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SUMMARY
Annotation of cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to un-
derstanding tumor biology. Herein, we present matched chromatin accessibility (single-cell assay for trans-
posase-accessible chromatin by sequencing [scATAC-seq]) and transcriptome (single-cell RNA sequencing
[scRNA-seq]) profiles at single-cell resolution from human breast tumors and healthy mammary tissues pro-
cessed immediately following surgical resection. We identify themost likely cell of origin for subtype-specific
breast tumors and implement linear mixed-effects modeling to quantify associations between regulatory
elements and gene expression inmalignant versus normal cells. These data unveil cancer-specific regulatory
elements and putative silencer-to-enhancer switching events in cells that lead to the upregulation of clinically
relevant oncogenes. In addition, we generate matched scATAC-seq and scRNA-seq profiles for breast can-
cer cell lines, revealing a conserved oncogenic gene expression program between in vitro and in vivo cells.
This work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic pro-
cesses and the ability of single-cell multi-omics to define the regulatory logic of cancer cells.
INTRODUCTION

Breast cancer (BC) is the most commonly diagnosed cancer

among women and accounts for 15% of all female cancer-

related deaths in the United States.1 Treatment strategies

and patient prognosis vary by clinical subtype, defined by hor-

mone receptor expression of estrogen receptor (ER) and pro-

gesterone receptor (PR) and overexpression and/or amplifica-

tion of human epidermal growth factor receptor 2 (HER2). BC

can also be stratified into five intrinsic molecular subtypes

with distinct clinical outcomes: luminal A, luminal B, HER2-

enriched, basal-like, and normal-like.2–5 Together, these

form three broad subtypes of BC: luminal (ER+/PR+/�),
HER2+ (HER2+, ER+/�, PR+/�), and triple-negative (ER�,
PR�, HER2�) BC.6–8 Several studies have characterized the

transcriptional landscapes of these BC subtypes.9–12 While

these studies have been transformative, there has been an

increased focus on non-coding regions of the genome, in

addition to transcriptomics, for deeper multi-omic insights

into BC heterogeneity and its pathogenesis.13–16
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Non-coding regions contain vast amounts of regulatory infor-

mation that contribute profoundly to tumor biology.17,18 More-

over, it has become increasingly evident that regulatory ele-

ments (i.e., cis-acting enhancers) are rewired in cancer cells to

promote growth, survival, and other aggressive phenotypes

associated with poor clinical outcome.19–27 Several studies

have used epigenomics, in parallel with transcriptomics, to char-

acterize molecular and clinical heterogeneity of BC revealing

extensive variation in enhancer activity across BC subtypes.13–16

However, most studies to date have done so using bulk genomic

sequencing of material collected from heterogeneous mixtures

of different cell types, obscuring cancer cell-specific activity of

oncogenic enhancers. Therefore, exact mechanisms of gene

regulation in the context of BC cells remain elusive.

Breast tumors are complex cellular microenvironments in

which various types of malignant and non-malignant cells

contribute to a range of clinically relevant biological phenomena,

from cancer progression to treatment response.28–30 It is widely

accepted that BC arises from mammary epithelial cells.31,32 The

normal mammary epithelium mainly comprises mature luminal,
uary 12, 2025 ª 2025 The Authors. Published by Elsevier Inc. 1
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Table 1. Abbreviated clinical data and single-cell metadata for each sample

Sample Type ER IHC PR IHC Her2 IHC

scRNA-seq

cells

scATAC-seq

cells

Patient 1 normal breast tissue not performed not performed not performed 8,682 8,166

Patient 2 normal breast tissue not performed not performed not performed 6,971 9,337

Patient 3 normal breast tissue not performed not performed not performed 6,368 9,549

Patient 4 normal breast tissue not performed not performed not performed 10,222 6,860

Patient 5 primary breast tumor � + � 6,583 5,647

Patient 6 primary breast tumor � � � 3,965 1,429

Patient 7 primary breast tumor + � � 7,029 4,093

Patient 8 primary breast tumor + + equivocal 10,085 6,490

Patient 9 primary breast tumor + + equivocal 6,907 2,025

Patient 10 primary breast tumor + + equivocal 5,307 5,016

Patient 11 primary breast tumor + + � 2,997 2,743

Patient 12 primary breast tumor + + equivocal 8,490 6,339

Patient 13 primary breast tumor + + � 6,676 3,383

Patient 14-1 primary breast tumor + + � 9,175 8,010

Patient 14-2 primary breast tumor + + � 5,655 4,768

Patient 15 primary breast tumor + + equivocal 6,767 7,193

MCF7 breast cancer cell line not performed not performed not performed 7,331 4,367

T47D breast cancer cell line not performed not performed not performed 7,796 6,709

HCC1143 breast cancer cell line not performed not performed not performed 6,827 1,313

SUM149PT breast cancer cell line not performed not performed not performed 8,697 3,949

The last two columns reflect the number of cells obtained post quality control (QC). ‘‘Equivocal’’ in the Her2 IHC (immunohistochemistry) column de-

notes a Her2 IHC value of 2+. Her2 fluorescence in situ hybridization (FISH) results and extended clinical data for each patient sample (de-identified)

can be found in Table S1.
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luminal progenitor, and basal epithelial cells, all of which have

been studied as possible ‘‘cell-of-origin’’ precursors for different

BC molecular subtypes.33–37 Several studies have proposed

luminal progenitor andmature luminal cells as likely cell-of-origin

precursors for basal-like and luminal BC, respectively.33–37 How-

ever, changes in the gene regulatory landscape between normal

mammary epithelial and subtype-specific BC cells are not as

well studied, especially at single-cell resolution.

Single-cell genomics has revolutionized our ability to explore

cellular heterogeneity of breast tumors, yet most studies have

profiled transcriptomes via single-cell RNA sequencing

(scRNA-seq).30,38–44 The single-cell assay for transposase-

accessible chromatin by sequencing (scATAC-seq) performs

high-throughput profiling of chromatin accessibility, revealing

complex facets of gene regulation, including activity of en-

hancers at single-cell resolution.45–47 Together, scRNA-seq

and scATAC-seq enable linking of regulatory elements to puta-

tive target genes, offering key mechanistic insights into the

molecular underpinnings of BC by interrogating the regulatory

logic of BC cells.25,37,48–54 We posit that enhancers with

increased activity in BC cells, relative to normal mammary

epithelial cells, regulate the expression of genes associated

with oncogenic processes.

To investigate how regulatory landscapes may become

altered in human BCs relative to the normal mammary epithe-

lium, we generated matched scRNA-seq and scATAC-seq pro-

files for 12 primary breast tumor specimens, four normal breast
2 Cell Genomics 5, 100765, February 12, 2025
tissue specimens, and four BC cell lines. These data, encom-

passing over 200,000 single cells, will serve as an important

resource to the single-cell genomics and BC research commu-

nities. Moreover, we introduce a novel methodology that

implements linear mixed-effects models (LMMs) to quantify as-

sociations between regions of chromatin accessibility (i.e., regu-

latory elements) and gene expression while accounting for

important biological and technical variables.55,56 This approach

enabled us to perform differential association analyses between

subtype-specific BC cells and their nearest mammary epithelial

cells from healthy controls. We also apply the LMM-based

method to BC cell lines and compare regulatory landscapes be-

tween BC cells in vivo and in vitro, stratified by molecular sub-

type. Through these analyses, we identify context-specific

mechanisms of gene regulation in BC cells and unveil clinically

relevant non-coding mechanisms for BC pathogenesis at sin-

gle-cell resolution.

RESULTS

Matched scRNA-seq and scATAC-seq of human breast
tumors and normal mammary epithelial tissues
Twelve primary breast tumor specimens and four normal mam-

mary tissue specimens were collected from 11 treatment-

naive BC patients undergoing surgery with curative intent and

four healthy control patients undergoing a reduction mammo-

plasty procedure, respectively (Tables 1 and S1; Figure 1). Two



Figure 1. Overview of matched scRNA-seq and scATAC-seq workflow for BC tissue specimens, reduction mammoplasty tissue specimens,

and BC cell lines

(A) Schematic diagram of procurement, processing, and downstream analysis of patient samples and cell lines. The female breast and cell line illustrations were

created with BioRender.com.

(B) UMAP plot of 111,879 scRNA-seq cells color coded by cell type across 16 patient samples. Color shades denote clusters within each cell type.

(C) UMAP plot of scRNA-seq cells as shown in (B) but color coded by patient sample of origin.

(legend continued on next page)
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specimens were collected from BC patient 14 (Tables 1 and S1).

Immediately following surgical resection, each specimen was

dissociated into a live-cell suspension and prepared for

scRNA-seq and scATAC-seq (Figure 1A; STAR Methods). After

quality control (QC) for each patient dataset, we obtained

111,879 cells and 91,048 cells profiled by scRNA-seq and

scATAC-seq, respectively (Tables 1, S2A, and S3A; Figures S1

and S2).

To analyze scRNA-seq cells from all 16 patient samples, we

performed graph-based clustering and visualized all cells in a

uniform manifold approximation and projection (UMAP) plot.

This showed clusters that were annotated to known cell types

(Figures 1B, S3A, and S3B; Table S2A; STAR Methods) and

that batch effects were not a major source of variation

(Figures 1C and 1D).30,48,49 To identify malignant BC cells within

each patient tumor, we used inferCNV to estimate copy-number

variation (CNV) profiles at single-cell resolution as described pre-

viously.30,57–59 Briefly, this procedure involved classifying

epithelial cells from each patient tumor into one of three groups

(high, ambiguous, or low) based on inferred level of CNV in each

cell.30 Cells classified as inferCNV high were deemed putative

cancer cells and were carried forward to molecular subtype

prediction.

We predicted the molecular subtype (basal-like, Her2-en-

riched, luminal A, or luminal B) of each cancer cell within each

patient tumor using a previously published method called

SCSubtype.30 These analyses revealed the majority composi-

tions of clusters 11 and 14 as basal-like BC cells from patients

5 and 6, respectively (Figures 1D and S3B; Table S2A). Similarly,

the majority of inferCNV-high cells from patients 5 and 6 were

predicted to be basal-like BC (Figures S4A and S4B;

Table S2A). The majority compositions of clusters 6, 12, 18,

20, and 23 contained mixtures of predicted luminal A and B cells

from patients 7–15, suggesting these cells can be referred to

hereafter as luminal BC (Figures 1D and S3B; Table S2A). The

majority of inferCNV-high cells from patients 7–15 were also pre-

dicted to be luminal A or B (Figures S4A and S4B; Table S2A).

Finally, we observed that the normal mammary epithelial cell-

type clusters of luminal progenitor, basal epithelial, and mature

luminal cells were well represented by healthy control samples,

indicating a sufficient number of cells for a robust control-group

comparison to BC cells (Figures 1D, S3A, and S3B; Table S2A).

