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Identification of essential proteins is very important for understanding the basic
requirements to sustain a living organism. In recent years, there has been an increasing
interest in using computational methods to predict essential proteins based on protein–
protein interaction (PPI) networks or fusing multiple biological information. However, it
has been observed that existing PPI data have false-negative and false-positive data.
The fusion of multiple biological information can reduce the influence of false data
in PPI, but inevitably more noise data will be produced at the same time. In this
article, we proposed a novel non-negative matrix tri-factorization (NMTF)-based model
(NTMEP) to predict essential proteins. Firstly, a weighted PPI network is established
only using the topology features of the network, so as to avoid more noise. To
reduce the influence of false data (existing in PPI network) on performance of identify
essential proteins, the NMTF technique, as a widely used recommendation algorithm,
is performed to reconstruct a most optimized PPI network with more potential protein–
protein interactions. Then, we use the PageRank algorithm to compute the final ranking
score of each protein, in which subcellular localization and homologous information of
proteins were used to calculate the initial scores. In addition, extensive experiments are
performed on the publicly available datasets and the results indicate that our NTMEP
model has better performance in predicting essential proteins against the start-of-the-
art method. In this investigation, we demonstrated that the introduction of non-negative
matrix tri-factorization technology can effectively improve the condition of the protein–
protein interaction network, so as to reduce the negative impact of noise on the
prediction. At the same time, this finding provides a more novel angle of view for other
applications based on protein–protein interaction networks.
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INTRODUCTION

Essential proteins play an indispensable role in the survival
of organisms, and the criticality of proteins is mainly
determined by their biological functions. Studies have shown
that essential proteins have abundant functions such as
translation, transcription, and replication (Glass et al., 2009).
The prediction of essential proteins can apply the important
reference information of biology and medicine, which has a
wide application prospect in the fields of disease diagnosis and
drug design. Currently, researchers have proposed a variety
of biological methods to identify essential proteins, such as
single-gene knockout (Kobayashi et al., 2003). However, these
experimental methods have some limitations such as high cost
and long time consumption. Therefore, it is urgent to improve
the prediction performance of the computational method to
identify essential proteins.

In recent years, researchers have proposed many
computational methods to identify essential proteins relying
on different ideas and technologies. Researchers have proposed
many classic algorithms for predicting essential proteins based
on PPI network topological characteristics, such as degree
centrality (DC) (Hahn and Kern, 2005), information centrality
(IC) (Björnsdottir, 2001), closeness centrality (CC) (Wuchty and
Stadler, 2003), betweenness centrality (BC) (Joy et al., 2014),
subgraph centrality (SC) (Estrada and Rodríguez-Velázquez,
2005), and sum of edge clustering coefficient centrality (NC)
(Wang et al., 2012). Li et al. (2018) found that in the PPI network,
the frequency of essential proteins in triangular structures is
significantly higher than that of non-essential proteins. Based
on this research discovery, they proposed a new measure of
pure Centrality-Neighborhood Closeness Centrality (NCC).
Although this type of approach allows direct identification of
essential proteins in the absence of known essential proteins,
there are limitations to these approaches. First, the existing PPI
data are incomplete with a large number of false positives and
false negatives, affecting the accuracy of predicting essential
proteins. Second, most of these methods just use the topological
properties of the network while ignoring other properties of
essential proteins.

In order to make up for the limitations of incomplete protein
interaction networks, many research groups have combined PPI
networks with other biological information in recent years to
improve the accuracy of essential protein identification. Tew
et al. (2007) proposed a novel method called NFC, which defines
the functional similarity between two proteins based on the GO
term similarity and scores the protein based on the sum of the
functional similarity between the protein and its neighboring
proteins. Zhang et al. (2018) proposed an essential protein
prediction method named TEO by combining the network
topology characteristics, gene expression information, and GO
annotation information. A weighted protein interaction network
was established by calculating the Edge Clustering Coefficient
(ECC), Pearson Correlation Coefficient (PCC), and functional
similarity, so as to realize essential protein recognition. Lei
et al. (2019) proposed an essential protein identification method
called RWEP. Firstly, a weighted PPI network was established

