&
C
e
ll

http://dx.doi.org/10.1007/s13238-014-0101-9


binding sites have been shown to block activation of these
target genes by Ey (Ostrin et al., 2006; Tanaka-Matakatsu
and Du, 2008; Tanaka-Matakatsu et al., 2014; Xu et al.,
1999; Zhang et al., 2006). Therefore PD-dependent tran-
scription activation by Ey plays critical roles in the activation
of these target genes during normal eye development.

In contrast to the PD-dependent Ey function, much less is
known about the HD-dependent function of Ey. The
homeodomain of Ey contains a stretch of 60 amino acids
that is conserved in the large family of the Homeobox con-
taining transcription factors. The 60-amino-acid-long HD
consists of three alpha-helical structures, α1, α2 and α3. The
α3 is the DNA recognition helical structure that directly binds
to the TAAT sequences locates in the DNA major groove.
The HD of Pax6 preferentially binds as a dimer to the pal-
indromic DNA binding site: TAATYNRATTA (Y is C or T; R is
A or G; N is any nucleotide), which is known as the P3 site. It
was reported that the P3 sites play important roles in the
activation of rhodopsin family genes by the HD-dependent
Pax6 function (Mismer and Rubin, 1989; Papatsenko et al.,
2001; Sheng et al., 1997). Interestingly, a conserved alter-
native splicing form of Ey/Pax6 that contains the HD but
lacks the PD has been reported in a wide range of species
(Carriere et al., 1993; Epstein et al., 1994a; Jaworski et al.,
1997; Mishra et al., 2002; Papatsenko et al., 2001; Sheng
et al., 1997). These observations suggest that the HD-form
of Ey/Pax6 also plays important roles in development.

Although early studies of Ey/Pax focus on their critical
role in eye development due to their striking ability to
induce eye in Drosophila and frog Xenopus laevis upon
misexpression (Chow et al., 1999; Gehring, 1996; Halder
et al., 1995; Nornes et al., 1998), Ey/Pax6 has other
functions in addition to eye development. This is consistent
with the observation that human Pax6 homozygote muta-
tions display defects in non-eye regions such as nose,
forebrain, hindbrain and pancreas (Hill et al., 1991; St-Onge
et al., 1997). Moreover Pax6 has been shown to have
oncogenic potential and regulate cell growth in cultured
human cells and mouse model system (Li and Eccles,
2012; Mascarenhas et al., 2009; Robson et al., 2006;
Walcher et al., 2013). Interestingly, Pax6(5a), a Pax6
splicing variant that removes the PAI subdomain of PD, and
its Drosophila functional and structural homologue Eyegone
(Eyg) have been shown to regulate cell growth and prolif-
eration (Dominguez et al., 2004; Jang et al., 2003). It is
likely that Eyg/Pax5(5a) use RED and HD to bind their
targets. Therefore, whether Pax6 will promote growth or
differentiation will be regulated by the relative levels of
distinct Pax6 splicing forms in the cell. Indeed, several lines
of evidence revealed that many Pax6 target genes are
regulated in a context specific manner (Kiselev et al., 2012;
Wolf et al., 2009; Xie et al., 2013).

In this study, we characterized the roles of the HD-
dependent Ey function and show that the HD and C-terminal
transactivation domain of Ey promotes cell growth. In addi-
tion, we show that the Ey-HD physically interacts with the

RED subdomain of the PD, and this interaction interferes
with the PD-dependent transcriptional activation of the Ato 3′
eye disc enhancer. These results provide new insights into
the roles of the different Ey splice forms on retinal cell fate
determination and cell growth during development.

RESULTS

Eyeless promotes context-dependent cell growth
in wing discs

Recent studies indicate that Pax6 regulates multiple tran-
scriptional networks that regulate cell proliferation as well
as differentiation (Farhy et al., 2013). To characterize the
effect of Eyeless on the rate of cell growth and proliferation
in vivo, we used the “flip-out” GAL4 driver (Act>GAL4)
approach to co-activate permanent, heritable expression of
UAS regulated targets in random clones of cells (Duman-
Scheel et al., 2002; Neufeld et al., 1998; Xin et al., 2002).
This technique uses heat shock to induce FLP recombi-
nase, which induces the generation of random clones of
GAL4 expression cells at precisely defined time point for
cell growth analysis. Specifically 47 ± 1 h larvae were heat
shocked to turn on Gal4 expression, which activates UAS-
target gene expression including the UAS-GFP in discrete
clones in imaginal discs. After another 48 h of growth, the
wing discs were dissected and the size of the clones was
analyzed. Wing disc can be divided into the wing pouch,
hinge, and the notum region (Fig. 1A). Analysis of the
control and the Ey-expressing clones in different wing disc
regions revealed that the ability of Ey to promote growth
varies depending on the region in which the clone is
located. While Ey expressing clones are significantly larger
than the β-Gal controls located in the notum region, no
significant difference were observed for the clones located
in the pouch or hinge regions (Fig. 1B–E). These results
show that Ey can promote cell growth in a context-depen-
dent manner.

