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Graphical Abstract

Graphical highlights: Clinical and pathobiological diversity of Parkinson’s dis-
ease (PD) limits therapeutic diseasemonitoring. Transformation of innate immu-
nity can affect PD progression. Granulocyte-macrophage colony-stimulating
factor (GM-CSF, sargramostim, Leukine R©) transformation of monocyte-
macrophage immunity can halt PD motor signs. Transcriptomic and proteomic
monocyte biomarkers from sargramostim-treated PD patients may guide effec-
tive therapy.
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Abstract
Background: Dysregulation of innate and adaptive immunity heralds both the
development and progression of Parkinson’s disease (PD). Deficits in innate
immunity in PD are defined by impairments in monocyte activation, function,
and pro-inflammatory secretory factors. Each influences disease pathobiology.
Methods andResults:Todefinemonocyte biomarkers associatedwith immune
transformative therapy for PD, changes in gene and protein expression were
evaluated before and during treatment with recombinant human granulocyte-
macrophage colony-stimulating factor (GM-CSF, sargramostim, Leukine R©).
Monocytes were recovered after leukapheresis and isolation by centrifugal
elutriation, before and 2 and 6 months after initiation of treatment. Transcrip-
tome and proteome biomarkers were scored against clinical motor functions.
Pathway enrichments from single cell-RNA sequencing and proteomic anal-
yses from sargramostim-treated PD patients demonstrate a neuroprotective
signature, including, but not limited to, antioxidant, anti-inflammatory, and
autophagy genes and proteins (LRRK2, HMOX1, TLR2, TLR8, RELA, ATG7, and
GABARAPL2).
Conclusions: This monocyte profile provides an “early” and unique biomarker
strategy to track clinical immune-based interventions, but requiring validation
in larger case studies.
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1 BACKGROUND

Parkinson’s disease (PD) is a progressive neurodegenera-
tive disorder characterized by the gradual loss of dopamin-
ergic neurons from the substantia nigra pars compacta
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original work is properly cited.
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(SNpc). The dominant presence of α-synuclein (α-syn)
aggregates in intracellular inclusions within the central
nervous system (CNS) and in peripheral tissues is a princi-
pal disease driver, while providing a signature for systemic
multi-organ disease.1,2 Linkages between PD and innate
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(monocyte andmicroglia)3 and adaptive (T cell) immunity,
and inflammation arewell-established.4 ThePDpathogen-
esis involves impaired protein clearance, mitochondrial
dysfunction, and inflammation.5 All affect dopaminergic
neuronal function with secondary effects on noradrener-
gic, glutamatergic, serotonergic, and adenosine neuronal
vitality.6 Disease is highlighted by release of α-syn aggre-
gates into systemic circulation and consequent monocyte
activation and brain entry,7 and deficits of neuroimmune
homeostasis,8 Based on these findings, efforts to restore
brain homeostasis are attractive targets for PD-modifying
therapies.
In PD, regulatory T cells (Treg) are decreased in

number and display impaired suppression of T cell
proliferation.9 One PD therapeutic strategy focuses on
immune transformation. Notably, balanced transforma-
tion of M1 microglia/macrophages/monocytes to M2/M0
phenotypes and effector T cells (Teff) to Treg, and inter-
actions between the two lineages are of putative clinical
benefit for PD aswell as forAlzheimer’s disease (AD), trau-
matic brain injury (TBI), stroke, and amyotrophic lateral
sclerosis (ALS).10,11 Restoration of Treg numbers and func-
tion by immunemodulatory agents leads to control of neu-
roinflammation and neuroprotection.12 This was demon-
strated for granulocyte-macrophage colony-stimulating
factor (GM-CSF, sargramostim, Leukine R©),13–16 vasoac-
tive intestinal peptide (VIP),17 and by ex vivo immune
transformation.18 Moreover, pre-clinical and clinical stud-
ies of immune modulatory therapies have shown benefits
for PD, AD, ALS, and stroke as well as multiple sclerosis
(MS) and rheumatoid arthritis (RA),13–16,19–21 and raises the
possibility that neuroprotective therapies can supplement
symptomatic disease control.
To evaluate innate responses in immune modulatory

therapy in PD, we evaluated the transcriptional and
translational changes of monocytes during sargramostim
treatment of PD subjects.14 The studies seek a cogent expla-
nation for linkages between innate immune activation,
inflammation, and adaptive Teff to Treg transformation for
disease. We posit that uncovering such monocyte-linked
neuroprotective mechanisms provides predictive and/or
monitoring biomarkers for therapeutic responses and pos-
sibly disease progression.22 With these goals inmind, blood
monocytes were isolated from 5 PD patients by leuka-
pheresis and centrifugal elutriation, before and after ini-
tiation of sargramostim therapy. The recovered cells were
subjected to a battery of transcriptomic and proteomic
analyses yielding therapeutic signatures of dysregulated
anti-inflammatory, antioxidant, and autophagy genes and
proteins. We conclude that the nature of monocyte func-
tions in PD are both associated with disease pathobiology
and can be harnessed to affect disease progression and
clinical therapeutic responses.