using network topology, gene expression, and GO annotations;
then, each protein in the network was identified according to
subcellular localization and protein complexes. Finally, the restart
random walk algorithm is used to iteratively calculate the protein
score in the weighted network. Due to the strong clustering of
essential proteins, Ren et al. (2011) proposed a new centrality
method that combines PPI network topology and protein
complex information to identify essential proteins. By fusing
the topological feature of PPI networks and gene expression
information, Zhang et al. (2013) and Li et al. (2012) proposed
two different models to predict essential proteins, called CoEWC
and PeC, respectively. Based on the modular characteristics of
essential proteins, Zhao et al. (2014) proposed an essential protein
identification method called POEM. Based on the network
topological characteristics and gene expression information, a
highly reliable weighted network was established, and on this
basis, overlapping functional modules with high cohesion and
low coupling were dug. Finally, scores were calculated according
to the weighted density of the modules to which the proteins
belong, so as to realize the identification of essential proteins.
Peng et al. (2012) considered that essential proteins were more
conservative than non-essential proteins and often combined
with each other. They proposed an iterative method ION that
combines direct homology and PPI networks to predict essential
proteins. The probability transfer matrix was established by using
the edge clustering coefficient (ECC) and interaction network,
and the initial score vector of protein was established by using
homology information. According to the similarities of active
PPI networks of each time, Peng et al. (Zhang et al., 2019)
established a novel PPI network. Then, based on this network and
orthologous information of protein, they developed a dynamic
protein–protein interaction network-based model called FDP.
Zhong et al. (2021) proposed a new measure method called
JDC, which offers a dynamic threshold method to binarize gene
expression data and combines Jaccard similarity index and degree
centrality to predict essential proteins. However, the methods
based on multisource data are relatively simple. It not only will
conceal the complex relationship between the multisource data
but also may introduce artificial noise.

In this article, we utilize non-negative matrix tri-factorization
(NMTF) to deal with the challenges introduced above and
propose a novel method named NTMEP for identifying essential
proteins. NTMEP focuses on the following three important
aspects. First, it is well known that the multiple kinds of biological
data about proteins can be integrated to construct a weighted PPI
network with similar functions. As a result, the more different
types of data are used, the more artificial noise is produced
inevitably. Considering this problem, NTMEP constructs the
weighted PPI by using original protein–protein interaction
information merely. Second, the NMTF algorithm is extensively
used for many applications in pattern recognition, text mining,
DNA gene expressions, and so on. This is also extended to
community detection and the recommendation system. Hence,
to mine more potential protein–protein associations, the NMTF
algorithm is introduced in our progress. It takes the internal
possibility of associations between proteins into account, which
contributes to generation of a more reliable prediction model
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that excludes the noisy candidates. Third, distinct from previous
approaches, we employ homologous and subcellular localization
information in the course of ranking proteins, which can improve
the accuracy of predicting essential proteins effectively.

MATERIALS AND METHODS

Our purpose is to develop a novel method which can improve the
accuracy of predicting essential proteins. We firstly constructed
a weighted PPI network to represent the complex relationships
between proteins. Moreover, a novel prediction method based
on NMTF was proposed specifically for the network to
find the potential associations between proteins. Finally, the
PageRank algorithm was performed to identify the essential
protein candidates by integrating subcellular localization and
homologous information.

Let G(V, E) be the PPI network that contains node set
V = (p1, p2,. . ., pn) (n is the number of proteins) and edge
set E = [(p1, p2, w1), (p2, p3, w2), . . ., (pi, pj, wm)] where
(pi, pj, wm) is the interaction between protein pi and pj with
weighted value wm which was set to 1 in original protein–protein
interaction information.

Protein Association Measurement
In this subsection, a weighted PPI network was constructed in
which the association value of two proteins would be calculated
based on their topological characteristics. In analyzing the
topological characteristics of PPI networks, researchers have
found that the PPI networks are one kind of small-world and
scale-free network. Therefore, the topological features of the PPI
network can be used to predict essential proteins. In recent years,
the item of common neighbors of two proteins in the PPI network
has been used in many prediction algorithms to realize the task
of predicting essential proteins. They demonstrate that the more
common neighbors exist between two proteins, the more deeply
is the association they have with other. In this article, if proteins
pi and pj share at least one common neighbor, we assume that pi
and pj are interacting. This kind of connection between proteins
is called the co-neighbor (CoN) relationships and calculated as
follows:

PCoN(i, j) ={ ∣∣SNei(i)
⋂

SNei(j)
∣∣2

(|SNei(i)| − 1) ∗ (
∣∣SNei(j)

∣∣− 1)

if |SNei(i)| > 1 and∣∣SNei(j)
∣∣ > 1

0 otherwise (1)

where SNei(i) and SNei(j) present the neighborhood sets of pi
and pj, respectively. As can be seen from the above equation,
the value of the CoN relationships of the two-protein range is
between 0 and 1.