The context specificity of Ey-dependent growth sug-
gests that there are different signaling pathways in the
different disc regions that modulate the effect of Ey over-
expression on tissue growth. Scalloped (Sd), a component
of the Hippo signaling pathway, is highly expressed in the
pouch of the wing disc and very weakly expressed in the
notum region (Campbell et al., 1992). To determine whe-
ther Sd may contribute to the context-dependent growth of
Ey in wing disc, we examined the effect of expressing Sd
with Ey. Coexpression of Sd with Ey significantly inhibited
the ability of Ey to promote cell growth in the notum region
(Fig. 1E). In addition, coexpression of Sd with Ey can also
inhibit cell growth in the pouch and hinge regions as
shown by decreased clone size (Fig. 1E). Therefore Sd
can antagonize the ability of Ey to promote cell growth
and the high level of Sd in the wing pouch region poten-
tially contributes to the inability of Ey to promote growth in
the pouch.
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The Ey homeodomain and C-terminal region,
but not the paired domain, are required
for Ey-dependent growth

We further characterized the effect of Ey-dependent growth
through the expression of Ey deletion constructs that lack thePD
(EyΔPD),HD(EyΔHD),or theC-terminal transactivationdomain
(EyΔCT).We focusedour analysis to thenotum region sinceWT
Ey showed significant growth effects in this region (Fig. 2A, 2B
and 2F). Interestingly, the sizes of the Ey ΔHD and the Ey ΔCT
clones were significantly smaller than that of the WT Ey clones
and similar to that of theβ-Gal control clones (Fig. 2A, 2B, 2D, 2E
and 2F). These results indicate that both the HD and the C-ter-
minal transactivation domain are required for the ability of Ey to
promotegrowth.On theotherhand, thesizeof theEyΔPDclones
wasactually slightly larger than that of theWTEyclonesandboth
EyΔPDandWTEyweresignificantly larger than that of theβ-Gal
control clones (Fig. 2A, 2Cand2F). Taken together, these results
suggest that the ability of Ey to promote cell growth in the wing
notum depends on its HD DNA binding domain and the tran-
scription activation domain. On the other hand, the Ey PD DNA
binding domain is not required for the growth promotion effects
andmay actually antagonize the Ey HD-mediated growth effect.

The HD-only form of Ey (Ey-PB), Eyg, and Pax6(5a)
show similar growth promoting activities as Ey ΔPD
in developing notum region

To further demonstrate that the observed effect of Ey on cell
growth is mediated by the HD and to characterize the growth

effect of Ey-PB, the HD-only splicing variant of Ey (Fig. S1),
we generated UAS-Ey-PB transgenic flies. As shown in
Fig. 2, expression of Ey-PB also significantly increased
clone sizes, similar to that of Ey ΔPD (Fig. 2G). Eyg and its
human homologue Pax6(5a) were shown previously to reg-
ulate cell growth and proliferation in the developing eye
(Dominguez et al., 2004; Jang et al., 2003; Yao and Sun,
2005). We compared the effects of Eyg and Pax6(5a) on cell
growth in our assay system. Clones expressing Eyg or Pax6
(5a) were significantly larger than those expressing the β-Gal
control but were similar to those expressing Ey ΔPD or the
HD-only splicing variant Ey-PB (Fig. 2G). Therefore, the HD-
only splicing variant Ey-PB, Ey ΔPD, Eyg and Pax6(5a)
show similar growth promotion effects.

To determine whether Ey-induced growth is mediated by
increased cell proliferation, we determined whether expres-
sion of the Ey constructs also increased cell numbers. As
shown in Fig. 2H, both Ey-PB and Ey ΔPD increased cell
numbers, suggesting that Ey promotes both cell proliferation
and cell growth to induce larger clone sizes.