2 METHODS ANDMATERIALS

2.1 Study design and population

The study was an unblinded, open-label, single-centre
phase 1 clinical trial performed at the University of
Nebraska Medical Center (UNMC), Omaha, NE, USA.14
All patients were recruited from the Omaha metropolitan
area and treated for 12 months between January, 2019 and
July, 2020. The study was designed to test safety, tolera-
bility, and biomarker discovery of sargramostim regimen
of 3 µg/kg/day (5 days on and 2 days off).14 Eligibility
criteria were 35 to 85 years of age with PD signs and
symptoms that included asymmetric bradykinesia, rest-
ing tremor, and/or muscle rigidity persisting for longer
than 3 years with less than stage 4 on the Hoehn and
Yahr disease scale, indicating an intermediate stage of the
disease.14 Exclusion criteria included inability to undergo
leukapheresis, poor venous access, use of a wheelchair,
walker, and/or cane, corticobasal degeneration, multi-
ple system atrophy, unilateral Parkinsonism of >3 years,
prior head injury, stroke, brain surgery including deep
brain stimulation, a family history of >1 blood relative
with PD, mental illness, cognitive impairment, autoim-
mune, systemic inflammatory or hematologic diseases,
past treatment with sargramostim, current treatment with
neuroleptics or lithium, past immunosuppressive treat-
ments, and known allergies to colony-stimulating factors
(CSFs) or yeast-derived products.14 PD patients underwent
three pre-treatment monthly interval appointments to
determine baseline immune, hematologic, and metabolic
profiles.14 On the third visit, subjects self-administered
sargramostim at 3 µg/kg/day (5 days on and 2 days
off) subcutaneously for 12 months; returning for clini-
cal assessments every 4 weeks. The primary neurologist
performed all Unified Parkinson’s Disease Rating Scale
(UPDRS) assessments during each appointment.14 Before
treatment initiation and at 2 and 6 months after initi-
ation, subjects underwent leukapheresis. The procedure
was completed to enrich peripheral blood mononuclear
cells in order to obtain sufficient numbers of monocytes
for proteomic analysis and scRNA-seq test analyses.

2.2 Monocyte isolation

Blood samples were collected from the subjects before
starting the treatment as well as after 2 and 6 months of
treatment. Whole blood was collected into tubes contain-
ing ethylenediaminetetraacetic acid (EDTA) and mono-
cytes were isolated by centrifugal elutriation following
established protocol in our laboratories (Materials and
Methods in the Supplementary information file). Isolated
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monocytes were stored in freezing medium [foetal bovine
serum (FBS) + 10% dimethyl sulfoxide (DMSO)] and kept
in liquid nitrogen until processing for proteomic and
transcriptomic analyses. The monocyte samples were pro-
cessed for different assays within 6 months after storage
in liquid nitrogen. After thawing the samples, recovery
was 90%–95% of the number of cryopreserved cells (10 ×
106 cells/vial) and microscopic examination showed nor-
mal cellularmorphology. The phenotype ofmonocyteswas
confirmed by measures of monocyte cell surface markers
CD14 and CD16 by scRNA-seq.

2.3 Quantitative proteomics by
label-free quantification

Frozen monocyte samples were thawed on ice, cen-
trifuged to remove the freezing medium, washed with
phosphate buffered saline (PBS), then lysed on ice with
250 µl of 2% w/v sodium dodecyl sulphate (SDS) (Fisher
Scientific, BP166-100) in 100 mM Tris-HCl (Millipore
Sigma, 10812846001) and 100 mM dithiothreitol (Millipore
Sigma, 10197777001), pH 7.6, supplemented with a pro-
tease and phosphatase inhibitor cocktail (Millipore Sigma,
PPC1010). Lysate was collected in 1.7 ml microcentrifuge
tubes and vortexed briefly to disperse the cells. One micro-
liter of Benzonase Nuclease (Millipore Sigma, E1014) was
added to each sample to breakdown DNA, then samples
were vortexed on maximum speed for >12 min. Samples
were boiled at 95◦C for 5 min to denature proteins. Protein
concentration was determined using Pierce 660 Protein
Assay kit (Thermo Fisher Scientific, 22662) with ionic
detergent compatibility reagent (Thermo Fisher Scientific,
22660) following the manufacturer’s instructions. Samples
were processed as previously described23 by filter-aided
sample preparation ((FASP, Pall Life Sciences, OD010C34))
to digest 50 µg per sample. Following overnight diges-
tion, samples were cleaned using the Oasis MCX column
(Waters, 186000252) and C18 Zip-Tips (Sigma-Aldrich,
ZTC18M960). Cleaned peptides were quantitated using
NanoDrop2000 at A205. Following resuspension in 0.1%
formic acid (FA), 2 µg of sample was used for label-free
quantification (LFQ) as previously described.24 Briefly, 2
µg of each sample was loaded onto trap column Acclaim
PepMap 100 75 µm × 2 cm C18 LC Columns (Thermo
Fisher Scientific) at a flow rate of 4 µl min−1 then sepa-
rated with a Thermo RSLC Ultimate 3000 (Thermo Fisher
Scientific) on a Thermo Easy-Spray PepMap RSLC C18 75
µm × 50 cm C-18 2 µm column (Thermo Fisher Scientific)
with a step gradient of 4%–25% solvent B (0.1% FA in 80%
acetonitrile) from 10–100 min and 25%–45% solvent B for
100–130 min at 300 nl min−1 and 50◦C with a 155 min
total run time. Eluted peptides were analysed by a Thermo