Reconstruction of the Weighted PPI
Network Based on NMTF
Non-negative matrix tri-factorization as a general technology
takes or compresses a data matrix into a compact latent space.

It has been used to model topics in text data (Hua et al., 2011),
to predict cancer driver genes from clinical data (Xi et al., 2018),
and to detect disease–disease associations (Žitnik et al., 2013).
It is an efficient data representation technique, which has been
widely used in recommender systems (Hernando et al., 2016; Luo
et al., 2016). This new understanding should help to improve
prediction accuracy of the essential proteins.

To take full advantage of NMTF, we perform it on the weighted
PPI network (PCoN) to mine the potential interactions of proteins.
In contrast to classic non-negative matrix factorization (Lee
and Seung, 1999) where the input matrix is separated into two
parts, NMTF resolves the input matrix into three latent matrices.
Here, we consider that the input adjacency matrix PCoN ∈ Rn∗n

has missing records, that is to say, the interactions between
proteins have not been discovered. By using NMTF, a new matrix
Y ∈ Rn∗n containing some new records would be constructed,
as follows:

PCoN ≈ Y = FSGT (2)

Here, NMTF is designed to describe the matrix PCoN ∈ Rn∗n

with a product of three non-negative potential matricesF ∈ Rn∗k ,
S ∈ Rk∗k , and G ∈ Rn∗k , while parameter k denotes factorization
ranks and represents the number of potential vectors which form
the column and row column space. For a given non-negative
data matrix PCoN , the issue can be solved as the following
optimization problem:

D = min J (F, S, G) =
∣∣∣∣∣∣PCoN − FSGT

∣∣∣∣∣∣2
F

(3)

where || · ||F is the Frobenius norm. Since the objective function
in Eq. (3) is a joint non-convex problem, we employ the rule of
multiplicative iteration to solve the objective function on the basis
of using auxiliary functions. The squared Frobenius norm can be
written as | | X| | 2 = Tr(XTX); therefore, Eq. (3) equals to:

D = Tr
(

PT
CoNPCoN − 2PT

CoNFSGT
+ GSTFTFSGT

)
(4)

Its partial derivative equations for factor F, S, and G are as follows,
respectively:

∂D
∂F
= 2FSGTGST

− 2PCoNGST

∂D
∂S
= 2FTFSGTG− 2FTPCoNG

∂D
∂G
= 2GSTFTFS− 2PT

CoNFS (5)

It is well known that the static point can be detected using the
Karush–Kuhn–Tucker (KKT) complementarity conditions. The
KKT condition for factor F is as follows:

∂D
∂Fik

Fik = 0 (6)
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In this connection, the conditions are assumed to be functional if
the derivative is zero:(

FSGTGST
− PCoNGST

)
iu

Fiu = 0

Fiu = Fiu

(
PCoNGST)

iu(
FSGTGST

)
iu

(7)

Similarly, the updating rules for G and S can be derived as follows:

Giu = Giu

(
PT

CoNFS
)

iu(
GSTFFST

)
iu

Siu = Siu

(
FTPCoNG

)
iu(

FTFSGTG
)

iu
(8)

The multiplication iteration rules are shown as follows:

Fiu ← Fiu

(
PCoNGST)

iu(
FSGTGST

)
iu

Giu ← Giu

(
PT

CoNFS
)

iu(
GSTFFST

)
iu

Siu ← Siu

(
FTPCoNG

)
iu(

FTFSGTG
)

iu
(9)

From the above Eq. (9), the optimal matrix Y, which is closest to
PCoN , can be computed. Finally, to recover the symmetry of the
protein–protein interactions, we transformed the matrix Y to a
symmetrical transition probability matrix P∗CoN , as follows:

P∗CoN(i, j) =

{
max

(
Yij, Yji

)∑N
k=0 Yik

,

N∑
k=0

Yik 6= 0

0, else (10)

The NMTF-Based Model for Identifying
Essential Proteins
Through the description of the above algorithm, based on the
information of the original PPI network, an optimized weighted
PPI network can be established. Therefore, we can use an iterative
method to rank protein scores. This method mainly includes two
parts: the calculation of the initial score and the calculation of the
ranking score, as detailed below.