The Ey HD antagonizes Ey PD-dependent function
on retinal determination in vivo

Ey PD-dependent activity has been shown to induce retinal
determination and activate the proneural gene Ato 3′
enhancer (Tanaka-Matakatsu and Du, 2008; Tanaka-Ma-
takatsu et al., 2014; Zhang et al., 2006). Ectopic expression
of Ey using the 30A-Gal4 driver (Brand and Perrimon, 1993),
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Figure 1. Eyeless promotes context-dependent cell growth in wing discs. (A) Diagram of third instar larval wing disc shows three

distinct regions. The region between outer- and inner-white circles will develop into the fly wing hinge, while inner pouch region forms fly

wing blade. The bottom Notum region will develop into the future scutellum. (B–D) Ey expressing Flp-out clones (marked with GFP in

green) in the three distinct regions (white arrows).Wing discswere counter stainedwith DAPI (blue). Themedian size clones are shown.

The scale bars are 50μm in (A) and 100μm in (B–D). (E)Box-whisker plot for FLP-out ectopic clone size induced in the pouch, notumand

hinge regions.Number of clones (n) are indicated in the figure for eachgenotype.Single heat shockat 34°C for 10minwasappliedat AEL

47 ± 1 h larva and cultured additional 48 h at 25°C. TheP values to the β-Gal expressing control clone are:P= 0.064 (Ey),P = 0.58 × 10−9

(Ey Sd) in pouch. The P = 5.62 × 10−5 (Ey) and P = 0.32 (Ey Sd) in notum, the P < 0.95 (Ey), P = 2.28 × 10−7 (Ey Sd) in hinge.
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Figure 2. The HD and C-terminal transactivation domain are required for the ability of Ey to promote cell growth and

proliferation. (A and G) Box-whisker plot of ectopic clone size induced in the notum region of the third instar wing disc. Minimum 50

clones and maximum 150 clone sizes were analyzed in this experiment. A single heat shock at 34°C for 10 min was applied at AEL

47 ± 1 h larva and cultured for an additional 48 h at 25°C. (A) The effect of expressingWTEyor different Ey domain deletion constructs on

clone sizes. The sizesofWTEyand thePDdeletionEyexpressing cloneswere significantly larger than those of theβ-Gal control clones.

TheP values are:P= 5.62 × 10−5 (Ey and β-Gal control),P= 3.12 × 10−15 (ΔPDand β-Gal control), andP = 4.78 × 10−6 (ΔPDandEy). On

the other hand, the sizes of theHDdeletion (ΔHD) or theC-terminal transactivation domain deletion (ΔCT) cloneswere similar to that of to

the β-Gal expressing control clones. (B–F) FLP-out clones in the wing notum region. Median values of clones are shown from A (white

arrowheads).Genotypesare indicated ineachbottompanel.Clonesexpressing truncatedEywere labelledwithGFP(green).Wingdiscs

were counter stainedwithDAPI (blue). The scale is 50μm. (G)Constructs containHDandC-terminal transactivation domains increased

clone size. P values to the β-Gal control clones are P < 1.0 × 10−5. (H) Statistical analysis of cell numbers in each genotyped clones (n =

20). P values to the β-Gal expressing control are: P = 0.037 (Ey), P < 8.12 × 10−14 (ΔPD, Ey-PB).
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which drives expression in a ring like hinge domain sur-
rounding the wing pouch (Fig. 3S), was able to activate Ato
3.6BB-GFP in a subset of cells near the AP boundary
(Fig. 3K) and induce ectopic eye formation in the hinge region
(Fig. 3B). Interestingly, expression of the HD deletion Ey
construct (Ey ΔHD) induced increased Ato 3.6BB-GFP
expression (Fig. 3K and 3N) and larger ectopic eye sizes
compared to those induced by WT Ey (Fig. 3B, 3F and 3J). In
contrast, expression of Ey containing the PD deletion (Ey
ΔPD) was unable to activate Ato 3.6BB-GFP or induce
ectopic eyes in adult wing hinge (Figs. 3I and 3Q). Similarly,
expression of Ey-PB, the alternative splice form of Ey that
only contains the HD (Fig. S1), is unable to induce ectopic Ato
3′ enhancer activation or ectopic eye formation in the wing

hinge region (Fig. 3H and 3P). Since the expression levels of
these deletion constructs are not significantly different (Fig.
S2) and since Ey ΔPD can promote cell growth (Fig. 2) while
Ey ΔHD can promote retinal differentiation (Fig. 3F and 3N),
our results show that PD is required for Ey activation of the
Ato 3′ enhancer and suggest that the HD may have an
inhibitory effect on Ey PD to activate the Ato 3′ enhancer.