Orbitrap Fusion Lumos Tribrid (Thermo Fisher Scientific)
mass spectrometer in a data-dependent acquisition mode.
A survey full scan MS (from m/z 350–1800) was acquired
in the Orbitrap with a resolution of 120 000. The automatic
gain control (AGC) target for precursor ion scan (MS1) was
set as 4 × 105 and ion filling time set at 100 ms. The most
intense ionswith charge state 2–6were isolated in 3 s cycles
and fragmented using higher energy collisional dissocia-
tion fragmentation with 35% normalized collision energy
and detected at a mass resolution of 30 000 at 200 m/z.
TheAGC target forMS/MSwas set at 5× 104 and ion filling
time set 60 ms dynamic exclusion was set for 30 s with a 10
ppm mass window. Protein identification was performed
by searchingMS/MSdata against the SwissProtHomo sapi-
ens protein database downloaded in March 2021 using the
in-house PEAKS X + DB search engine. The search was
set up for full tryptic peptides with a maximum of two
missed cleavage sites. Acetylation of protein N-terminus
and oxidized methionine were included as variable modi-
fications and carbamidomethylation of cysteine was set as
fixed modification. The precursor mass tolerance thresh-
oldwas set 10 ppm andmaximum fragmentmass errorwas
0.02 Da. The significance threshold of the ion score was
calculated based on a false discovery rate (FDR) of ≤1%.
Quantitative data analysis was performed using Progen-
esis QI proteomics 4.2 (Nonlinear Dynamics). Statistical
analysis was performed using ANOVA and the Benjamini–
Hochberg (BH) method25 was used to adjust p values for
multiple-testing FDR.

2.4 Differential proteomic analyses

Proteins identified by mass spectrometry were quantified
to identify differentially expressed proteins between each
treatment (2- and 6-months post-treatment) and baseline
(pre-treatment) for each patient alone as well as between
each treatment and control condition for all patients
together. ANOVA P value (computed from the proteomics
core) and absolute fold changes were used to identify dif-
ferentially expressed proteins in different comparisons. A
protein was considered to be differentially expressed if the
P value was ≤ 0.05 and the absolute fold change was ≥2.
The IPA (Qiagen) was used to identify the pathways and
networks affected in 2 and 6 months following the treat-
ment compared to baseline (before starting the treatment).
Functional and pathway enrichment analyses of differen-
tially expressed proteins were conducted using Cytoscape
in conjunction with the plug-in ClueGO26 to identify the
enriched immune responses, biological processes, molec-
ular functions, cellular components, Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, and Reactome
pathways. The search tool for the retrieval of interacting
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genes/proteins (STRING) local network cluster enrich-
ment was conducted using Cytoscape in conjunction with
the plug-in STRING Enrichment which provides critical
assessments and integration of PPIs. The cut-off used for
Venn diagrams and general differential expression analysis
summary was: P value of 0.05 and absolute fold change of
1.5. The IPA and ClueGO analyses were also performed on
proteins with the same cut-off p value of 0.05. For Volcano
plots, the cut-off used to add gene names to differentially
expressed proteins was: absolute log2-fold change >2 and
ANOVA P value ≤ 0.05.