Computation of Initial Scores
In this part, we will initially score each protein in the PPI network
using homologous and subcellular localization information.
Taking the Saccharomyces cerevisiae PPI network as an example,
Tang et al. (2018) analyzed whether all the proteins in this
network had direct homologous proteins in 99 reference species.
They concluded that the more homologous a protein has in the
reference species, the more likely it is to become a required
protein. In order to obtain the given protein pi in the PPI network
G = (V, E), we mainly use the homology information to calculate
the homology score (SH) of the protein. Among them, SH (pi)

refers to the conservative score of pi, and the calculation formula
is as follows:

SH(pi) =
H(pi)

max
1≤j≤|V|

(H(pj))
(11)

Among them, H(pi) refers to the number of times that the protein
pi has direct homologous proteins in the reference species.

We know that an important feature of proteins is subcellular
localization. By studying the characteristics of protein subcellular
localization, researchers (Li et al., 2016; Zhao et al., 2016; Lei et al.,
2018) found that essential proteins are more likely to appear in
specific subcellular locations. Based on this, we calculated the
subcellular localization score (SL) of the protein based on the
subcellular localization information. If the protein pi exists in the
final subcellular localization dataset R, then the frequency of each
subcellular location r can be calculated by the following formula:

OF(r) =
|SN(r)|

max
1≤k≤n

(
∣∣SN(k)

∣∣) (12)

where SN represents the relationship between the protein and
the subcellular location data set, SN(r) refers to the number of
proteins corresponding to the subcellular location r, and n is the
number of subcellular locations.

Based on a fixed protein pi, the subcellular localization score
SL (pi) refers to the highest score for all subcellular locations.

SL(pi) = max
r∈C(pi)

(OF(r)) (13)

where C(pi) represents the subcellular location corresponding to
the protein pi.

Finally, according to Eq. (11–13), the unique initial score
SL(pi) of protein pi is expressed as follows:

SI(pi) = SH(pi)× SL(pi) (14)

Computation of Ranking Scores
The ranking of protein pi is called SF(pi), and∑

pj∈SCoN (i) P∗CoN(pi, pj)SF(pj) refers to the neighbor induction
score. Based on this, the ranking score of each protein in the PPI
network can be calculated by Eq. (15), as shown below:

SF(pi) = α
∑

pj∈SCoN (i)

P∗CoN(pi, pj)SF(pj)+ (1− α)SI(pi) (15)

Among them, the function of the parameter α (0 ≤ α < 1) is
to adjust the weight of the two scores in the final ranking score.
Based on the above analysis, the protein ranking score is a linear
combination of its initial score and the neighborhood correlation
score at the edge of the network. Therefore, formula (15) can be
rewritten in matrix vector format as follows:

SF = α ∗ P∗CoN ∗ SF + (1− α) ∗ SI (16)

In our study, the Jacobi iterative method is used to solve Eq. (16),
as shown below:

St
F = α ∗ P∗CoN ∗ St−1

F + (1− α) ∗ SI (17)

Frontiers in Genetics | www.frontiersin.org 4 August 2021 | Volume 12 | Article 709660

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-709660 August 2, 2021 Time: 14:8 # 5

Zhang et al. Method for Identifying Essential Proteins

Algorithm 1 | NTMEP
Input: A PPI network G, subcellular localization information, homologous proteins information, stopping error ε, parameters k, α, and K
Output: Top K proteins sorted by SF in descending order
Step 1: Calculate adjacency matrix PCoN of the weighted PPI network according to Eq. (1)
Step 2: Reconstruct matrix PCoN to P∗CoN by Eq. (2)–(10)
Step 3: Initialize initial vector SI with SF

0 = SI and t = 0
Step 4: Compute SF

t according Eq. (17)
Step 5. If | | SF

t – SF
t−1 | | < ε, then PR SF = SF

t and terminate the algorithm. Otherwise, let t = t+1 and repeat Step 4
Step 6. Sort proteins by the value of SF in the descending order
Step 7. Output top K of sorted proteins

where St
F is the protein’s scores obtained in the tth iteration.