To further characterize the in vivo functional interactions
between Ey PD and Ey HD, we tested the effect of
expressing WT Ey with the Ey ΔPD or Ey-PB. Interestingly,
expression of either ΔPD or Ey-PB significantly decreased
the ability of WT Ey to activate Ato 3′ enhancer expression
and to induce ectopic eye formation (Fig. 3C, 3D, 3E, 3J, 3L
and 3M, P < 0.0001). Furthermore, while Ey ΔHD can induce
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Figure 3. Ey Homeodomain inhibits Ey PD-dependent 3. 6BB-GFP activation. (A) Diagram of Ey constructs. The PD (filled

yellow box) and HD (filled blue box) are DNA binding domains, TAD (filled gray box) is the C-terminal transactivation domain.

(B–E) Co-expression of Ey constructs that contain only HD (ΔPD or Ey-PB) inhibited WT Ey to induce ectopic eye on the hinge.

(F and G) Co-expression of Ey-PB inhibits ΔHD induced ectopic eye. Genotypes were listed at the bottom of the panel. Ey-PB6 and

Ey-PB3 are HD type Ey isoforms inserted in different chromosomal region. Ey-PB (H) and ΔPD (I) were unable to induce ectopic

eye. (J) Box-whisker plot of ectopic eye sized induced on the hinge. n = 50 for each genotype. Each P value to Ey is P < 1.59 ×

10−7 (*) and to ΔHD is P = 1.0 × 10−29 (**). (K–R) Ectopic expression of the Ato-3.6BB-GFP was revealed in the wing disc under the

30A-gal4 driver. Ey constructs that contain only HD inhibited WT Ey (K–M, white arrows) or Ey ΔHD (N–O, white arrow). Ectopic

expression of either Ey-PB (P) or ΔPD (Q) was unable to activate the Ato-3.6BB-GFP. In the third instar wing disc the Ato-3.6BB-

GFP had no expression (R). The 30A-gal4 drives expression in the imaginal hinge region (S). Genotypes listed at the bottom of the

panel. Median value wing disc images were shown. Discs were counterstained with DAPI (blue). The scale bars for wing discs and

adult hinge are 50 μm and 200 μm, respectively.
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more Ato 3′ enhancer activation and larger ectopic eye for-
mation in the wing hinge region (Fig. 3F, 3J and 3N), coex-
pression of Ey-PB significantly inhibited both ectopic Ato
enhancer activation and ectopic eye formation (Fig. 3G, 3J
and 3O). Therefore, the Ey HD can inhibit the ectopic eye
induction function of the Ey PD even if the two domains are
present in two different proteins.

Ey HD interacts with Ey PD through the RED
subdomain

Several previous studies have suggested that the direct
protein-protein interactions between HD and PD mediate the
functional antagonisms between the HD containing selector
proteins, such as Proboscipedia (PB) and Antenapedia (Ant),
and the PD-dependent Ey (Benassayag et al., 2003; Plaza
et al., 2001). Therefore we hypothesize that the observed
in vivo functional interactions between Ey HD and Ey PD are
mediated by their direct protein-protein interactions between
the two domains. GST pull down assays were carried out to
directly test this possibility. Incubation of 35S-Met labeled WT
Ey with immobilized glutathione S-transferase (GST) or GST
tagged Ey deletion proteins EyN, PD and HD (Fig. 4A)

revealed that WT Ey (WT*) was bound specifically to all three
of the GST-Ey deletion proteins (Fig. 4B, WT*). On the other
hand, 35S-Met labeled Ey with deletions of both the PD and
HD failed to interact with any of the GST Ey deletion con-
structs (Fig. 4B, ΔPD, ΔHD*). These observations suggest
that the PD and HD of Ey are critical for the observed inter-
actions. Interestingly, 35S-Met labeled Ey paired domain
alone (PD*) showed preferential interaction with the GST
constructs that contains HD (Fig. 4B, GST-EyN and GST-
HD). Conversely, 35S-Met labeled Ey homeodomain (HD*)
showed strong interaction with the GST-PD (Fig. 4B).
Therefore, the Ey HD and PD can directly interact with each
other.