2.5 Single-cell RNA-sequencing

Cryopreserved monocyte samples (for 3 study partic-
ipants having IDs 2003, 2004, and 2005) at baseline
and 6 months were assessed. Cells were thawed on ice,
centrifuged, and washed with PBS, then processed for
single-cell RNA-sequencing (scRNA-seq); as previously
described,27 in FACS buffer (2% FBS + 0.1% NaN3 in
PBS). All reagents purchased from Sigma unless otherwise
specified. Single cell suspensions were quantified and via-
bility tested using a LUNA-FLTM Dual Fluorescence Cell
Counter (Logos Biosystems). Single cells were then iso-
lated from cell suspensions (100–2,000 cells/µl) using a
10x Chromium Controller per manufacturer’s suggested
protocol (10x Genomics). Following cell capture, the gel
beads in emulsion (GEM)/sample solution were recovered
and placed into strip tubes. Reverse transcription was per-
formed on a C1000 Touch™ Thermal Cycler (Bio-Rad)
per recommended protocol followed by cDNA amplifi-
cation. Amplified products were solid phase reversible
immobilization (SPRI) bead-purified and evaluated by
Fragment Analyzer (Agilent). Twenty-five percent of the
cDNA volumewas subjected to fragmentation and double-
sided SPRIselect (Beckman Coulter) was used for PCR
purification and clean-up. After adaptor ligation, SPRI
clean-upwas performed andPCRamplification using sam-
ple specific indexes for each sample was completed. PCR
products were purified, quantified, and library size distri-
bution determined by Fragment Analyzer. Libraries were
sequenced per the manufacturer’s suggested parameters
on a NextSeq500 sequencer to an average depth of 50,000
reads per cell.

2.6 Droplet digital polymerase chain
reaction assay

Frozen monocyte samples were thawed on ice, cen-
trifuged to remove the freezing medium, and washed
with PBS, then total RNA was isolated using RNeasy

Mini Kit (Qiagen, 74104), and cDNA was generated
utilizing RevertAid First Strand cDNA synthesis kit
(Thermo Fisher Scientific, K1622). Copy numbers of
genes of interest normalized to those of a housekeeping
gene (HPRT1)/µl reaction were determined by droplet
digital polymerase chain reaction (ddPCR) (QX200
Droplet Digital PCR System, Bio-Rad) from 10 ng of
template cDNA using ddPCR Supermix for Probes (No
dUTP) (Bio-Rad, 1863024), ddPCR Copy Number Vari-
ation Assays (FAM) (Bio-Rad, 10042958) for leucine
rich repeat kinase 2 (LRRK2) (dHsaCNS305132784),
heme oxygenase 1 (HMOX1) (dHsaCNS341530792),
toll-like receptor 2 (TLR2) (dHsaCNS915093309), TLR8
(dHsaCNS317664208), RELA; nuclear factor NF-kappa-B
(NF-κB) p65 (dHsaCNS873554652), autophagy related 7
(ATG7) (dHsaCNS131828358), and gamma-aminobutyric
acid receptor-associated protein-like 2 (GABARALPL2)
(dHsaCNS699447999), TaqMan Gene Expression Assay
(VIC) of HPRT1 (Life Technologies, 4448509), and Bio-Rad
ddPCR reagents/consumables according to the manu-
facturer’s instructions. The percentage of copy number
variation of different genes of interest at 2 and 6 months
after treatment was quantified relative to the baseline
expression.

2.7 Western blot analysis

Frozenmonocyte samples were thawed on ice, centrifuged
to remove the freezing medium, and washed twice with
ice-cold PBS, then total protein was extracted using 200
µl of 1x radioimmunoprecipitation assay (RIPA) lysis
buffer (Millipore Sigma, 20–188), supplemented with pro-
tease and phosphatase inhibitor cocktail (Millipore Sigma,
PPC1010). Protein concentration was determined utilizing
Micro BCA Protein Assay Kit (Thermo Fisher Scientific,
23235) following the manufacturer’s instructions. Protein
lysates (25 µg) were resolved by SDS-Polyacrylamide gel
electrophoresis (PAGE) and transferred to Immobilon-
P polyvinylidene fluoride (PVDF) membrane (Millipore
Sigma, IPVH00010). Membranes were blocked in 5% non-
fat milk in Tris-buffered saline with 0.1% Tween 20 deter-
gent (TBST) buffer at room temperature for 1 h, followed
by incubation with primary antibodies to LRRK2 (1:2000,
Thermo Fisher Scientific, MA511154), HMOX1 (1:1000,
Thermo Fisher Scientific, MA1112), TLR2 (1:1000, Pro-
teintech, 66645-1-Ig), TLR8 (1:1000, Origene, TA810175),
RELA (1:1000, Thermo Fisher Scientific, 436700), ATG7
(1:1000, Cell Signalling, 8558S), GABARALPL2 (1:1000,
Abcam, ab126607), and β-actin (1:3000, Sigma-Aldrich,
A3854) at 4◦C overnight, followed by 1 h incubation
in 2.5% non-fat milk in TBST buffer with horseradish
peroxidase-conjugated anti-rabbit (1:2000, R&D Systems,
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HAF008) or mouse (1:2000, R&D Systems, HAF018) sec-
ondary antibody. Immunoreactive bands were detected
using SuperSignal West Pico Chemiluminescent substrate
(Thermo Fisher Scientific, 34080), and images were cap-
tured using an iBright CL750 Imager (Thermo Fisher
Scientific). Immunoblots were quantified using ImageJ
software (NIH) relative to β-actin expression. The rel-
ative expression of proteins at 2 and 6 months after
treatment initiation was quantified relative to baseline
levels.