To analyze scATAC-seq cells from all 16 patient samples, we

performed iterative latent semantic indexing to reduce the

dimensionality of the dataset.46,47,50 Using Seurat’s cross-mo-

dality integration approach, we then assigned cell-type cluster

labels to scATAC-seq cells based on their matching scRNA-

seq data (Figures 1E, 1G, S3C, and S3E; Table S3A; STAR

Methods).48–50 This approach also enabled us to assign in-

ferCNV status and predicted subtype to each scATAC-seq cell

based on annotations of its nearest neighboring cell in scRNA-
(D) Proportion bar charts showing the composition of each cluster in scRNA-seq, i

(right). Color-code key is shown to the right.

(E) UMAP plot of 91,048 scATAC-seq cells color coded by inferred cell type acro

type.

(F) UMAP plot of scATAC-seq cells as shown in (E) but color-coded by patient s

(G) Proportion bar charts as in (D) but for the composition of each inferred cluste
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seq (Figure 1G; Table S3A; Figures S4C and S4D).48–50 This

showed scATAC-seq cells clustered mainly by cell type, not

by patient, consistent with the matching scRNA-seq data

(Figures 1F and 1G). In summary, we observed 13 general cell

types across the patient dataset, with 24 clusters identified in

both scRNA-seq and scATAC-seq. Consistent with previous re-

ports, non-malignant cell-type clusters were well represented

across patients, while BC clusters remained highly patient spe-

cific, likely due to tumor-unique CNV profiles (Figures 1D and

S3B).25,30,60–62

To further inform our comparisons of subtype-specific BC

cells from primary tumors to normal mammary epithelial cells

from healthy controls, we performed an unsupervised clustering

analysis of pseudo-bulk transcriptome profiles (Figure S5; STAR

Methods). This analysis revealed luminal BC profiles fromBCpa-

tients clustered with mature luminal profiles from healthy con-

trols, while basal-like profiles from BC patients clustered with

luminal progenitor and basal epithelial profiles from healthy

controls (Figure S5A). To further investigate this, we performed

principal-component analysis (PCA) of the same pseudo-bulk

transcriptional profiles, which revealed clear separation of

basal-like BC, luminal progenitor, and basal epithelial profiles

from luminal BC and mature luminal profiles (Figure S5B). These

observations were consistent with previous reports supporting

luminal progenitor and mature luminal cells as cell-of-origin pre-

cursors to basal-like and luminal BC, respectively.33,34,37 To this

end, we transitioned into subtype-specific analyses of BC

(basal-like and luminal BC) compared to their nearest normal

mammary epithelial cell types.

Identification of enhancers with cancer-specific
regulatory activity in basal-like BC cells
Basal-like BC has been shown to strongly overlap with the triple-

negative clinical subtype and portends a poor prognosis, in part

due to a lack of targeted therapies.63–68 To analyze basal-like

subtype cells, we merged basal-like BC cells from patients 5

and 6 with luminal progenitor as well as basal epithelial cells

from healthy control patients according to the unsupervised

pseudo-bulk clustering analysis (Figure S5). This subset resulted

in 13,993 cells and 14,038 cells profiled by scRNA-seq and

scATAC-seq, respectively (Figure 2A; Tables S2B and S3B).

After reclustering scRNA-seq cells and transferring the resulting

labels as well as gene expression profiles to scATAC-seq, we

found that cells mainly clustered by cell type and not by patient,

except for two patient-specific clusters of basal-like BC from pa-

tients 5 and 6 (Figure 2B; Tables S2B and S3B).

To interrogate the regulatory logic of basal-like BC cells in

comparison to their nearest normal mammary epithelial

cells, we first carried out peak calling in scATAC-seq cells to

identify putative regulatory elements located in regions of acces-

sible chromatin.13,50,69,70 We developed a robust LMM-based
n terms of patient sample (left), inferCNV status (middle), and predicted subtype

ss 16 patient samples. Color shades denote clusters within each inferred cell

ample of origin.

r in scATAC-seq.



Figure 2. Quantifying the altered regulatory landscape in basal-like BC cells relative to normal luminal progenitor cells

(A) UMAP plot of 13,993 scRNA-seq cells color coded by cell type across six patient samples (left). UMAP plot of 14,038 scATAC-seq cells color coded by inferred

cell type across six patient samples (right). Color shades denote clusters within each cell type.

(B) UMAP plots of scRNA-seq cells (left) and scATAC-seq cells (right) as shown in (A) but color coded by patient sample of origin.

(C) Schematic diagram showing the three-step differential peak-to-gene analysis framework.

(D) Proportion bar charts showing the genomic distribution (left) and ENCODE annotation status (right) for 84,975 normal-specific peak-to-gene associations,

337,053 cancer-specific associations, and 21,684 shared associations.

(E) Scatterplot showing effect sizes of significant differential peak-to-gene associations in the cancer condition, comprising basal-like BC cells, and in the normal

condition, comprising luminal progenitor cells. Each dot represents a peak-gene pair with a significant change in effect size between conditions and is colored by

differential association class (specific change in direction of effect size between conditions).

(F) Bar plot showing the number of differential peak-to-gene associations per differential association class.
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strategy to link putative regulatory elements to target genes. This

enabled us to quantify the association between peak accessi-

bility and gene expression after accounting for patient. To inves-

tigate the regulatory landscapes in basal-like BC cells compared

to normal mammary epithelial cells, we performed a two-phased

differential peak-to-gene association analysis to link putative
regulatory elements to target genes in a context-specific manner

(Figure 2C; STAR Methods).

Consistent with previous reports, we focused our analysis on

the comparison of basal-like BC cells, referred to hereafter as

the ‘‘cancer’’ condition, to luminal progenitor cells, referred to

hereafter as ‘‘normal.’’33,34,37 Using patient-specific metacells
Cell Genomics 5, 100765, February 12, 2025 5
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(i.e., aggregates of similar cells), we first quantified, within each

condition, the regulatory effect size of peak accessibility on

gene expression for every peak within 500 kb of each gene, after

accounting for variation between patients (Figure 2C; STAR

Methods).50,55,56 More specifically, for every peak-gene pair

tested in each condition, wemodeled gene expression as a func-

tion of peak accessibility as a fixed effect and patient as a

random effect in an LMM. This revealed a total of 443,712 signif-

icant peak-to-gene associations (false discovery rate [FDR]-

adjusted p < 1e�04), with 84,975 normal-specific associations,

337,053 cancer-specific associations, and 21,684 shared asso-

ciations (Figure 2D; Table S4). The majority of these peak-to-

gene associations involved peaks located in introns and distal

intergenic regions, highlighting the importance of non-coding

regulatory information (Figure 2D; Table S4).25 Moreover, the

majority of these peak-to-gene associations also involved peaks

annotated by the Encyclopedia of DNA Elements Consortium

(ENCODE) database, suggesting they are bona fide regulatory

elements that provide support for our computational approach

(Figure 2D; Table S4).71,72

To identify putative regulatory elements with significant differ-

ential effects on gene expression between conditions, we com-

bined metacells from both conditions and quantified the change

in regulatory effect size between conditions for intronic and distal

peak-gene pairs that showed a significant association in at least

one condition (Figures 2C and 2D; Table S4).55,56 We hypothe-

sized that the change in regulatory effect size betweenconditions

could be modeled as an interaction term in the LMM (e.g.,

modeling gene expression as a function of peak accessibility,

condition, and the interaction between condition and accessi-

bility as fixed effects with patient as a random effect). This differ-

ential analysis identified 212,781 peak-to-gene associations with

significant changes (FDR-adjustedp<1e�04) in regulatory effect

size between cancer and normal conditions (Figure 2E; Table S4).

Of these 212,781 differential peak-to-gene associations, 12,954

differential associations had statistically significant effect sizes

in the normal condition but insignificant effect sizes in the cancer

condition (Figures 2E and 2F; Table S4). These differential asso-

ciations may represent putative regulatory element-target gene

pairings specific to the normal condition. Conversely, 188,363

differential associations had statistically significant effect sizes

in the cancer condition but insignificant effect sizes in the normal

condition and thusmay reflect cancer-specific putative regulato-

ry element-target gene pairings (Figures 2E and 2F; Table S4).

The remaining 11,464 differential peak-to-gene associations

had statistically significant effect sizes in both conditions, sug-

gesting potential changes in magnitude and/or direction of regu-

latory effect these putative regulatory elements exert on target

gene expression (Figures 2E and 2F; Table S4).

To this end, we further classified differential peak-to-

gene associations based on changes in direction between

conditions. Differential peak-to-gene associations with signifi-

cant effect sizes specific to the cancer condition were either

positive (n = 102,489) or negative (n = 85,874), suggesting can-

cer-specific enhancer or silencer-like regulatory relationships

in basal-like BC cells (Figure 2F; Figures S6A and S6B;

Table S4). Similarly, differential peak-to-gene associations with

significant effect sizes specific to the normal condition were
6 Cell Genomics 5, 100765, February 12, 2025
either positive (n = 7,665) or negative (n = 5,289), suggesting

enhancer or silencer-like regulatory relationships specific to

the normal condition (Figure 2F; Figures S6C and S6D;

Table S4). The remaining differential peak-to-gene associations

with significant effects in both conditions were either positive in

both conditions (n = 3,796) or negative in both conditions

(n = 2,404) or showed changes in direction between conditions

(n = 5,264) (Figures 2F and S6E–S6H; Table S4). This suggests

the potential for regulatory switching events, in which a regulato-

ry element may target the same gene but with opposing regula-

tory effects depending on cell state. Overall, most differential

peak-to-gene associations showed positive regulatory effects

that were cancer specific, indicative of putative enhancer-gene

regulation specific to the cancer condition (Figure 2F; Table S4).

To characterize putative cancer-specific enhancer-regulated

genes in basal-like BC cells, we first screened cancer-specific

peak-to-gene associations for those that involve upregulated

genes (FDR-adjusted p < 0.05 and log2FC R 0.58) in basal-like

BC cells (cancer condition) relative to luminal progenitor cells

(normal condition) profiled by scRNA-seq.73–75 This resulted in

7,167 cancer-specific peak-to-gene associations involving upre-

gulated genes, and their effect sizes within each condition were

visualized in a heatmap (Figure 3A). We observed that 84.4% of

7,167 cancer-specific peak-to-gene associations involvedpeaks

annotated by ENCODE, suggesting they are bona fide en-

hancers, while the remaining likely represent previously unanno-

tated enhancers (Figure 3A).71,72 In terms of function, 7,167 can-

cer-specific peak-to-gene associations involved 829 unique

genes that were enriched (FDR-adjusted p < 0.05) for the hall-

mark proliferation-associated gene sets E2F TARGETS, G2M

CHECKPOINT, and MITOTIC SPINDLE from the Molecular Sig-

natures Database (MSigDB) (Figure 3B).76–78 Interestingly, a

similar analysis applied to 2,526 putative silencer-to-enhancer

switching events revealed 87 unique enhancer-regulated genes

upregulated in basal-like BC cells that were also enriched

for the same hallmark proliferation-associated gene sets

(Figures S7A–S7E; Table S4). To compare to enhancer regulation

in normal luminal progenitor cells, we performed the same anal-

ysis for 401 putative normal-specific enhancers, revealing 274

uniqueenhancer-regulatedgenesupregulated in luminal progen-

itor cells that were enriched for the hallmark gene sets

INTERFERON GAMMA RESPONSE, TNFA SIGNALING VIA

NFKB, and ANDROGEN RESPONSE (Figures S7F and S7G;

Table S4). To assess which transcription factors (TFs) may bind

to these cancer- and normal-specific enhancers, we performed

a motif analysis, revealing strong enrichment of Fra2 and Atf3

TFmotifs in normal-specific enhancer regions and strong enrich-

ment of Jun-AP1 and CTCF TF motifs in cancer-specific

enhancer regions (Figure S8; Tables S5A and S5B). This is

consistent with previous reports demonstrating elevatedAP1 ac-

tivity and altered CTCF-dependent topologically associating do-

mains in triple-negative breast cancer (TNBC).79,80 Together,

these observations provide support for the putative cancer-spe-

cific enhancers we identified and suggest that the activities of

these enhancers, specifically in basal-like BC cells,may play crit-

ical roles in upregulating genes involved in proliferation.