Through the above analysis, we conclude that the overall
framework of the NMTF-based model for the identification
of essential protein (NTMEP) can be referred to as the
following Algorithm 1.

RESULTS AND DISCUSSION

Experimental Data
In the experiments, we use four data sets including protein–
protein interaction set, experimentally verified essential protein
set, subcellular location set, and homologous protein information
set. We downloaded the relationships among proteins from
the DIP database (Xenarios et al., 2002), which includes 1,167
essential proteins and a total of 24,743 interactions between
5,093 proteins after removing self-interactions and duplicate
interactions. Also, these data are adopted to construct the
weighted protein network based on the topological structures.
The experimentally verified essential protein dataset with 1,285
essential proteins are derived from MIPS (Mewes et al., 2006),
SGD (Cherry et al., 1998), DEG (Zhang and Lin, 2009),
and SGDP (Saccharomyces Genome Deletion Project, 2012).
From the COMPARTMENTS (Binder et al., 2014) database,
we obtained the subcellular location data, which cover 11
categories (Endoplasmic, Nucleus, Cytoskeleton, Golgi, Cytosol,
Vacuole, Plasma, Mitochondrion, Endosome, Peroxisome, and
Extracellular) (Peng et al., 2015). The homologous protein
information is collected come from the seventh edition of
the InParanoid database (Ostlund et al., 2010) including
paired comparisons of 100 whole genomes (99 eukaryotes and
one prokaryote).

Parameter α Sensitivity Analysis
In the NTMEP, the parameter α in Eq. (16), which used to
weigh up the contribution of neighbor-induced score and initial
score, was set to 0, 0.1, 0.2,..., and 1. While considering only the
neighbor-induced score, α was set to 1. On the other hand, α

was set to 0 when considering only the initial score. The impact
of the parameter α to the performance of NTMEP is presented
in Table 1. After the ranking scores of proteins were calculated
with the different value of parameter α, we get the number of
true essential proteins in the top 100, 200, 300, 400, 500, and
600 candidates, respectively. Table 1 shows that the performance
of the NTMEP is very poor when α was set to 0 or 1. It can
be seen from the data in Table 1 that the 0.1 and 0.2 groups

have better prediction results. Especially, the best performance
was achieved in the top 100 candidates when α was set to 0.1.
Consequently, α was set to 0.2 in this article to make the NTMEP
obtain good performance.

Comprehensive Comparison With Other
Methods
To comparatively study the performance of NTMEP in predicting
essential proteins, we also implement 10 types of representative
essential proteins prediction methods, like DC (Joy et al., 2014),
IC (Estrada and Rodríguez-Velázquez, 2005), CC (Wang et al.,
2012), BC (Li et al., 2018), SC (Tew et al., 2007), NC (Zhang
et al., 2018), PeC (Li et al., 2012), CoEWC (Zhang et al., 2013),
POEM (Zhao et al., 2014), and JDC (Zhong et al., 2021), which
are state-of-the-art prediction methods for the well essential
protein prediction.

The higher number of essential proteins within the top
k of the ranking list means the more real essential proteins
are predicted successfully. Parameter k, which is set to 100,
200, 300, 400, 500, and 600, denotes the number of essential
protein candidates selected. The number of real essential
proteins within top k candidates is shown in Figure 1. NTMEP
consistently outperformed the other competitive methods at
various k cutoffs and ranked 92, 85.5, 78.7, 73.8, 69.4, and
65.2% of positive samples in top 100, 200, 300, 400, 500, and
600, respectively. Especially, as for the top 100 of essential
protein candidates, NTMEP has higher predict accuracy 46,
48, 55, 48, 51, 37, 18, 19, 11, and 12% than that obtained
from DC, IC, CC, BC, SC, NC, PeC, CoEWC, POEM, and

TABLE 1 | The impact of parameter α to the performance of NTMEP.