2.8 Statistical analysis

Sample size estimates of five PD patients were deter-
mined to provide 80% power and to afford an increased
score of 1.63 (32%) in baseline immune response using a
two-sided Wilcoxon test assuming normal distribution.14
Results are presented as the mean ± standard deviation
(SD). Non-parametric Kruskal–Wallis test with Dunn’s
multiple test was used to compare the mean ranks of
gene/protein expression for all subjects together between
different time points. P values ≤ 0.05 were considered
statistically significant. Statistical analysis was performed
using GraphPad Prism 9.1.0 software (GraphPad Soft-
ware, San Diego, CA). All correlation analyses were
determined using Pearson product-moment correlation
coefficients, best-fit lines were determined using multiple
linear regression, p values were determined for r val-
ues greater than 0.25, and multiple p values adjusted for
FDR at 5%.28

3 RESULTS

3.1 Study population and demographics

In this study, six PD patients were enrolled and five
met the study entry criteria. Average age of the patients
was 64 ± 5 years, and anti-parkinsonian therapies
(carbidopa-levodopa) were continued during the study
course (Table 1).

3.2 Proteomic and single-cell RNA
sequencing monocyte analyses

Before initiating sargramostim treatment, subjects under-
went three UPDRS assessments at monthly intervals to
establish baseline motor function for disease progres-
sion monitoring. After initiating sargramostim treatment,
UPDRS was assessed every 4 weeks for all patients. Over
the treatment course, sargramostim resulted in an overall

TABLE 1 Study population demographics (modified from14)

Number
of patients Mean ± SD

Age (years) 5 64 ± 5
Disease duration since diagnosis 5 8 ± 5
MDS-UPDRS III score 5 20 ± 5
Sex (male) 5 –
Carbidopa-Levodopa 25–100 mga 3 –
Carbidopa-Levodopa 50–200 mg 1 –
Carbidopa-Levodopa 23–95 mg 1 –

Values are depicted as mean ± SD.
aSubject 2001 started anti-parkinsonian therapy on month 8.

decrease in UPDRS part III (UPDRS III) scores com-
pared to baseline for all subjects.14 Although, CNS innate
immunemicroglia are comprehensively studied in PD ani-
mal models and patients,3,29,30 peripheral monocytes have
received less attention due to a past perception of immune
privileged CNS. Altered monocyte functions have been
reported in the periphery and CSF of PD patients.3 To
elucidate mechanisms of clinical findings observed in PD
patients following sargramostim treatment, we analysed
monocyte proteome from cells collected at 2- and 6-
months following treatment. Comparisons were adjusted
from baseline measures using Homo sapiens proteome
databases (UniProt: proteome ID: UP000005640, Swiss-
Prot: reviewed proteins). Three patients (2003, 2004, and
2005)withUPDRS III scores 5 points belowbaseline14 were
selected and subjected to scRNA-seq and proteomic anal-
yses at 6 months following treatment. Expression of over
2000 proteins were identified by LFQ at both time points
after treatment initiation (Additional file 1). Amongst the
total identified proteins, 259 and 879 proteins were dif-
ferentially expressed (p ≤ 0.05) at 2 and 6 months after
treatment initiation, respectively (Additional file 1), and 25
and 262 proteins were differentially expressed after adjust-
ing p values for FDRs (Additional file 2). Expression of
15 proteins out of 25 proteins overlapped between 2- and
6-months (Additional file 2). Interestingly, 5/15 of the pro-
teins (tryptase beta-2 [TPSB2], HMOX1, LRRK2, TLR8, and
superoxide dismutase 2 [SOD2]) showed significant down-
regulation at both time points, suggesting the induction of
antioxidant, anti-inflammatory, and autophagy activities
by 2 and 6 months after treatment initiation. Volcano plots
show differentially expressed proteins at 2 and 6 months
after treatment compared to baseline (Figure S1). For
scRNA-seq, the expression of 27,875 genes were identified
and quantified using a NextSeq500 sequencer (Additional
file 3). Amongst total identified genes, 746 were differ-
entially expressed at 6 months of treatment compared to
baseline (p ≤ 0.05).
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F IGURE 1 Pathway enrichment of differentially expressed proteins in monocytes of PD patients at 2 months after sargramostim
treatment. (A) Gene ontology (GO)-term functional enrichment by five categories (immune response, biological process, cellular component,
KEGG, and Reactome) performed using Cytoscape in conjunction with the plug-in ClueGO. (B) Canonical pathway enrichment analysis
performed using IPA (Qiagen). Black arrow points to the state of canonical pathways illustrated in Figure 1B; orange colour (activation), blue
colour (inhibition), and grey colour (no activity pattern)