To screen for clinically relevant genes regulated by cancer-

specific enhancers, we developed a prioritization scheme



Figure 3. Cancer-specific enhancer regulation of HEY1 expression in basal-like BC cells

(A) Heatmap of effect sizes for 7,167 cancer-specific peak-to-gene associations in the normal condition, comprising luminal progenitor cells, and in the cancer

condition, comprising basal-like BC cells (left). Each row represents a peak-gene pair with a significant change in effect size between conditions. The ENCODE

peak annotation column denotes ENCODE annotation status for each cancer-specific peak-to-gene association (right).

(B) Hallmark gene set enrichment analysis of 829 unique genes participating in 7,167 cancer-specific peak-to-gene associations as shown in (A).

(C) Browser track showing the accessibility profile at theHEY1 locus in cancer (red) and normal (gray) conditions (top left). The putative cancer-specific enhancer

with the highest effect size (b = 0.44, FDR-adjusted p < 1e�04) on HEY1 expression is highlighted in light blue and marked by the red arrow. Nearest-neighboring

putative cancer-specific enhancers (b = 0.25 and b = 0.27, FDR-adjusted p < 1e�04) are also highlighted in light blue. Matching pseudo-bulk scRNA-seq

expression of HEY1 is shown for each condition (top right). Asterisk denotes a statistically significant difference in gene expression between conditions (FDR-

adjusted p < 0.05 and log2FCR 0.58). ENCODE regulatory element annotations and peaks called from the scATAC-seq data are shown below the browser track

(middle). Peak-to-gene loops show the standardized effect sizes, in each condition, of chromatin accessibility at the putative cancer-specific enhancers onHEY1

expression (bottom).

(D) Scatterplots of chromatin accessibility at the strongest putative cancer-specific enhancer by the inferred level of HEY1 expression in scATAC-seq metacells,

stratified by patient in the normal (gray) and cancer (red) conditions.
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evaluating prognostic status and copy number amplification

state of cancer-specific enhancer-regulated genes (Figure S9).

For each gene, we performed survival analyses and assessed

copy number variation (CNV) status in external patient cohorts

(Figures S9 and S10; Table S6). In this prioritization scheme, we

first fit Cox proportional hazards models for upregulated genes

linked to cancer-specific enhancers using TNBC patients in
each dataset (STAR Methods). These analyses revealed that

high expression of HEY1 and BRSK2 were associated with

worse outcomes in three of five TNBC patient datasets (hazard

ratio [HR] > 1, Cox p < 0.01) (Figures S9 and S10A; Table S6).

We next evaluated frequencies of CNV that affect HEY1 and

BRSK2 in TCGA TNBC patients. This revealed that >50% of

TNBC patients showed copy number gains near the HEY1 locus
Cell Genomics 5, 100765, February 12, 2025 7



Figure 4. Cancer-specific enhancer regulation of CRABP2 expression in luminal BC cells

(A) UMAP plot of 13,351 scRNA-seq cells color coded by cell type across 14 patient samples (left). UMAP plot of 15,883 scATAC-seq cells color coded by inferred

cell type across 14 patient samples (right). Color shades denote clusters within each cell type.

(B) UMAP plots of scRNA-seq cells (left) and scATAC-seq cells (right) as shown in (A) but color coded by patient sample of origin.

(legend continued on next page)
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on chromosome 8, while <10% of TNBC patients showed copy

number gains near the BRSK2 locus on chromosome 11 (Fig-

ure S10B). We next investigated the extent to which copy num-

ber amplification could explain HEY1 upregulation relative to

enhancer activity. Interestingly, neighboring genes on the same

amplicon showed varying levels of expression relative to HEY1

(Wilcoxon rank-sum tests, p < 0.05) (Figure S10C). Moreover,

the same neighboring genes showed varying levels of correlation

between their expression and copy number state, with HEY1

itself showing a low correlation (Pearson correlation <0.2) (Fig-

ure S10D). These observations suggest HEY1 upregulation is

driven by enhancer activity rather than copy number amplifica-

tion alone.

We highlight a specific example of cancer-specific

enhancer-gene regulation in basal-like BC cells for the upre-

gulated gene HEY1 (FDR-adjusted p < 0.05 and log2FC R

0.58), which was linked to six putative cancer-specific en-

hancers (Figure S11; Table S4).55,56 HEY1 is a direct target

of the Notch signaling pathway and encodes Hairy/

enhancer-of-split related to YRPW motif protein 1, a basic-he-

lix-loop–helix (bHLH) TF.81,82 Elevated Notch signaling has

been observed in a variety of cancers, including basal-like

BC.83–88 The cancer-specific enhancer with the highest regu-

latory effect size (b = 0.44, FDR-adjusted p < 1e�04) on HEY1

expression was annotated by ENCODE, but did not show a

statistically significant increase in chromatin accessibility in

basal-like BC cells relative to luminal progenitor cells (Fig-

ure 3C).50,71–73 This suggests the putative regulatory element

is accessible in both conditions, but targets HEY1 only in

basal-like BC cells. The nearest neighboring cancer-specific

enhancers showed similar regulatory effects on HEY1 expres-

sion (b = 0.25 and b = 0.27, FDR-adjusted p < 1e�04), both of

which were annotated by ENCODE, and the second neigh-

boring cancer-specific enhancer had a statistically significant

increase in chromatin accessibility in basal-like BC cells (Fig-

ure 3C).50,71–73 To further visualize putative regulatory effects

of these cancer-specific enhancers on HEY1 expression, we

plotted the levels of chromatin accessibility at the cancer-spe-

cific enhancers by the inferred levels of HEY1 expression in

scATAC-seq metacells from each patient (Figures 3D and

S12). This showed that variation in chromatin accessibility at

the strongest cancer-specific enhancer was not associated

with variation in HEY1 expression in luminal progenitor cells

from healthy controls but was significantly associated

with variation in HEY1 expression in basal-like BC cells

from patients 5 and 6 (Figures 3C and 3D). The same was
(C) Heatmap of effect sizes for 1,931 cancer-specific peak-to-gene association

condition, comprising luminal BC cells (left). Each row represents a peak-gene p

annotation column denotes ENCODE annotation status for each cancer-specific

(D) Hallmark gene set enrichment analysis of 288 unique genes participating in 1

(E) Browser track showing the accessibility profile at the CRABP2 locus for the c

enhancer with the highest effect size (b = 0.11, FDR-adjusted p < 1e�04) on CRA

expression of CRABP2 is shown for each condition (top right). Asterisk denotes a

adjusted p < 0.05 and log2FCR 0.58). ENCODE regulatory element annotations a

(middle). Peak-to-gene loops show the standardized effect size, in each cond

CRABP2 expression (bottom).

(F) Scatterplots of chromatin accessibility at the putative cancer-specific enha

stratified by patient in the normal (gray) and cancer (red) conditions.
observed for the nearest neighboring cancer-specific en-

hancers (Figures 3C and S12).

Together, these observations suggest a possible mechanism

for HEY1 upregulation in basal-like BC cells through the activity

of tumor unique enhancers that target gene expression in a can-

cer-specific manner. We note that this example of cancer-spe-

cific enhancer-gene regulation is only a glimpse of the altered

regulatory landscape in basal-like BC cells, and we have tabu-

lated all putative regulatory element-target gene pairings identi-

fied from the basal-like subtype analysis in Table S4, which

serves as a resource for future investigations of these regulatory

elements.

Cancer-specific regulatory activity of enhancers in
luminal BC cells
Luminal BC is often associated with hormone-receptor-positive

BC and is the most commonly diagnosed BC among

women.64,89 To analyze cells in the luminal subtype analysis,

we merged luminal BC cells from patients 7–15 with mature

luminal cells from healthy control patients according to the unsu-

pervised pseudo-bulk clustering analysis (Figure S5). This sub-

set resulted in 13,351 cells and 15,883 cells profiled by

scRNA-seq and scATAC-seq, respectively (Figure 4A;

Tables S2C and S3C). After reclustering scRNA-seq cells and

transferring the resulting labels as well as gene expression pro-

files to scATAC-seq, we found that cells mainly clustered by pa-

tient, consistent with previous reports, and mature luminal cells

from healthy controls were represented by a single cluster (Fig-

ure 4B; Tables S2C and S3C).25,30,60–62

To probe the altered regulatory landscape in luminal BC cells

relative to mature luminal cells, we carried out peak calling and

performed the two-phased differential peak-to-gene association

framework as performed in the basal-like subtype analysis

(Figures 2C and S13).13,50,55,56,69,70 The first phase of the differ-

ential peak-to-gene association analysis, quantifying peak-to-

gene regulatory effect sizeswithin each condition independently,

yielded results similar to those of the basal-like subtype analysis,

with a total of 430,119 significant peak-to-gene associations

(FDR-adjusted p < 1e�04), most of which involved peaks anno-

tated by ENCODE and were located in introns and distal inter-

genic regions (Figure S13A; Table S7).25,71,72

The second phase of the differential peak-to-gene association

analysis, quantifying changes in peak-to-gene regulatory effect

size between conditions, yielded a total of 135,633 significant dif-

ferential peak-to-gene associations (FDR-adjusted p < 1e�04).

We note that 5,859 differential associations showed significant
s in the normal condition, comprising mature luminal cells, and in the cancer

air with a significant change in effect size between conditions. ENCODE peak

peak-to-gene association (right).

,931 cancer-specific peak-to-gene associations as shown in (C).

ancer (red) and normal (gray) conditions (top left). The putative cancer-specific

BP2 expression is highlighted in light blue. Matching pseudo-bulk scRNA-seq

statistically significant difference in gene expression between conditions (FDR-

nd peaks called from the scATAC-seq data are shown below the browser track

ition, of chromatin accessibility at the putative cancer-specific enhancer on

ncer by the inferred level of CRABP2 expression in scATAC-seq metacells,
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changes in direction, which again may be interpreted as possible

regulatory switching events. However, most differential peak-to-

geneassociationsshowedpositiveeffect sizes specific to the can-

cer condition of luminal BC cells, which again may be interpreted

as putative enhancers targeting gene expression in a cancer-spe-

cific manner (Figures S13B, S13C, and S14; Table S7).