Top 100 Top 200 Top 300 Top 400 Top 500 Top 600

0 78 154 221 289 335 378

0.1 94 167 232 293 341 390

0.2 92 171 236 295 347 391

0.3 90 167 234 293 347 391

0.4 88 164 230 290 349 396

0.5 85 161 224 286 339 393

0.6 83 155 221 275 321 378

0.7 83 152 214 263 315 371

0.8 79 151 206 257 307 357

0.9 79 147 197 249 299 346

1 80 140 194 241 281 321
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FIGURE 1 | Number of actual essential proteins identified by NTMEP and other ten previously competitive methods at various k values. (A) Top 100 ranked proteins;
(B) Top 200 ranked proteins; (C) Top 300 ranked proteins; (D) Top 400 ranked proteins; (E) Top 500 ranked proteins; (F) Top 600 ranked proteins.

JDC, respectively. In those competitive methods, JDC had
the best accuracy and ranked 80, 76.5, 74.7, 66.8, 63, and
59.2% in the top 100–600, respectively. Compared with JDC,

NTMEP improved by 15% in top 100, 11.8% in top 200,
5.4% in top 300, 10.5% in top 400, 10.2% in top 500, and
10.1% in top 600.
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FIGURE 2 | Performance comparison between NTMEP and other ten methods in terms of PR curves. (A) PR curves of DC, IC, SC, BC, CC, NC, and NTMEP;
(B) PR curves of PeC, CoEWC, POEM, JDC, and NTMEP.

Validated by Precision–Recall Curves
To obtain a fair and convincing comparison, the precision–
recall (PR) curve is used to evaluate the prediction performance
for essential proteins of our method and other state-of-the-art
methods. The value of cutoffs, presented as k, is ranged from 1
to 5,093. We compute the scores of all proteins by using each
algorithm and sorted it in descending order, respectively. The top
k proteins are selected as a positive set, namely, essential protein
candidates, and others as the negative set, namely, non-essential
protein candidates. Figure 2 compares the results obtained from
the different methods. As shown in Figure 2A, compared with
DC, IC, BC, CC, SC, and NC, the PR curves of NTMEP reported
significantly higher capability for identifying essential proteins.
The results obtained from our method and PeC, CoEWC, POEM,
and JDC are presented in Figure 2B. Looking at Figure 2B, in the
first part of the PR curve, it is apparent that the precision of our
method has the best performance compared to those methods. In
order to give quantitative comparison results, the area under the
curve (AUC) values of the PR curve were computed, respectively,
as shown in Table 2. As a whole, the NTMEP dramatically
outperformed those competitive methods.

Validated by Jackknife Methodology
In this subsection, we employ the jackknife curves to assess
the performance of our NTMEP method and other existing
methods (DC, BC, CC, SC, IC, NC, PeC, CoEWC, POEM,
and JDC), the various top number of ranked proteins as

TABLE 2 | The AUC values of the PR curve obtained from NTMEP and other 10
competitive methods.

Method NTMEP DC IC SC BC CC

AUC value of
PR curve

0.549 0.359 0.357 0.331 0.319 0.326

NC PeC CoEWC POEM JDC

0.425 0.492 0.463 0.439 0.417

candidates. The jackknife curves of all the methods are displayed
in Figure 3, where the horizontal axis denotes the number
of proteins ranked at the top in descending order with each
corresponding method, and the vertical axis is the accumulative
quantity of the real essential proteins within the ranked proteins.
Figures 3A,B illustrate the jackknife curves of all the competitive
methods compared with NTMEP, respectively. As is seen from
Figure 3A, the curve of NTMEP reported a higher number
of real essential proteins than other existing centrality measure
methods, such as DC, BC, CC, SC, IC, and NC. As shown in
Figure 3B, NTMEP is also better than PeC, CoEWC, POEM,
and JDC. To give quantitative comparison results, the AUC
values of jackknife curve were computed, respectively, as shown
in Table 3. From Figure 3 and Table 3, it is clear that the
NTMEP method outperforms the other 10 essential protein
prediction methods.

In summary, these results demonstrated the powerful ability
of NTMEP in identifying essential proteins. This finding is
reasonable because our method adopts NMTF to find the
potential interactions between proteins, which could provide
additional interaction information and help to improve the
prediction results by a large margin.

Analysis of the Differences Between
NTMEP and Other 10 Competitive
Prediction Methods
This subsection will analyze the difference between NTMEP and
other prediction methods through experimental results. Firstly,
11 protein sets were constructed by NTMEP and other 10
prediction methods (DC, IC, CC, BC, SC, NC, PeC, CoEWC,
POEM, and JDC), and each protein set contains the top 100
essential proteins predicted by each prediction method. The
number of proteins that overlap between the NTMEP method
and other methods and the number of proteins that differ are
shown in Table 4.