3.3 Functional and pathway
enrichment of proteomic and scRNA-seq
analyses

To understand changes in the monocyte proteomic profile
due to sargramostim treatment, we performed functional
and pathway enrichment analyses of differentially reg-
ulated proteins at 2 and 6 months after initiation of
sargramostim. By 2 months, multiple immune processes
were found enriched, including “myeloid leukocyte medi-
ated immunity” (p = 1.33 × 10−8), “myeloid cell activation
involved in immune response” (p = 1.30 × 10−7), and
“leukocyte activation involved in immune response” (p
= 7.25 × 10−6) (Figure 1A and Additional file 4). Simi-
larly, KEGG and Reactome analyses showed “phagosome”
(p = 2.74 × 10−4) and “innate immune system” (p =

1.29 × 10−7) enrichments, respectively. Additionally, path-
ways involved in regulation of interleukin-8 (IL-8) (p =

0.0364) and tumour necrosis factor (TNF) production (p
= 0.0173) were enriched. These data highlight the control
of inflammation by sargramostim treatment. Interestingly,
Ingenuity Pathway Analysis (IPA) showed inhibition of
neuroinflammation signalling (p = 1.4 × 10−4), IL-8 (p
= 8.8 × 10−4), integrin-linked kinase (ILK) (p = 0.028),
nitric oxide and reactive oxygen species (ROS) (p= 0.0335)
pathways (Figure 1B and Additional file 5). Addition-
ally, sargramostim affected transport mechanisms asso-
ciated with endosomes (p = 0.0314), Golgi vesicles (p =
0.0016), endoplasmic reticulum to Golgi vesicle transfer

(p = 0.0102), protein targeting to lysosome (p = 0.0278),
and late endosome to lysosome maturation (p = 0.0039)
(Figure 1A and Additional file 4). Accordingly, cellular
component and Reactome analyses showed enrichment
of secretory vesicles (p = 1.14 × 10−13) endocytic vesi-
cles (p = 2.37 × 10−5), transport vesicles (p = 0.0012),
phagocytic vesicles (p = 0.0052), Golgi-associated vesicles
(p = 0.0092), lysosomes (p = 2.59 × 10−9), and trans-
Golgi network vesicle budding (p = 0.0419) (Figure 1A
and Additional file 4). Sargramostim treatment induced
changes in biological processes related to the RNA pro-
cessing such as regulation of mRNA processing (p = 2.16
× 10−5) and regulation of RNA splicing (p = 3.96 × 10−4).
Similarly, KEGG and Reactome tests showed pathways
affecting RNA processing (including RNA transport, p =
0.0370), mRNA splicing (major and minor pathways, p =
3.5× 10−5 and p= 0.0431, respectively), and spliceosome (p
= 0.0012). These results indicate that homeostatic mono-
cyte control ensued as early as 2 months after initiation of
sargramostim treatment.
Both proteomic and scRNA-seq analyses at 6 months

of treatment displayed enrichment of immune processes,
including monocyte-macrophage mediated immunity (p
= 6.03 × 10−34), activation (p = 2.29 × 10−35), and innate
immune responses (p= 2.91× 10−27). Moreover, regulation
of leukocyte activation (p = 0.0050), lymphocyte chemo-
taxis (p= 0.0050), and regulation of lymphocyte activation
(p = 6.54 × 10−4) were shown (Figure 2A and Additional
files 6 and 7). Similarly, proteomic Reactome analysis
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F IGURE 2 Pathway enrichment of differentially expressed proteins/genes in monocytes at 6 months after sargramostim treatment. (A)
GO-term functional enrichment by five categories (immune response, biological process, cellular component, KEGG, and Reactome) was
performed using Cytoscape in conjunction with the plug-in ClueGO. (B) Canonical pathway enrichment analysis was performed using IPA
(Qiagen). Black arrows point to the state of canonical pathways illustrated in Figure (B); orange colour (activation), blue colour (inhibition),
and grey colour (no activity pattern)

showed enrichment of innate immunity (p = 3.66 × 10−19)
and phagosome formation (p = 0.0328) (Figure 2A,B and
Additional files 6 and 8). IPA of 6 month-scRNA-seq data
sets showed chemokine signalling (p = 1.84 × 10−4), den-
dritic cell maturation (p = 2.03 × 10−4), and phagosome
formation (p = 3.73 × 10−7) enrichments (Figure 2A,B and
Additional file 9). These data together indicate that sar-
gramostim activated several different immune processes
by 6 months of treatment initiation. In addition, there
was an enrichment of regulation of ROS metabolism (p =
0.0032), oxidative stress (p= 7.07 × 10−4), and oxygen con-
taining compounds (p= 0.0012) (Figure 2A andAdditional
files 6 and 7). These data suggest antioxidant effects follow-
ing sargramostim treatment. Interestingly, IPA of 6-month
proteomic data showed inhibition of oxidative phosphory-
lation (p = 1.36 × 10−6) (Figure 2B and Additional file 8),
suggesting that sargramostim treatment controls ROS pro-
duction. Moreover, 6-month proteomic data depicted an
enrichment of mitochondria function (p= 8.26 × 10−40) as
the primary organelle responsible for respiratory electron
transport pathway enriched in Reactome analysis (p= 5.29
× 10−15) (Figure 2A and Additional file 6). Additionally,
cellular component analysis of both proteomic and scRNA-
seq data resulted in enrichment of secretory (p = 1.59 ×