There were 1,931 cancer-specific peak-to-gene associations

involving upregulated genes (FDR-adjusted p < 0.05 and

log2FCR 0.58), and their effect sizes within each condition were

visualized in a heatmap (Figure 4C).73–75 Of 1,931 cancer-specific

peak-to-gene associations, 91.2% involved peaks annotated by

ENCODE (Figure 4C).71,72 To assess function, we observed that

the 1,931 cancer-specific peak-to-gene associations involved

288 unique genes that were enriched (FDR-adjusted p < 0.05)

for the hallmark DNA-damage-associated gene sets UV

RESPONSE UP, ESTROGEN RESPONSE EARLY, and

ESTROGEN RESPONSE LATE from MSigDB (Figure 4D).76–78

We next characterized 2,948 putative silencer-to-enhancer

switching events that involved 2,293 unique genes that were en-

riched for the hallmark gene sets MYC TARGETS V1 and

ESTROGEN RESPONSE EARLY (Figures S15A and S15B).

There were 67 putative silencer-to-enhancer switching events

that involved 56 unique genes upregulated in luminal BC (Fig-

ure S15C). The top three most significant hallmark gene sets

were ESTROGEN RESPONSE EARLY, ESTROGEN RESPONSE

LATE, and INFLAMMATORY RESPONSE (Figures S15D

and S15E).

To investigate enhancer regulation in normal mature luminal

cells, we performed the same analysis for 350 putative normal-

specific enhancers, revealing 122 unique enhancer-regulated

genes upregulated in mature luminal cells (Figure S15F). The top

three hallmark gene sets were COAGULATION, EPITHELIAL

MESENCHYMAL TRANSITION, and HEDGEHOG SIGNALING

(Figure S15G).

To investigate TF occupancy at these cancer- and normal-

specific enhancers, we carried out a motif analysis, which re-

vealed strong enrichment of BATF and JunB motifs in normal-

specific enhancer regions and strong enrichment of CTCF and

BORIS motifs in cancer-specific enhancer regions (Figure S16;

Tables S5C and S5D). Indeed, CTCF and its paralog BORIS

have been shown to play critical roles in estrogen-mediated

gene expression in ER+ BC.90–93 Together, these observations

suggest that the activity of these putative cancer-specific en-

hancers in luminal BC cells may offer mechanistic insights into

proliferation and the regulation of DNA-damage-repair pathways

in response to estrogen.94,95

We next used our prioritization scheme (Figure S9) to screen

for clinically relevant genes regulated by putative cancer-spe-

cific enhancers in luminal BC cells. High expression of 24 genes

was associated with worse outcomes in two of three HR+/

HER2� patient datasets (HR > 1, Cox p < 0.01) (Figure S17A;

Table S6), and five of these genes were affected by copy number

amplification events in >50% of TCGA HR+/HER2� patients

(Figure S17B). We ranked these five genes by level of expression

in scRNA-seq and chose to further investigate one of the most

highly expressed genes, CRABP2 (Figure S9).

To evaluate the extent to which copy number amplification

could explain CRABP2 upregulation, we again analyzed the
10 Cell Genomics 5, 100765, February 12, 2025
expression of neighboring genes on the same amplicon and their

expression-copy number correlation. These analyses revealed

that neighboring genes showed varying levels of expression rela-

tive toCRABP2, andCRABP2 showed a low correlation between

its expression and its copy number state (Pearson correlation

<0.25) (Figures S17C and S17D). Together, these observations

suggest that enhancer activity may play an important role in

CRABP2 upregulation independent of copy number amplifica-

tion events affecting the CRABP2 locus.

We highlight a specific example of cancer-specific enhancer-

gene regulation in luminal BC cells for the upregulated gene

CRABP2 (FDR-adjusted p < 0.05 and log2FC R 0.58), which

was linked to 14 putative cancer-specific enhancers (Figure S18;

Table S7).55,56 CRABP2 encodes cellular retinoic acid binding

protein 2, which shuttles retinoic acid from the cytosol to the nu-

cleus.96,97 Interestingly, high expression of CRABP2 has been

reported in a number of cancers, including BC.98–107 The can-

cer-specific enhancer with the highest regulatory effect size

(b = 0.11, FDR-adjusted p < 1e�04) on CRABP2 expression

was annotated by ENCODE but did not show a statistically sig-

nificant increase in chromatin accessibility in luminal BC cells

(Figure 4E).50,71–73 This suggests the putative regulatory element

is accessible in both conditions, but targets CRABP2 only in

luminal BC cells. To visualize this proposed mechanism, we

plotted the levels of chromatin accessibility at the cancer-spe-

cific enhancer by the inferred levels of CRABP2 expression in

scATAC-seq metacells from each patient (Figure 4F). Variation

in chromatin accessibility at this cancer-specific enhancer was

not associated with variation in CRABP2 expression in mature

luminal cells from healthy controls but was significantly associ-

ated with variation in CRABP2 expression in luminal BC cells

from each BC patient.

Together, these observations describe a potential mechanism

for CRABP2 upregulation in luminal BC cells. We note that this

specific example of cancer-specific enhancer-gene regulation

is only a snapshot of the altered regulatory landscape in luminal

BC cells, and the remaining putative regulatory element-target

gene associations are tabulated in Table S7.

Annotation of the enhancer regulatory landscapes in
subtype-specific BC cells in vitro

To investigate enhancer-regulated gene expression in subtype-

specific BC cells in vitro, we also generated matched scRNA-

seq and scATAC-seq profiles for the basal-like BC cell lines

HCC1143 and SUM149PT and luminal BC cell lines MCF7 and

T47D (Figure 1A; Table 1).108 We carried out QC, dimensionality

reduction, and cross-modality integration in the cell-line dataset

as performed in the patient datasets. This resulted in 30,651 cells

and 16,338 cells profiled by scRNA-seq and scATAC-seq,

respectively (Table 1; Tables S2D and S3D; Figures 5A and 5B;

Figures S19 and S20).

To link putative regulatory elements to target genes in sub-

type-specific BC cells in vitro, we carried out peak calling in

scATAC-seq cells and quantified peak-to-gene regulatory effect

sizes, using our robust LMM-based approach, within each sub-

type independently.13,50,55,56,69,70 This revealed 144,998 signifi-

cant peak-to-gene associations, with 105,884 associations

specific to basal-like BC cells in vitro, 30,998 associations



Figure 5. Comparison of enhancer regulatory landscapes between in vitro and in vivo subtype-specific BC cells

(A) UMAP plot of 30,651 scRNA-seq cells color coded by cell line across four cell line samples.

(B) UMAP plot of 16,338 scATAC-seq cells color coded by inferred cell line across four cell line samples.

(C) Proportion bar charts showing the genomic distribution (left) and ENCODE annotation status (right) for 105,884 basal-like-specific peak-to-gene associations,

30,998 luminal-specific associations, and 8,116 shared associations.

(D) Venn diagram showing the overlap of putative enhancer-regulated genes between basal-like BC cells in vitro and in vivo.

(E) Venn diagram showing the overlap of putative enhancer-regulated genes between luminal BC cells in vitro and in vivo.

(F) Hallmark gene set enrichment analysis of 9,212 shared enhancer-regulated genes between basal-like BC cells in vitro and in vivo.

(G) Hallmark gene set enrichment analysis of 3,660 shared enhancer-regulated genes between luminal BC cells in vitro and in vivo.

(H) Histograms showing the distributions of linked genes per enhancer for basal-like BC cells in vitro and in vivo.

(I) Histograms as in (H) but for luminal BC cells in vitro and in vivo.

(J) Proportion bar charts showing the proportions of enhancers by number of linked genes for basal-like BC cells in vitro and in vivo. Asterisk denotes a statistically

significant difference in the proportion of enhancers that link to three or more genes between BC cells in vitro and in vivo (p < 0.01, Fisher’s exact test).

(K) Proportion charts as in (J) but for luminal BC cells in vitro and in vivo.

(L) Histograms showing the distributions of linked enhancers per gene for basal-like BC cells in vitro and in vivo.

(legend continued on next page)
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specific to luminal BC cells in vitro, and 8,116 shared associa-

tions (Figure 5C; Table S8). The majority of basal-like-specific

peak-to-gene associations involved peaks located in introns

and distal intergenic regions, while the majorities of luminal-spe-

cific and shared associations involved peaks located in pro-

moters and exonic regions (Figure 5C; Table S8). Again, a strong

majority of these peak-to-gene associations involved peaks an-

notated by ENCODE (Figure 5C; Table S8).71,72

We next sought to compare enhancer regulatory landscapes

between BC cells in vitro and in vivo stratified by molecular sub-

types (e.g., comparing in vitro basal-like BC cells with in vivo

basal-like BC cells). To this end, we screened peak-to-gene as-

sociations identified in subtype-specific BC cells in vitro for those

with positive effect sizes. The samescreeningwasdone for peak-

to-gene associations identified in vivo from the subtype-specific

patient analyses (Figures 2C and 2D; Figure S13A). We then per-

formed overlap analyses of putative enhancer-regulated genes

between in vitro and in vivo subtype-specific BC cells

(Figures 5D and 5E; STAR Methods). Of the enhancer-regulated

genes in vitro, 94%and95%werealsoenhancer-regulated in vivo

for basal-like and luminal BC cells, respectively (Figures 5D and

5E). These shared enhancer-regulated genes in basal-like BC

cells were enriched (FDR-adjusted p < 0.05) for the hallmark

signaling-associated gene sets TNFA SIGNALING VIA NFKB

and ANDROGEN RESPONSE as well as the hallmark prolifera-

tion-associated gene set P53 PATHWAY from MSigDB (Fig-

ure 5F). In luminal BC cells, shared enhancer-regulated genes

were enriched (FDR-adjusted p < 0.05) for the hallmark prolifera-

tion-associated gene sets MYC TARGETS V1, E2F TARGETS,

and G2M CHECKPOINT (Figure 5G).

To quantify the ‘‘regulatory load’’ of putative enhancers identi-

fied in each setting, we visualized the distributions of linked

genes per enhancer (Figures 5H and 5I). In basal-like BC cells,

the mean numbers of linked genes per enhancer in vitro and

in vivo were 1.98 and 1.99, respectively (Figure 5H). In luminal

BC cells, the mean numbers of linked genes per enhancer

in vitro and in vivo were 2.07 and 2.06, respectively (Figure 5I).

We also observed that 23.4% of enhancers identified in basal-

like BC cells in vivo were linked to three or more genes,

compared to only 20.5%of enhancers identified in vitro (odds ra-

tio [OR] = 1.19, p < 0.01, Fisher’s exact test) (Figure 5J). In luminal

BC cells, 23.8% of enhancers identified in vivo were linked to

three or more genes, compared to only 20.7% of enhancers

identified in vitro (OR = 1.2, p < 0.01, Fisher’s exact test)

(Figure 5K).