Crystal structure studies showed that the PD consists of
an N-terminal PAI subdomain, a C-terminal RED subdomain,
and a linker between the two (Fig. 5A) (Jun and Desplan,
1996; Xu et al., 1999) while the HD consists of three
α-helices (Fig. 5C) (Gehring et al., 1994). We generated
additional GST-PD deletion constructs (Fig. 5A) to further
define the subdomains of PD that interact with Ey HD. As
shown in Fig. 5, 35S-Met labeled Ey ΔPD, which contains the
Ey HD, was retained specifically by the PD through the RED
subdomain (Fig. 5B). Therefore the RED subdomain of PD
mediates the interaction between Ey PD and HD. We further
determined sequences within HD that interacted with Ey PD,
we found that GST-fusion proteins that contain the third helix
of the HD (GST-HD h3) were able to interact with the PD
(Fig. 5D, lanes 2 and 4). On the other hand, GST-fusion
protein that contains the first and second helixes (GST-HD
h1–2) was unable to bind the PD (Fig. 5D, lane 3). Taken
together, our results show that the RED subdomain of Ey PD
interacts with the helix 3 of Ey HD.

The Ey HD inhibits Ey-PD dependent binding to the Ey
binding site in the Ato 3′ enhancer

The interactions between the Ey-PD and Ey-HD can
potentially alter the DNA binding of these DNA binding
domains. We carried out EMSA to test if HD removal affects
Ey PD to bind its target site. The Ato 3′ enhancer is an
established direct target of Ey that is mediated by Ey-PD. We
showed previously that Da homodimer directly interacts with
Ey and promotes Ey binding to the Ey binding site in the Ato
3′ enhancer (Tanaka-Matakatsu et al., 2014). Consistent with
this, while very weak Ey binding activity to the Ey2 site was
detected in embryonic extracts with WT Ey expression alone
(Fig. 5E, lane 2, arrowhead), expression of WT Ey with Da-
Da linked dimer extracts significantly increased Ey binding to
the Ey2 (Fig. 5E, lane 3). Interestingly, expression of Ey
ΔHD, which has deletion of the HD domain, significantly
increased binding of Ey to Ey2 binding site while expression
of Ey ΔPD, which has deletion of the PD, did not. These
results are consistent with the idea that interactions between
the PD and the HD alters the DNA binding activities of PD,
which potentially contributes to the observed inhibitory
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effects of HD on Ey PD to induce Ato expression and ectopic
eye formation.

DISCUSSION

In this manuscript, we showed that the HD-only form of Ey
can promote cell growth and proliferation during imaginal
disc development. In addition, we showed that the HD and
PD of Ey can directly interact with each other and that the
HD-only form of Ey can antagonize the function of Ey
PD-dependent retinal differentiation function. These results

suggest that the functions of Ey are potentially regulated by
factors that promote or inhibit the interactions between the
two domains. In addition, the relative abundance of the HD
and PD forms of Ey may contribute to the coordinated control
of cell growth/proliferation and differentiation by Ey.

Ey PD-HD interaction negatively regulates Ato
activation in eye development

Ato is a transcription factor required for the induction of
photoreceptor differentiation (Jarman and Groves, 2013;
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Jarman et al., 1995). The Ato 3′ enhancer, which controls the
initial Ato expression in the developing third instar eye disc,
is regulated by Ey/Pax6, bHLH protein Daughterless dimer,
Sine oculis and Eya (Tanaka-Matakatsu and Du, 2008; Ta-
naka-Matakatsu et al. 2014; Zhang et al., 2006). Results
presented here reveal an interesting regulatory mechanism
for the retinal determination function of Ey: the intramolecular
interaction between the RED subdomain of the PD and the
HD leads to an inhibition of the PD-dependent retinal
determination function. Interestingly, expression of the Pax6
isoform that lacks the PD causes a microphthalmic pheno-
type in Pax6(+/+) mice, suggesting that the mammalian
Pax6 isoform that contains only the HD antagonizes the WT
Pax6 function (Kim and Lauderdale, 2006), similar to our
observed effects of expressing Ey HD only isoforms in flies
(Fig. 3). Furthermore, overexpression or ectopic expression
of various homeobox-containing proteins has been shown to
inhibit eye development (Chadwick et al., 1990; Gibson
et al., 1990; Jiao et al., 2001; Yao et al., 1999). It is possible
that the interactions between these different HD with Ey PD
may contribute to the observed inhibition of eye develop-
ment. Indeed, HD-containing protein Engrailed interacts with
Pax6 through the PD (Plaza et al., 1997). On the other hand,
the protein-protein interaction between HoxB1 and Pax6 was
shown to increase the Pax6 transcriptional activity using an
artificial reporter with six consensus Pax6 PD-binding sites in
Hela cells (Mikkola et al., 2001). It is possible that different
Pax6 targets are differentially affected by the HD and PD
interaction due to the presence of additional context
dependent partners.