10−38) and cytoplasmic (p = 0.0066) vesicles (Figure 2A
and Additional files 6 and 7). These data imply an accel-
erated bidirectional movement of materials across the
cell membranewith sargramostim treatment. Importantly,
6-month proteomics demonstrated enriched autophagy
processes (p = 4.63 × 10−4) and macroautophagy (p =

1.51 × 10−5) (biological process analysis) as well as activa-
tion of sirtuin signalling pathway (IPA, p = 2.19 × 10−11)
(Figure 2A,B andAdditional files 6 and 8), which can regu-
late autophagy31 and serve as an important mechanism for
removal of misfolded α-syn. Notably, 6-month scRNA-seq
data showed enrichment of pathways linked to regulation
of inflammatory responses (p = 0.0059), “IL-10 medi-
ated negative regulation of plasma membrane-associated
inflammatory mediators” (p = 0.0097),32,33 and “recep-
tor ACKR2 binding most inflammatory CC chemokines”
(p = 0.0032)34 (Figure 2A and Additional file 7). These
data highlight the anti-inflammatory responses invoked by
6-month sargramostim treatment. Overall, the results indi-
cate antioxidant and anti-inflammatory responses as well
as autophagy after sargramostim initiation. The protein-
protein interactions (PPIs) related to five categories (bio-
logical processes, cellular components, molecular func-
tions, KEGG pathways, and Reactome pathways) were also
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identified using STRING analysis of their interaction net-
works for proteomic data at 2 and 6 months of treatment
(Additional files 10 and 11). These data demonstrate a com-
plex immunomodulatory, antioxidant, anti-inflammatory,
and autophagy network interactions.

3.4 scRNA-seq data sets demonstrate an
anti-inflammatory monocyte phenotype
induced by sargramostim treatment

For deeper examination of cell heterogeneity, scRNA-
seq data was clustered as cell groupings by measuring
gene transcript similarities and differences.35 Interestingly,
monocyte gene clustering showed a remarkable alteration
of transcriptome signatures for patients 2004 and 2005 at
6 months compared to baseline (Figure S2). In addition,
scRNA-seq clustering was examined to assess putative
monocyte phenotypes by measuring gene expression of
CD14, CD16, CD93, CD163, and CD209, all associated with
monocyte surface markers, at baseline and 6 months after
sargramostim was started. CD14, was expressed in 82% and
70% of cells at baseline and 6 months, respectively, while
no differences in CD16 expression were detected. This sug-
gests that most of the monocytes assessed by scRNA-seq at
both time points exhibited a classical monocyte phenotype
(CD14+CD16−). In addition,CD93 andCD163 genes encod-
ing anti-inflammatory surface markers,36 were expressed
by 66% and 44%, respectively, at 6 months compared to
43% and 31%, respectively, at baseline. Notably, expres-
sion of CD209 encoding for inflammatory monocyte
surface marker,37 was not changed compared to base-
line. Together, these observations demonstrate an anti-
inflammatory transcriptomic phenotype by monocytes of
sargramostim-treated PD patients.

3.5 Sargramostim induces monocyte
antioxidant, anti-inflammatory, and
autophagy-related activities

Bioinformatic analyses identified proteins with antioxi-
dant, anti-inflammatory, and autophagy functions that
were differentially expressed by 2 and 6 months of sar-
gramostim treatment (Table 2). Antioxidant and anti-
inflammatory proteins includedHMOX1, TLR2, TLR8, and
RELA all were downregulated at 2 months of treatment.
Autophagy-inducing proteins included ATG3, ATG7, and
GABARAPL2; all were upregulated at 6 months of sar-
gramostim treatment. Downregulation of HMOX1 by 2
months (–2.5-fold, p = 3.47 × 10−8) and 6 months (–3.1-
fold, p= 9.58× 10−12) of treatment supports an antioxidant
effect of sargramostim on therapeutic outcomes for PD. In

addition, downregulation of TLR2 and TLR8 by 2 months
(−1.77-fold, p = 0.0348; and −1.99-fold, p = 3.09 × 10−6,
respectively) and 6months (−1.66-fold, p= 1.06× 10−6; and
−2.598-fold, p= 1.66× 10−6, respectively) of treatment sup-
ports an anti-inflammatory neuroprotective signature for
sargramostim therapy in PD. Moreover, our data showed
significant downregulation of RELA and IKBKG by 2
months (−2.74-fold, p = 0.0147; and −1.89-fold, p = 0.0138,
respectively) of treatment, thus provided further support
for an anti-inflammatory mechanism of sargramostim.
A defective chaperone-mediated autophagy (CMA)