The same analyses were performed for the number of linked

enhancers per gene (Figures 5L–5O). In basal-like BC cells, the

mean numbers of linked enhancers per gene in vitro and in vivo

were 4.58 and 10.01, respectively (Figure 5L). Of enhancer-regu-

lated genes in basal-like BC cells in vivo, 87.1% were linked

to three or more enhancers, compared to only 53.2% of

enhancer-regulated genes in vitro (OR = 5.92, p < 0.01, Fisher’s

exact test) (Figure 5M). Similarly, themean numbers of linked en-
(M) Proportion bar charts showing the proportions of genes by number of link

statistically significant difference in the proportion of genes that link to three or mo

(N) Histograms as in (L) but for luminal BC cells in vitro and in vivo.

(O) Proportion bar charts as in (M) but for luminal BC cells in vitro and in vivo.
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hancers per gene in luminal BC cells in vitro and in vivowere 2.62

and 9.25, respectively (Figure 5N). Of enhancer-regulated genes

in luminal BC cells in vivo, 86.4%were linked to three ormore en-

hancers, compared to only 27.6% of enhancer-regulated genes

in vitro (OR = 16.69, p < 0.01, Fisher’s exact test) (Figure 5O).

Overall, these observations suggest that enhancers in vivo

may regulate more genes compared to enhancers in vitro, and

genes expressed in vivo may be regulated by more enhancers

compared to genes expressed in vitro. This is possibly due to

clonal heterogeneity and/or tumor microenvironment factors

that BC cells experience in vivo relative to BC cells in vitro, which

may show less variation in chromatin accessibility and/or gene

expression due to the inherent homogeneity of cell lines.

DISCUSSION

BC is the most commonly diagnosed cancer among women and

accounts for a significant proportion of female cancer-related

deaths, highlighting the need for deeper insights into the molec-

ular underpinnings of BCs that may lead to improved targeted

therapies.1 The compendium presented herein represents a

valuable multi-omic resource that unveils transcriptional and

regulatory landscapes of human breast tumors and normal

mammary epithelial tissues at single-cell resolution. More spe-

cifically, our work elucidates transcriptional and regulatory fea-

tures that distinguish BC cells from their nearest normal precur-

sor cell types by identifying putative enhancers that regulate

clinically relevant oncogenic expression programs in a cancer-

specific manner (Figures 2, 3, 4, and S5–S18; Tables S4, S5,

S6, and S7).33,34,37,55,56,73,76–78,109–114 These data also enabled

us to study transcriptional and regulatory differences between

BC cells in vitro and in vivo (Figure 5; Table S8).55,56,76–78

We reiterate three important themes from analyzing these sin-

gle-cell data. First, we demonstrated how our computational

approach for linking putative regulatory elements to target genes

accounts for important biological and technical variables when

quantifying associations between chromatin accessibility and

gene expression (Figures 2, 3, 4, 5, and S13; Tables S4, S7,

and S8).55,56 It has become widely accepted that the activity of

cis-regulatory elements is highly cell-type specific; therefore, it

is critical to stratify by cell type when quantifying peak-to-gene

associations from single-cell multi-omic data (Figure 2C).45–47

Accounting for potential batch and/or sample-specific effects

is also important to ensure that technical variation in chromatin

accessibility and/or gene expression is not confusedwith biolog-

ical variation relevant to the hypothesis.115,116

Our computational approach also provides a measure of statis-

tical significance for changes in peak-to-gene regulatory effect

sizebetweenconditionsand/orcell types.55,56Thisallows for infer-

ences about possible changes in magnitude and/or direction of

regulatory effect that a regulatory element exerts on target gene

expression. Our differential peak-to-gene association analysis al-

lowed us to classify peak-to-gene associations based on changes
ed enhancers for basal-like BC cells in vitro and in vivo. Asterisk denotes a

re enhancers between BC cells in vitro and in vivo(p < 0.01, Fisher’s exact test).
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in direction of effect size between conditions. For both basal-like

and luminal subtype analyses, this revealed thousands of can-

cer-specific associations with positive effect sizes indicative of

context-specific putative enhancer activity and evidence to sug-

gest the potential for regulatory switching events that were previ-

ously hidden using current peak-to-gene association methods

(Figures2E,2F,S13B,andS13C).50,117–119While similar regulatory

mechanisms have been described previously, we highlight that

this is one of the first reports of silencer-to-enhancer switching

and vice versa in human BC.120–126

Next, we highlight that the putative cancer-specific enhancers

identified in basal-like and luminal BC cells were linked to genes

involved in known oncogenic processes, including proliferation

and DNA damage, respectively (Figures 3B and 4D).76–78 More-

over, we were able to show specific examples of cancer-specific

enhancer regulation that not only may be associated with clinical

outcomes but also may be amplified through copy number alter-

ations (Figures S10 and S17; Table S6).109–114 Together, these ob-

servations further underscore the importance of non-coding regu-

latory mechanisms for transcriptional dysregulation in BC cells.

Finally, in the comparisons of subtype-specific BC cells in vitro

and in vivo, our analyses point to a conserved set of genes ex-

pressed in both settings for each subtype. We note these

conserved sets of expressed genes are associated with known

oncogenic processes relevant to BCcells both in vitro and in vivo,

including TNF-alpha signaling and proliferation (Figures 5D–

5G).76–78,127–130 We speculate that perhaps enhancer rewiring

or hijacking may be a stochastic process that gets selected for

when a specific set of genes favorable to cancer cells becomes

upregulated. In summary, this Resource demonstrates impor-

tant principles of enhancer-gene regulation in BC cells profiled

by single-cell multi-omics and serves as an important resource

to the field.

Limitations of the study
We acknowledge there are some limitations to our study. First,

our study had a limited sample size, especially for patient tumors

of the TNBC clinical and/or basal-like molecular subtypes, which

could affect the generalizability of the Resource and our obser-

vations. However, our study focused on treatment-naive breast

tumors, which are difficult to procure as the standard of care

shifts toward neoadjuvant treatment prior to surgery.131–134 Sec-

ond, libraries for scRNA-seq and scATAC-seqwere derived from

separate, albeit homogeneous, aliquots of cell suspensions for

each patient specimen or cell line. This experimental design re-

quires downstream use of statistical tools for cross-modality

integration of these single-cell data, unlike recent methods for

profiling the transcriptional and chromatin landscape within the

same cell.37,117 However, cell recovery rate and sequencing

depth of these ‘‘same cell’’ protocols can be lower compared

to scRNA-seq and scATAC-seq, which can affect the accuracy

of downstream analyses.135 We were also able to validate the

performance of cross-modality integration used in our study by

leveraging ground-truth cell identities of scATAC-seq cells in

the cell-line data. Third, we recognize our survival analyses

involved gene expression measurements derived from bulk tis-

sues in contrast to these single-cell data. Finally, we realize our

comparisons of BC cells from BC patients to normal mammary
epithelial cells from healthy controls may be limited by possible

confounding biological factors such as age and menopause sta-

tus. However, we note our normal control cells from healthy con-

trols represent a true baseline for gene regulation in mammary

epithelial tissues, unlike tumor-adjacent normal tissues that

may be affected by tumor microenvironment factors and

genomic alterations.136–138 The Resource and our analyses

described herein provide an unobscured view of gene regulation

in BC cells relative to mammary epithelial cells, highlighting po-

tential avenues for therapeutic interventions.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to the lead

contact, Hector L. Franco (hfranco@cccupr.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Processed scRNA-seq data and scATAC-seq data have been deposited

at GEO (https://www.ncbi.nlm.nih.gov/geo/) under accession no. GEO:

GSE243526. Raw data (103 FASTQs) are available with controlled access

via dbGaP under accession no. dbGaP: phs003253.v1.p1 (https://www.ncbi.

nlm.nih.gov/gap/).

All code used for the presented analyses is publicly available at the GitHub

repository: https://github.com/RegnerM2015/scBreast_scRNA_scATAC_

2024. Any additional information required to reanalyze the data reported in

this paper is available from the lead contact (hfranco@cccupr.org).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Collagenase/Hyaluronidase Stemcell Technologies Cat#07912

Gentle Collagenase/Hyaluronidase Stemcell Technologies Cat#07919

Hydrocortisone Stemcell Technologies Cat#74144

Dispase Stemcell Technologies Cat#07923

DNase I Stemcell Technologies Cat#07900

Critical commercial assays

Chromium Single Cell 3’ GEM, Library & Gel

Bead Kit v3

10x Genomics Cat#PN-1000075

Chromium Single Cell ATAC Library & Gel

Bead Kit v1

10x Genomics Cat#PN-1000110

Chromium Chip B Single Cell Kit 10x Genomics Cat#PN-10000153

Chromium i7 Multiplex Kit 10x Genomics Cat#PN-120262

Chromium Chip E Single Cell ATAC Kit 10x Genomics Cat#PN-1000082

Chromium i7 Multiplex Kit N, Set A 10x Genomics Cat#PN-1000084

Deposited data

Processed scRNA-seq data This Paper GSE243526

Processed scATAC-seq data This Paper GSE243526

Raw scRNA-seq data This Paper dbGaP: phs003253.v1.p1

Raw scATAC-seq data This Paper dbGaP: phs003253.v1.p1

Experimental models: Cell lines

MCF-7 ATCC RRID:CVCL_0031

T47D ATCC RRID:CVCL_0553

HCC1143 ATCC RRID:CVCL_1245

SUM149PT ATCC RRID:CVCL_3422

Software and algorithms

R (v4.1.2) The R Project for Statistical Computing https://www.r-project.org/

Seurat (v4.1.0) Hao et al.49 https://satijalab.org/seurat/index.html

ArchR (v1.0.1 or v1.0.2 ) Granja et al.50 https://www.archrproject.com/

DESeq2 (v1.34.0) Love et al.73 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

infercnv (v1.10.1) Tickle et al.58 http://www.bioconductor.org/packages/

release/bioc/html/infercnv.html

DoubletFinder (v2.0.3) McGinnis et al.139 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

ggplot2 (v3.3.6 or v3.4.3) Wickham140 https://cran.r-project.org/web/packages/

ggplot2/index.html

ComplexHeatmap (v2.10.0) Gu et al.141 https://jokergoo.github.io/

ComplexHeatmap-reference/book/

Cell Ranger (v3.1.0) 10x Genomics https://support.10xgenomics.com/single-

cell-gene-expression/software/pipelines/

latest/installation

Cell Ranger ATAC (v1.2.0) 10x Genomics https://support.10xgenomics.com/single-

cell-atac/software/pipelines/latest/

installation
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human patient samples and tissue dissociation
Eleven, treatment naı̈ve, breast cancer patients were enrolled in the 2018 Breast SPORE Project 2 study at the UNC Cancer Hospital