Our previous studies showed that Da homodimer inter-
acted with the RED subdomain of Ey and promoted Ey
binding to the Ey2 binding site in the Ato 3′ enhancer (Ta-
naka-Matakatsu et al., 2014). While binding of the Da dimer
to the E-box site within the composite Ey2 binding site is
important, it is possible that binding of the Da dimer with the
Ey PD may interfere the Ey PD interaction with the Ey HD
and thus contribute to the increased Ey PD-dependent
function.

Ey homeodomain can regulate cell proliferation
and growth in imaginal disc development

Eye development requires not only the correct specifications
of cell types, but also the control of their size and cell
number. Coupling between cell-cycle exit and onset of dif-
ferentiation is a common feature throughout development. In
the third instar fly eye, photoreceptor differentiation is initi-
ated at the posterior margin of the eye disc, forming a typical
groove-like structure called the morphogenetic furrow (MF).
The retinal progenitor cells immediately ahead of the MF
adopted a pre-proneural (PPN) state just poised prior to the
neuronal differentiation (Bessa et al., 2002; Greenwood and
Struhl, 1999; Silver and Rebay, 2005). Ey together with ret-
inal cell fate determination factors directly regulate Ato,

which promotes photoreceptor differentiation and regulates
the expression of the cdk inhibitor Dacapo (Sukhanova et al.,
2007). Although Pax6 has been implicated in both prolifer-
ation and differentiation of invertebrate development, whe-
ther fly homolog Ey in these processes are largely unknown.
Instead Eyg has been reported to regulate growth at the eye
midline organizer in response to Notch signaling (Chao et al.,
2004; Dominguez et al., 2004). Eyg is related to a splicing
isoform of vertebrate Pax6(5a), which contains an extra exon
that disrupts the N-terminal PAI subdomain of the PD.
Therefore Pax6(5a) binds to distinct DNA target sites
through the C-terminal RED subdomain and perhaps the HD
(Epstein et al., 1994b; Kozmik et al., 1997). As expected,
Eyg and Pax6(5a) are unable to induce ectopic eye forma-
tion in the wing primordium but can drive significant wing
disc overgrowth when expressed using the DPP-Gal4 driver.
Interestingly, using our clonal analysis to determine the direct
role of these genes on cell growth and proliferation, we
showed that Eyg and Pax6(5a) can promote cell growth
similar to the Ey ΔPD and the Ey-PB splicing form. Although
little is known of the function of the Ey-PB form, we report
here that Ey-PB is expressed similarly as the full length Ey
during eye development. Since full length Ey and Ey-PB
have distinct ability to regulate cell differentiation and cell
growth and proliferation, it is interesting to speculate that the
relative expression of the two proteins can potentially regu-
late cell proliferation and retinal differentiation in developing
tissues.

MATERIALS AND METHODS

Fly strains, misexpression and mosaic clone analysis

Drosophila culture was performed at 25°C on standard cornmeal-

yeast medium. For wing disc clone analysis, embryos were collected

every 2 h, then a heat shock was applied for 10 min at 34°C at AEL

47 ± 1 h. Larvae were cultured for an additional 48 h at 25°C before

dissection. Fly strains used in this study were shown here. Multiple

lines were tested to verify that we got consistent results. For some

strains, we re-hopped and generated new insertions on different

chromosome. UAS-ey (BL6294, on the 2nd chromosome), UAS-ey

(rehopped on the 3rd chromosome from the BL6294), UAS-ΔPD #8-6

and #19 (Weasner et al., 2009), UAS-ΔHD (Weasner et al., 2009)

(Punzo et al., 2001) and tested at least 3 lines that rehopped onto

the 2nd choromosome from the 3rd chromosome), UAS-ΔCT (Cle-

ments et al., 2009), UAS-eyg #1 (Yao and Sun, 2005), UAS-eyg #2

BL26809 (Jang et al., 2003). UAS-Pax6 (5a) (Dominguez et al.,

2004), UAS-lacZ (BL1777), 30A-gal4 (BL37534). Ato3.6BB-GFP

(Tanaka-Matakatsu et al., 2014), Da-Gal4 (Wodarz et al., 1995),

UAS-Da-Da (Tanaka-Matakatsu et al. 2014), dpp-lacZ BS3.0

(BL5528), yw, hsFLP; AyGAL4, UAS-GFP/TM6b, Tb.