In Table 4, Mi refers to one of the 10 prediction methods
(DC, IC, CC, BC, SC, NC, PeC, CoEWC, POEM, and JDC);
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FIGURE 3 | Performance comparison between NTMEP and other ten methods in terms of Jackknife curves. (A) Jackknife curves of DC, IC, SC, BC, CC, NC, and
NTMEP; (B) Jackknife curves of PeC, CoEWC, POEM, JDC, and NTMEP.

TABLE 3 | The AUC values of jackknife curve obtained from NTMEP and
other 10 methods.

Method NTMEP DC IC SC BC CC

AUC value of
jackknife curve

0.697 0.640 0.628 0.607 0.601 0.600

NC PeC CoEWC POEM JDC

0.670 0.603 0.618 0.635 0.684

|Mi∩NTMEP| represents the number of common proteins
predicted by both Mi and NTMEP in the top 100 ranked proteins.
{Mi-NTMEP} refers to the difference set in the top 100 ranked
proteins, while proteins were selected as essential proteins by
Mi but not by NTMEP. Moreover, | Mi-NTMEP| represents the
number of proteins in the difference set. Similarly, {NTMEP-Mi}
denotes the difference set constituted by the proteins belonging
to NTMEP but not to Mi, and the number is denoted by
|NTMEP-Mi|.

As shown in Table 4, the second row of the table shows that 85
essential protein candidates out of the top 100 essential protein
candidates predicted by DC are different from those predicted

by NTMEP, while 32 of these 85 predicted essential protein
candidates are true essential proteins; thus, the percentage of
essential proteins in the difference set is 37.6%. Among the
top 100 essential protein candidates predicted by NTMEP, 85
essential protein candidates were different from those predicted
by DC, but 78 of them were accurate; thus, the percentage of
essential proteins in the difference set was 91.8%. From this
line of data, it can be seen that most of the top 100 essential
protein candidates predicted by NTMEP are different from those
candidates predicted by DC. Moreover, NTMEP predicts far
more true key proteins than DC. This indicates that NTMEP not
only is a different method from DC but also shows that NTMEP
is much better than DC in distinguishing essential proteins from
common proteins. Similarly, it can be seen from the other rows
of the table that NTMEP maintains this advantage over all other
prediction methods.

CONCLUSION

In reviewing the literature, previous studies developed many
computational methods to predict essential proteins effectively.

TABLE 4 | Comparison of the overlap and difference of the top 100 proteins identified by NTMEP and other 10 methods.

Methods (Mi) | Mi∩NTMEP| | NTMEP-Mi| and
| Mi-NTMEP|

Number of
essential proteins

in {Mi-NTMEP}

Number of
essential proteins

in {NTMEP-Mi }

Percentage of
essential proteins

in {Mi-NTMEP}

Percentage of
essential proteins

in {NTMEP-Mi }

DC 15 85 32 78 37.6% 91.8%

IC 15 85 30 78 35.3% 91.8%

SC 12 88 25 80 28.4% 90.9%

BC 11 89 34 82 38.2% 92.1%

CC 13 87 29 80 33.3% 92.0%

NC 33 67 25 62 37.3% 92.5%

PeC 44 56 33 50 58.9% 91.1%

CoEWC 46 54 30 49 55.6% 90.7%

POEM 49 51 35 46 68.6% 90.2%

JDC 40 60 42 54 70.0% 90.0%
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However, these methods do not take full account of the false-
positive and -negative noise generated from high-throughput
experimentation and the process of the weighted PPI network
construction. To get the utmost out of the complex association
between proteins, NMTF is introduced into our proposed
method. Moreover, subcellular localization and homologous
protein information are used in the final scoring stage instead
of the stage of establishing the weighted network. Also,
a comprehensive experiment is carried out and the results
show that our new method can obtain a better performance
compared with other methods. A possible explanation for
these results might be that there are deep relationships
between proteins which are not founded by high-throughput
experimentation, and fusion of multiple data raises the cost
and reduces the overall efficiency of the process. These
results add to the rapidly expanding field of computational
methods for predicting essential proteins. It is unfortunate
that the study did not solve the problem of noise generated
by multisource data fusion. This is an important issue for
future research.
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