(IRB Protocol 17-3228) and underwent curative intent surgical resection (Tables 1 and S1). Additionally, four patients were enrolled

who were undergoing reduction mammoplasty surgeries in order to collect normal control samples (Tables 1 and S1). After surgical

resection, tissue specimens were sectioned by the pathology department and the remaining tissues were de-identified and collected

for this study through the University of North Carolina’s Tissue Procurement Facility. The tissue specimens were never fixed or frozen

and were transported to the lab immediately after surgical resection on ice in media containing DMEM/F12 media (Gibco) + 1%

Penicillin/Streptomycin (Corning). Tissues were dissociated as previously reported.25 In short, before dissociation, tumor and normal

samples were weighed. Tissue mass varied between 0.12 g and 11.5 g. Tissue specimens were then minced and digested overnight

in DMEM/F12 + 5% FBS, 15mM HEPES (Gibco), 1x Glutamax (Gibco), 1x Collagenase/Hyaluronidase (Stem Cell Technologies,

07912), 1% Penicillin/Streptomycin (Corning), and 0.48 mg/mL Hydrocortisone (Stem Cell Technologies, 74144) on a stir plate at

37�C and 180 rpm. Some tissues were dissociated with Gentle Collagenase/Hyaluronidase (Stem Cell Technologies, 07919) instead

of Collagenase/Hyaluronidase. After digestion, cells were washed twice with cold PBS + 2% FBS and 10mM HEPES (PBS-HF) and

centrifuged. To remove red blood cells, the cell pellet was treated with cold Ammonium Chloride Solution (Stem Cell Technologies,

07850) and PBS-HF (ratio 1 Ammonium Chloride: 4 PBS-HF), for 1 minute, then centrifuged. The volume of Ammonium Chloride So-

lution added was determined by the size of the cell pellet and visual assessment of pink or red color of the pellet. Red blood cell

removal was repeated a second time if the pellet still exhibited a pink color after the first treatment. Next, cell pellets were resus-

pended in 0.05% Trypsin-EDTA (Gibco) and the suspension was gently pipetted up and down for 1 min. Trypsin was then inactivated

by adding 10mL PBS-HF solution and the suspension was centrifuged. If cell suspensions were still clumpy after trypsin treatment,

cells were resuspended with 1-2 mL Dispase (StemCell Technologies, 07923) and 200 mL 1mg/mL DNase I (StemCell Technologies,

07900) for 1 min, then inactivated with 10 mL PBS-HF. If the Dispase step was not necessary, cells were treated with DNase I during

the trypsinization step. Cells were again centrifuged, then washed in PBS-HF and filtered through a 100mm cell strainer and washed

again. The cell pellet was resuspended in DMEM/F12 + 5% FBS using a volume based on the final pellet size and filtered using a

40mmcell strainer. Single-cell suspension concentration and cell viability wasmeasured with the Countess II Automated Cell Counter

(Thermo Fisher, AMQAX1000). Cell viability varied between 43% and 94% across all samples, with the majority of suspensions hav-

ing over 70% viability.

Cell culture
Cell lines were obtained from the American Type Culture Collection (ATCC) and maintained in the Franco lab at UNC Chapel Hill. The

MCF-7 and T47D cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma cat. #30-2002) supplemented with 10%

fetal bovine serum (FBS) (Sigma) and 1%penicillin/streptomycin (Corning). TheHCC1143, and SUM149PT cells were grown in RPMI-

1640 media (Sigma) supplemented with 10% FBS (Sigma) and 1% penicillin/streptomycin (Corning). All cell lines were grown

adherent in a 5% CO2 incubator set to 37�C with low passage stocks reserved in liquid nitrogen. Cell lines were authenticated by

ATCC and tested for mycoplasma prior to use.

METHOD DETAILS

Single-cell sequencing
Cell suspensionswere next used for scRNA-seq and scATAC-seq library prep. For scRNA-seq, cell suspensionswere diluted to 1200

cells/mL and 10,000 cells were used in library generation with the following 10x Genomics Single Cell 3’ kits: Chromium Single Cell 3’

GEM, Library & Gel Bead Kit v3 (PN-1000075), Chromium Chip B Single Cell Kit (PN-10000153), and Chromium i7 Multiplex Kit

(PN-120262) following the manufacturer’s protocol.

For scATAC-seq, 500,000 cells were used in nuclei isolation following the Nuclei Isolation for Single Cell ATAC Sequencing pro-

tocol from 10x Genomics. For the lysis step, cells were lysed for 4 min. For the resuspension step, nuclei were resuspended in 50 mL

1x Nuclei Buffer. Nuclei were counted with the Countess II Automated Cell Counter. 10,000 nuclei were used in library preparation

using the following 10x Genomics Single Cell ATAC Kits: Chromium Single Cell ATAC Library & Gel Bead Kit v1 (PN-1000110), Chro-

mium Chip E Single Cell ATAC Kit (PN-1000082), and Chromium i7 Multiplex Kit N, Set A (PN-1000084) following the manufacturer’s

protocol. All libraries were sequenced using the 10X Genomics suggested sequencing parameters on an Illumina NextSeq 500

instrument.

Quantification and quality control (QC) in single-cell RNA-seq
Filtered feature barcode matrices were generated for each patient and cell line sample using Cell Ranger (version 3.1.0) from 10x

Genomics. For each sample, the filtered feature barcode matrix was converted into a Seurat object using the CreateSeuratObject()

function from the Seurat R package.48,49,142 QC and doublet removal were carried out for each sample individually. Barcodes with at

least 500 expressed genes, at least 1,000 UMI counts, and less than 20%mitochondrial counts were deemed high quality cells and

were carried forward to doublet detection.143 Cells predicted as doublets by theDoubletFinder R packagewere removed from further
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downstream analyses.142,144 After QC and doublet removal for each sample, Seurat’smerge() function was used to concatenate the

individual patient samples and the individual cell line samples, to form the patient cohort dataset and the cell line cohort dataset,

respectively (Tables S2A–S2D).48,49 The distributions of QC metrics, post-QC, for the patient and cell line cohort datasets are visu-

alized in Figures S1A, S1B, S2A, S2B, S19A, S19B, S20A, and S20B.

Single-cell RNA-seq normalization, feature selection, and clustering
All gene expression matrices (for individual samples as well as cohort datasets) were normalized with Seurat’s NormalizeData() func-

tion.48,49 Seurat’s FindVariableFeatures() function was used to identify the top 2,000 most variably expressed genes within each in-

dividual sample and within each of the cohort datasets (patient cohort, Basal-like subtype cohort, Luminal subtype cohort, and cell

line cohort datasets introduced in Figures 1, 2, 4, and 5, respectively).48,49 The data were scaled with Seurat’s ScaleData() function

using all genes for each individual sample and using only the top variably expressed genes for the remaining cohort datasets.48,49 For

all analyses of each sample individually and each cohort, the top 2,000 most variably expressed genes were used for principal

component analysis (PCA) with Seurat’s RunPCA() function and cells were visualized in a uniform manifold approximation and pro-

jection (UMAP) plot using Seurat’s RunUMAP() function with the first 30 principal components (PCs).48,49 UMAP plots were then

plotted using the ggplot2 R package.142,145

For each individual patient sample, cells were clustered using the R packageMultiK to identify an optimal number of clusters.142,146

Note that MultiK applies Seurat’s clustering methods over multiple resolution parameters.48,49,146 Cells within each cohort dataset

(patient cohort, Basal-like subtype cohort, Luminal subtype cohort, and cell line cohort) were clustered using Seurat’s clustering

methods which included building a graph with the FindNeighbors() function using the first 30 PCs and identifying clusters with the

FindClusters() function.48,49 The resolution parameter in FindClusters() was set to 0.4, 0.015, and 0.015 for the patient, Basal-like,

and Luminal cohort datasets, respectively.

Cell type annotation in single-cell RNA-seq
Cell type annotation was initially performed within each individual patient sample after pre-processing and clustering with

MultiK.48,49,144,146 For each patient sample, cells were annotated to known cell types using Seurat’s canonical correlation analysis

(CCA)-based label transfer procedure with a large scRNA-seq breast cancer (BC) reference dataset downloaded from

GSE176078.30,48,49 Clusters within each patient sample were then annotated based on their majority predicted label from the refer-

ence-based label transfer procedure. Since mast cells were underrepresented in the reference scRNA-seq dataset, some clusters

within each patient dataset were re-annotated to mast cells if the cluster showed significant marker gene expression of TPSB2 and

TPSAB1 (Bonferroni-corrected p-value < 0.01, log2FC > 0.25).30,147 Within each patient sample, cluster annotations were verified by

visualizing the distributions of cell type gene signature enrichment scores per cluster using Seurat’s AddModuleScore() function with

relevant signatures sourced from PanglaoDB.48,49,148 The clusters identified in the patient cohort dataset, after combining the indi-

vidual patient samples, were annotated based on their majority cell type label derived from the annotated clusters in each individual

patient sample (Figures 1B–1D, S3A, and S3B; Table S2A).

Inference of copy number variation (CNV), cancer cell identification, and molecular subtype prediction from single-
cell RNA-seq
Inferred CNV scores were estimated for individual cells annotated as epithelial within each BC patient sample using the R package

inferCNV.30,57–59 To identify high-confidence cancer cells within each BC patient sample, cells annotated as epithelial were classified

into one of three groups: inferCNV high, ambiguous, or inferCNV low, based on the inferred CNV score of each cell as described pre-

viously (Figures 1D and S3B).30,57–59 Cells classified as inferCNV high were deemed putative cancer cells and were carried forward to

molecular subtype prediction (Basal, Her2-enriched, Luminal A, or Luminal B) using the SCSubtype method described previously

(Figures 1D, S3B, S4A, and S4B; Table S2A).30 Briefly, this procedure calculates subtype-specific signature enrichment scores

for individual cells assigned to one of four molecular subtypes (Basal, Her2-enriched, Luminal A, or Luminal B) based on the highest

signature enrichment score for each cell.30

Quality control (QC) in single-cell ATAC-seq
A list of unique ATAC-seq fragments with associated barcodes was generated for each patient and cell line sample using Cell Ranger

ATAC (version 1.2.0) from 10xGenomics. These lists of unique ATAC-seq fragments per barcodewere read into the ArchRRpackage

using the createArrowFiles() function to carry out QC and doublet removal for each sample individually.50,142 Barcodes with at least

1,000 unique fragments, but no more than 100,000, and TSS enrichment scores greater than or equal to 8 were deemed high quality

cells and were carried forward to doublet detection.47 ArchR’s addDoubletScores() and filterDoublets() functions were used to iden-

tify and remove cells predicted as doublets from further downstream analyses.50 The distributions of QC metrics, post-QC, for the

patient and cell line cohort datasets are visualized in Figures S1C, S1D, S2C, S2D, S19C, S19D, S20C, and S20D.