Histochemistry

Imaginal disc Immunohistochemistry and in situ hybridization were

performed as previously described (Tanaka-Matakatsu and Du,

2008). Primary antibodies were used at following dilutions: rabbit
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α-GFP 1:1000 (GenScript), mouse α-GFP 1:500 (BD Bioscience),

and rabbit α-Ey (Halder et al., 1998). Dye conjugated secondary

antibodies were from Jackson ImmunoResearch and used at 1:500

dilution: goat α-mouse Cy2, goat α-rabbit-Cy2. DAPI used at 1:100

(5 µg/mL) for DNA staining. Images were taken using a Zeiss Axi-

oImager microscope with ApoTome.

Transgenic flies

The ey-PB cDNA (GH01157, DGRC) was subcloned into pUAST

vector. Multiple transgenic lines were established using pTurbo helper

plasmids under standard injection procedure (Tanaka-Matakatsu and

Du, 2008), and examined all lines to confirm the consistency.

Statistical analysis

Freshly eclosed adult flies were collected and mounted on double

stick tape for imaging under Leica MZFLIII stereomicroscope at

zoom 3.2. Fifty hinges were counted for each genotype. For Ato

reporter activity assay, wing discs were imaged under Zeiss Axio-

Imager using 10× objective. Twenty wing discs were counted for

each genotype. Images were taken at the same image acquisition

settings for GFP area determination. The total pixel number in the

area surrounding the Ventral Radius region was obtained in Photo-

shop CS3. For cell growth analysis, wing discs were imaged at 10×

objective and pixel numbers were counted for each genotype. Min-

imum 50 clones were counted. The counted data were analyzed and

created Box-and-Whisker plots in Excel. Whisker limit was at 1.5 x

IQR, and the values over- or under-the 1.5 x IQR plotted as outliers.

GST-pull down assay

DH5α that carries the respective GST-fusion plasmid were grown to

OD600 = 0.6 and were induced with 0.1 mmol/L IPTG for 2 h at 37°C.

GST or GST fusion proteins were immobilized to Glutathione

sepharose beads. Bound proteins were blocked with 1 mg/mL BSA

in 1× PBS supplemented with 1 mmol/L DTT, 1 mmol/L PMSF and

1% Triton X-100 for 30 min at 4°C before binding reaction. In vitro

transcribed/translated proteins were labeled with 35S-Met using TNT

T7 coupled Reticulocyte lysate System (Promega). Binding reaction

was performed in 0.1 mg/mL BSA in 1× PBS for 2 h at 4°C. Samples

were washed with 1× PBS supplemented with 0.2% NP-40, 1 mmol/L

DTT and 1 mmol/L PMSF for 10 min, 3 times. Samples were

resolved by SDS-PAGE and autoradiographed using STORM 860

Phosphorimager (Molecular Dynamics).

Electrophoretic mobility shift assay

EMSA was performed as described before (Tanaka-Matakatsu and

Du, 2008). Embryo extract was prepared from O/N embryo collection.

Embryos were homogenized in 2 volumes of lysis buffer (500 mmol/L

NaCl, 1% Triton X-100, 50 mmol/L Tris pH 6.0, Protease Inhibitor

Cocktail (Roche) and 10 mmol/L PMSF) and centrifuged for 15 min at

12 K rpm at 4°C. Three microliters of supernatant was used for 32P

labelled-Ey2 probe binding. Samples were resolved on 4% native

PAGE (37.5:1 Acrylamide/Bis solution, Bio-Rad) in 0.5× TBE at 200 V

for 2 h, and autoradiographed using STORM 860 Phosphorimager.

See Supplemental primer list for oligo sequences.

ABBREVIATIONS

Ato, Atonal; Ey, Eyeless; HD, homeodomain; PD, paired
domain; Pax6, Paired box 6.
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