Single-cell ATAC-seq quantification, feature selection, and integration with single-cell RNA-seq
To analyze the scATAC-seq cells in the patient cohort analysis, we quantified Tn5 insertion counts in a matrix of contiguous genomic

tiles 500 bp in size using ArchR’s addTileMatrix() function.50 As described previously, we used the iterative latent semantic indexing
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(LSI) procedure implemented in ArchR’s addIterativeLSI() function to reduce the dimensionality of the dataset.25,46,47,50We visualized

the cells in a UMAP plot using ArchR’s addUMAP() function with the top 30 LSI components, as described previously.25,50 UMAP

plots were then plotted using the ggplot2 R package.142,145 To integrate with matching scRNA-seq cells, we first calculated gene

scores for scATAC-seq cells using ArchR’s addGeneScoreMatrix() function, as described previously.25,50 Next, we used ArchR’s

addGeneIntegrationMatrix() function to transfer cell type cluster labels and gene expression profiles from scRNA-seq cells to

scATAC-seq cells, as described previously (Figures 1E, S3C, and S3E; Table S3A).25,48–50 Additionally, inferCNV status and pre-

dicted subtype labels were assigned to each scATAC-seq cell based on the annotations of its nearest neighboring cell in scRNA-

seq (Figures 1G, S4C, S4D; Table S3A) 48–50. Using the groupList parameter in addGeneIntegrationMatrix(), we constrained the

integration to cells from the same patient samples to ensure accurate matching of scRNA-seq and scATAC profiles.50

The same procedures were applied to analyze the scATAC-seq cells in the Basal-like subtype, Luminal subtype, and cell line cohort

analyses, with the exception of using an unconstrained integration in the cell line cohort analysis (i.e., ‘‘all versus all’’) (Figures 2A, 2B,

4A, 4B, 5A, and 5B; Tables S3B–S3D). To evaluate the performance of the label transfer procedure, we leveraged the ground truth

identities of the scATAC-seq cells in the cell line cohort analysis (HCC1143, SUM149PT, MCF7, or T47D) to calculate the percentage

of scATAC-seq cells correctly assigned to their true cell line identity (99.71%). After transferring labels to scATAC-seq cells in the

Basal-like subtype, Luminal subtype, and cell line cohort analyses, peak calling was carried out in each, as described previously,

using ArchR’s addGroupCoverages(), addReproduciblePeakSet(), and addPeakMatrix() functions.13,25,50,69,70

Unsupervised hierarchical clustering and PCA of pseudo-bulk transcriptomes
To perform the pseudo-bulk clustering analysis, we first created pseudo-bulk transcriptomes by summing gene counts across BC

cells of the majority subtype within each BC patient sample. This procedure resulted in two Basal-like-specific pseudo-bulk profiles

from Patients 5 and 6, and ten Luminal-specific (Luminal A or B) pseudo-bulk profiles from Patients 7-15 (Figure S5). Similarly, we

created pseudo-bulk transcriptome profiles for the normal mammary epithelial cell types from healthy controls by summing gene

counts across cells of the same cell typewithin each healthy patient. This procedure resulted in fourmature luminal, four basal epithe-

lial, and four luminal progenitor pseudo-bulk profiles all derived from Patients 1-4 (Figure S5).

Only genes expressed across all pseudo-bulk transcriptome profiles were used for downstream analysis to avoid the possible

contribution of technical zeros. The resulting matrix of 24 pseudo-bulk profiles was transformed using the regularized logarithm

(rlog) transformation from the DESeq2 R package to stabilize variance and account for differences in library size between patient

samples.73,142 After this transformation, the top 10% most variably expressed genes were used for unsupervised hierarchical

clustering analysis performed in the SigClust2 R package with Euclidean distance and ward.D2 as the linkage method.142,149 This

resulted in two statistically significant clusters and the dendrogramwas further visualized with a heatmap of scaled pseudo-bulk pro-

files using the ComplexHeatmap R package (Figure S5A).141,142,150 The same variably expressed genes were used for generating the

PCA plots with DESeq2’s plotPCA() function (Figure S5B).73

Differential gene expression and differential peak accessibility testing
We carried out differential gene expression testing after clustering cells within each individual patient sample, using Seurat’s

FindAllMarkers() functionwith only.pos set to TRUE and test.use set to "wilcox" to identify cluster marker genes.48,49 Geneswith Bon-

ferroni-corrected p-values <= 0.01 were deemed statistically significant marker genes.

For the comparisons of subtype-specific BC cells from BC patients to their nearest normal mammary epithelial cell types from

healthy controls, we performed differential gene expression and peak accessibility testing on a pseudo-bulk scale to overcome

the pseudo-replication bias in single-cell data.74,75 Within the Basal-like subtype analysis, we created pseudo-bulk transcriptome

profiles by summing gene and peak counts across Basal-like BC cells within each BC patient. The same operation was performed

for normal luminal progenitor cells within each healthy patient. This resulted in two Basal-like BC-specific pseudo-bulk profiles from

Patients 5 and 6 and four luminal progenitor pseudo-bulk profiles from Patients 1-4. The same procedure was used to construct

pseudo-bulk transcriptome profiles within the Luminal subtype analysis, resulting in nine Luminal BC-specific pseudo-bulk profiles

and four mature luminal pseudo-bulk profiles. Note that Patient 9 did not have a sufficient number of cells for the peak-to-gene as-

sociation analysis (n=111) and was therefore excluded from differential gene expression and peak accessibility testing.

Within both Basal-like and Luminal subtype analyses, uninformative genes and peaks with zero counts across all pseudo-bulk pro-

files were removed. The resulting matrices within the Basal-like and Luminal subtype analyses were read into DESeq2 with the

DESeqDataSetFromMatrix() function.73 To verify that potential differences in cell count between pseudo-bulk profiles would not

confound differential gene expression and peak accessibility testing, we visualized PCA plots of the pseudo-bulk profiles colored

by cell count using DESeq2’s plotPCA() function within the Basal-like and Luminal subtype analyses.73 These verification steps

confirmed that differences in cell count between pseudo-bulk profiles were not associated with PCs 1 or 2 in both the Basal-like

and Luminal subtype analyses.

Pseudo-bulk differential gene expression testing was performed with DESeq2’s DESeq() function and genes with FDR (Benjamini-

Hochberg) adjusted p-values < 0.05 and absolute log2 fold changes > 0.58 were deemed statistically significant differentially ex-

pressed genes.73,151 The same procedure and thresholds were used for pseudo-bulk differential peak accessibility testing to arrive

at statistically significant differentially accessible peaks.
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Peak-to-gene association analysis
To quantify associations between peak accessibility and gene expression in the Basal-like and Luminal subtype cohorts, we first

generated metacells (i.e., aggregates of 100 similar scATAC-seq cells) via a k-nearest neighbor procedure stratified by patient in

the low dimensional LSI space for each cohort’s scATAC-seq analysis.50 This procedure resulted in patient-specific metacells

that could be classified into the ‘‘cancer’’ or ‘‘normal’’ conditions, based on the sample of origin of constituent scATAC-seq cells

within each metacell. Metacells with more than 80% overlap of cell composition with any other metacell from the same patient

were removed from further downstream analysis.50 Peak accessibility and gene expression were summarized for each metacell

by summing peak counts and inferred gene expression values (from the matching scRNA-seq data) across scATAC-seq cells within

each metacell.50 The resulting peak and gene expression matrices were normalized to counts per 10,000 and log2-transformed with

a pseudo-count of 1.50 These peak and gene expression matrices were used as input into the peak-to-gene association analyses for

each patient cohort dataset. The same set of procedures was applied to the cell line cohort dataset, with the exception of stratifying

the k-nearest neighbor procedure by cell line and classifying the resulting cell line-specific metacells into the ‘‘Basal-like’’ or

‘‘Luminal’’ conditions based on the sample of origin of constituent scATAC-seq cells within each metacell.50

Within the Basal-like subtype, Luminal subtype, and cell line cohorts, we first performed independent peak-to-gene association

analyses in each condition. Using the patient or cell line-specific metacells, we fit a linear mixed-effects model (LMM) with random

intercepts, in each condition, using the lmerTest and lme4 R packages, to quantify the effect size of peak accessibility on gene

expression for every peak located within 500 kb of each gene.55,56,142 More specifically, gene expression was modeled as a function

of peak accessibility, treated as a fixed effect, and patient of origin, treated as a random effect to account for variation in gene expres-

sion between patients. The Satterthwaite approximation of degrees of freedom, implemented in the lmerTest R package, was used to

determine statistical significance of the fixed effect term in each peak-gene model tested.55,56,142 To correct for multiple testing in

each condition, the Benjamini-Hochberg method was applied using the p.adjust() function from the stats R package and peak-

gene pairs with FDR-adjusted p-value < 1e-04 were deemed statistically significant peak-to-gene associations (Figures 2D,

S13A, and 5C; Table S4, S7, and S8).142,151 These were the final peak-to-gene association analyses performed for the cell line cohort

dataset. However, for the Basal-like and Luminal subtype cohorts, intronic or distal intergenic peak-gene pairs with a significant as-

sociation in at least one condition (‘‘cancer’’ or ‘‘normal’’) were carried forward to a second phase of peak-to-gene association an-

alyses to identify changes in peak-to-gene effect size between conditions.

To quantify the change in peak-to-gene effect size between conditions in a differential peak-to-gene association analysis, we com-

bined the patient-specific metacells from both conditions and fit another LMM with an interaction term.55,56 More specifically, gene

expression wasmodeled as a function of peak accessibility, condition, the interaction between peak accessibility and condition, and

patient of origin. All terms were treated as fixed effects, except for patient of origin which was treated again as a random effect to

account for variation in gene expression between patients. As performed in the first phase of peak-to-gene association analyses,

the Satterthwaite approximation of degrees of freedom was used to determine statistical significance of the fixed effect terms in

each peak-gene model tested and the resulting p-values for the interaction term were corrected for multiple testing using the

Benjamini-Hochberg method implemented in the p.adjust() function from the stats R package.55,56,142,151 Peak-to-gene associations

with FDR-adjusted p-value < 1e-04 for the interaction term were deemed statistically significant differential peak-to-gene associa-

tions (Figures 2E and 2F; Figure S13B-C; Tables S4 and S7).

Within the Basal-like and Luminal subtype analyses, significant differential peak-to-gene associations were visualized in a scatter

plot of effect sizes for each condition using ggplot2 (Figures 2E, 2F, S13B, S13C, S6, and S14).145 The cancer-specific peak-to-gene

associations involving genes upregulated in the cancer condition were visualized in a heatmap of effect sizes for each condition using

the Heatmap() function from ComplexHeatmap (Figures 3A and 4C).141,150 The same visualization was performed for the putative

silencer-to-enhancer switching events as well as normal-specific peak-to-gene associations involving genes upregulated in the

normal condition (Figures S7A, S7C, S7F, S15A, S15C, and S15F). Select cancer-specific peak-to-gene associations of interest

were visualized in a genomic browser track format, using ArchR’s plotBrowserTrack() function, to display the ATAC-seq coverage

patterns of the surrounding locus stratified by condition (Figures 3C, S11, 4E, and S18).50 The same cancer-specific peak-to-

gene associations of interest were visualized in scatter plots of peak accessibility by the inferred level of gene expression inmetacells

using ggplot2 (Figures 3D and 4F).145

Overlap analyses of genomic coordinates
To identify peak-to-gene associations that overlapped with existing ENCODE annotations downloaded from https://screen.

encodeproject.org, the genomic coordinates of the peaks participating in the peak-to-gene associations were converted into a

GRanges object using the GenomicRanges R package.71,72,142,152 The genomic coordinates of the existing ENCODE annotations

were also converted into a second GRanges object.152 These two GRanges objects were used as input into the subsetByOverlaps()

function from the IRanges R package.142,152 The output from this function was aGRanges object containing the genomic coordinates

of peaks that overlapped with the genomic coordinates of existing ENCODE annotations and was used to annotate the initial set of

peak-to-gene associations for overlap with existing ENCODE annotations (Figures 2D, S13A, and 5C).

To perform the overlap analyses of putative enhancers between in vitro and in vivo BC cells for each subtype, the genomic coor-

dinates of the putative enhancers in vitro and in vivowere converted intoGRanges objects.152 These twoGRanges objects were used

as input into IRanges’ findOverlaps() function to identify the number of overlapping, or shared, putative enhancers between in vitro
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and in vivo BC cells.152 The same GRanges objects were used as input into IRanges’ subsetByOverlaps() function, with the invert

parameter set to TRUE, to identify the numbers of putative enhancers specific to in vitro and in vivo BC cells (Figures 5D–5O).152

To perform the overlap analyses of putative enhancer-target gene pairs between in vitro and in vivo BC cells for each subtype, the

genomic coordinates of the putative enhancers participating in the putative enhancer-target gene pairs in vitro and in vivowere con-

verted into GRanges objects.152 These two GRanges objects were used as input into IRanges’ findOverlaps() function to return a

GRanges object containing the indices of genomic coordinates that overlapped between the two input GRanges objects.152 The

indices of overlapping genomic coordinates from each GRanges object were used to merge both sets of putative enhancer-target

gene pairs, in vitro and in vivo, into one matrix based on overlapping putative enhancers. These sets of putative enhancer-target

gene pairs, in vitro and in vivo, were screened for those with overlapping putative enhancers that linked to the same gene in both

in vitro and in vivo settings. The resulting set of shared putative enhancer-target gene pairs in both settings was used to annotate

the overlap status for the initial sets of putative enhancer-target gene pairs identified in each setting (Figures 5D–5O).

Gene set enrichment analysis
To perform gene set enrichment analysis with Hallmark gene sets from MSigDB, we inputted the list of genes of interest into the

enricher() function from the clusterProfiler R package to test for significant enrichments via hypergeometric tests.76–78,142 Gene

sets with Benjamini-Hochberg adjusted p-values < 0.05 were deemed statistically significant enrichments.151 The top three most

significantly enriched gene sets were visualized using the dotplot() function from the enrichplot R package with the showCategory

parameter set to ‘‘3’’ (Figures 3B, 4D, 5F, 5G, S7B, S7D, S7G, S15B, S15D, and S15G).153

Transcription factor (TF) motif analysis
To perform TF motif analysis for each differential association class (comprised of putative enhancer and/or silencer regions), we in-

putted the genomic coordindates of each set of peaks into the find_motifs_genome() function from the marge R package.142,154 Note

that the number of unique peaks in each differential association class were randomly downsampled to match the number of unique

peaks in the smallest differential association class before computing motif enrichments. This was performed to avoid technical dif-

ferences in motif enrichment between differential association classes due to large differences in initial sample size of peaks. The top

10%most variable motif enrichments (–log10(p-value)) across eight differential association classes were visualized in a heatmap us-

ing the Heatmap() function from the ComplexHeatmap R package (Figures S8A and S16A; Table S5).141,142,150 The same procedure

was used for the comparison of motif enrichments between putative cancer-specific and normal-specific enhancers (Figures S8B

and S16B; Table S5).

Survival analysis
CALGB 40603 clinical data were acquired from dbGaP (phs001863.v1.p1) and upper quartile normalized RNA-seq expression data

were downloaded from GEO (GSE154524). The normalized expression values were further log2-transformed.

FUSCC clinical data were downloaded from Table S1 of Jiang et al 2019 and RNA-seq fastq files were acquired from the NCBI

Sequence Read Archive (SRP157974).110 RNA-seq fastqs were aligned to the hg38 reference genome with STAR 2.7.6a and quan-

tified with Salmon 1.4.0. Salmon counts were then upper quartile normalized and log2(x+1) transformed.

METABRIC clinical data and normalized expression data were acquired from the European Genome-Phenome Archive

(EGAS00000000083) and came from Curtis et al 2012.111 The normalized expression values were further log2(x+1) transformed.

PR IHC data and HER2 FISH data were missing from this dataset, so TNBC samples were defined as IHC ER negative, no HER2

SNP6 gain, and HER2 SNP6 loss or HER2 negative by expression. Correspondingly, HR+/HER2- samples were defined as IHC

ER positive, no HER2 SNP6 gain, and HER2 SNP6 loss or HER2 negative by expression. Stage 0, stage 4, and untreated samples

were excluded from analysis.

SCAN-B clinical data and gene-level FPKM RNA-seq expression data were downloaded from Mendeley Data (https://data.

mendeley.com/datasets/yzxtxn4nmd/3) and came from Staaf et al 2022.112 The FPKM expression values were further upper quartile

normalized and log2(x+1) transformed. Untreated samples, bilateral samples, multi-centric samples, lymph node samples, and

normal samples were excluded from the analysis. Furthermore, sample duplicates were excluded (keeping the specimen that had

the most frequently used library protocol, sequencer serial, library barcode, or pool name in the dataset, respectively).

TCGA-BRCA clinical data and RNA-seq fastqs were acquired from the Genomic Data Commons Data Portal (https://portal.gdc.

cancer.gov/projects/TCGA-BRCA).113 RNA-seq fastqs were aligned to the hg38 reference genome with STAR 2.7.6a and quantified

with Salmon 1.4.0. Salmon counts were then upper quartile normalized and log2(x+1) transformed. Only fresh frozen tumor samples

were considered for analysis, and stage 4 samples were excluded.

Cox proportional hazards models were fit using the survival R package for each of the 829 unique genes participating in 7,167 can-

cer-specific peak-to-gene associations, identified in the Basal-like subtype analysis, over the set of TNBC patients in each dataset

(Table S6). The same was performed for each of the 288 unique genes participating in 1,931 cancer-specific peak-to-gene associ-

ations, identified in the Luminal subtype analysis, over the set of HR+/HER2- samples in each dataset (Table S6). Separate models

were fit using each definition of survival available for a dataset. The survival R package was used for the Cox proportional hazard

modeling with the formula Surv(time, event) � gene_expression.
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Kaplan-Meier plots were created using the survminer R package, using median gene expression values as the ‘‘high expression’’

vs. ‘‘low expression’’ cutoffs, with log-rank P-values displayed (Figures S10A and S17A).

CNV landscape plots
TCGA-BRCA GISTIC2.0 gene-level copy number data (all_data_by_genes.txt) were downloaded from TCGA Firebrowse (http://

firebrowse.org/?cohort=BRCA#).113 Gene-level copy number scores were then converted to 534 pre-determined chromosomal

segment copy-number scores by calculating themean score of genes overlapping a given segment. The 534 segments used included

chromosomal regions associated with cancer and whole-arm chromosome segments, as described in detail in Xia et al 2019 .114

Segment-level copy number scores > 0.3 in a sample were considered copy number gains, and segment-level copy number

scores < -0.3 in a sample were considered copy number losses. The percentage of all TNBC TCGA samples with a copy number

gain/loss call for each segment was calculated and plotted by the relative segment order, with HEY1 labeled between the two non-

whole-arm segments it was closest to (chr8:62174237-62716885.BeroukhimS5.amp andchr8:81242335-81979194.BeroukhimS2.8-

q21.13.amp) (Figure S10B). Correspondingly, the percentage of all HR+/HER2- TCGA samples with a copy number gain/loss call for

each segment was calculated and plotted by the relative segment order, withCRABP2 labeled between the two non-whole-arm seg-

ments it was closest to (chr1:151026302-152973244.BeroukhimS5.amp and chr1:158317017-159953843) (Figure S17B).

Correlation between copy number and expression
TCGA-BRCA clinical, expression, and copy number data were acquired and processed in the same way as described in the survival

analyses and CNV landscape plotting. To select genes surrounding HEY1 and CRABP2, the UCSC Human Gene Sorter tool (https://

genome.ucsc.edu/cgi-bin/hgNear) was used. The 10 closest upstream and 10 closest downstream genes of HEY1 and CRABP2 by

genome position that also had quantified TCGA gene expression data and copy number data available were chosen to be plotted,

ordered by relative proximity to HEY1 and CRABP2, respectively. The log2 transformed, upper-quartile normalized expression of

each gene across TCGA TNBC and HR+/HER2- samples are plotted in Figures S10C and S17C, respectively. For the boxplots,

the center line represents the median value, box limits represent upper and lower quartiles, and whiskers represent the 1.5x

interquartile range. Any points outside of these ranges represent outliers. The Wilcoxon rank sum test was used to compare the

expression of each nearby gene to the expression of HEY1 and CRABP2, respectively. The Pearson correlation between the log2

transformed, upper-quartile normalized expression and the GISTIC2.0 copy number score of each gene across TCGA TNBC and

HR+/HER2- samples are plotted in Figures S10D and S17D, respectively. Note that forMIR5708 and RN7SL107P, the Pearson cor-

relation could not be calculated because the expression was 0 for all samples.

Prioritization scheme for selection of HEY1 and CRABP2

To screen for clinically relevant genes regulated by putative cancer-specific enhancers, we carried out a 7-step procedure to filter

candidates in both the Basal-like and Luminal subtype analyses (Figure S9). First, we identified statistically significant peak-to-

gene associations in either cancer or normal conditions with FDR-adjusted p-value < 1e-04. Next, we identified statistically

significant differential peak-to-gene associations with FDR-adjusted p-value < 1e-04. Thirdly, we screened statistically significant

differential peak-to-gene associations for those that showed a significant effect size > 0 in the cancer condition. Next, we screened

these ‘cancer-specific’ peak-to-gene associations for those that involved genes upregulated in the cancer condition relative to the

normal condition (FDR-adjusted p-value < 0.05 & log2FC R 0.58). To prioritize prognostic genes, we screened for cancer-specific

peak-to-gene associations involving genes that showed a significant hazard ratio > 1 in a majority of the external patient datasets

tested (Cox p-values < 0.01). Finally, we prioritized cancer-specific peak-to-gene associations involving genes affected by copy

number amplification events in >50% of TCGA TNBC or HR+/HER2- patients. This prioritization scheme revealed HEY1 in the

Basal-like subtype analysis and a total of five genes in the Luminal subtype analysis. These five genes were ranked by level of expres-

sion in scRNA-seq, and CRABP2 was selected as one of the most highly expressed genes.
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