pathway underlies PD-associated neurotoxicity by com-
promising α-syn degradation. Thus, significant downregu-
lation of LRRK2 after 2months (−2.10-fold, p= 8.54× 10−6)
and 6 months (−1.71-fold, p = 9.38 × 10−4) of treatment
suggests an autophagy-inducing mechanism where sar-
gramostim provides protective outcomes in PD. Moreover,
several autophagy-related proteins such as ATG3, ATG7,
and GABARAPL2 regulate different autophagy signalling
pathways.38–40 Therefore, the significant upregulation of
ATG3, ATG7, and GABARAPL2 (1.55-fold, p = 0.0279;
1.68-fold, p = 0.0428; and 3.24-fold, p = 0.0096, respec-
tively) after 6 months of treatment indicates increased
autophagy-inducing functions by sargramostim providing
a protective outcome in PD patients. Based on these obser-
vations, we selected LRRK2, HMOX1, TLR2, TLR8, RELA,
ATG7, and GABARAPL2 for measurement by ddPCR and
Western blot analyses to assess the feasibility of using
these genes/proteins as reliable biomarkers for detect-
ing patient responses to sargramostim treatment with
beneficial outcomes.

3.6 The ddPCR and protein analyses of
potential PD biomarkers

Western blot and ddPCR analyses affirm the expression of
putative proteins and genes, respectively. These are shown
in Figure S3. The variability in therapeutic responses is
acknowledged between individual subjects. In attempts
to address this and the sample size limitation we com-
pared gene expression of a group of biomarkers during
study and adjusted to baseline measurements. The analy-
ses included LRRK2, HMOX1, TLR2, TLR8, RELA, ATG7,
and GABARAPL2 examined for baseline measures and
at 2 and 6 months after initiating sargramostim. At 2
months after initiation of therapy, gene expression was
decreased for LRRK2 and HMOX1 in all subjects and
decreased TLR2 and TLR8 was detected in 3 subjects
(Figure 3A). Four of five subjects demonstrated decreased
RELA gene expression, but was limited to 15% of base-
line. For ATG7 gene 4/5 of subjects showed upregula-
tion but at or below 17% of baseline measures in two
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TABLE 2 Changes in antioxidant, anti-inflammatory, and autophagy proteins after sargramostim treatment

Months after
treatment
initiation Canonical pathway Direction p value

Differentially expressed
proteins(Fold change, p value)

2 months Neuroinflammation signalling pathway Inhibition 1.43E-04 HMOX1 (−2.49, 3.47E-08)
TLR2 (−1.77, 3.48E-02)
TLR8 (−1.99, 3.09E-06)
IKBKG (−1.89, 1.38E-02)

IL-8 signalling pathway Inhibition 8.8E-04 IKBKG (−1.89, 1.38E-02)
HMOX1 (−2.49, 3.47E-08)

Production of nitric oxide and reactive oxygen species Inhibition 3.35E-02 IKBKG (−1.89, 1.38E-02)
TLR2 (−1.77, 3.48E-02)

Integrin-Linked Kinase (ILK) signalling pathway Inhibition 2.8E-02 RELA (−2.74, 1.47E-02)
6 months Sirtuin signalling pathway Activation 2.19E-11 ATG3 (1.55, 2.79E-02)

ATG7 (1.68, 4.28E-02)
GABARAPL2 (3.24, 9.57E-03)

Oxidative phosphorylation Inhibition 1.36E-06 ATP5F1D (−1.856, 1.06E-05)
ATP5PB (−1.638, 1.96E-06)
ATP5PF (−1.719, 6.24E-06)
ATP5PO (−1.573, 1.44E-04)
COX5B (−1.736, 7.79E-09)
COX7C (−1.839, 8.2E-07)
NDUFA2 (−1.902, 2.52E-05)
NDUFB1 (−1.561, 3.06E-02)
NDUFB4 (−1.994, 1.13E-03)
NDUFS2 (−1.87, 1.34E-04)
NDUFS3 (−1.835, 3.03E-07)
NDUFS6 (−29.314, 1.66E-03)
NDUFS7 (−1.535, 8.02E-06)
SDHA (−1.563, 1.71E-08)

subjects (2005 and 2006). Similarly, for GABARAPL2 gene
3/5 subjects showed upregulation but at or below 17% of
baseline measurements. At 6 months, gene expression was
decreased for HMOX1 and TLR2 in all patients, and for
LRRK2 and TLR8 by 3/5 and 4/5 of patients, respectively
(Figure 3B). RELA was downregulated by 2/5, but did not
exceed 5% of baseline. Similar to 2-month ddPCR results,
ATG7 and GABARAPL2 were found to be upregulated in
4/5 and 3/5 of tested subjects, but failed to exceed 6% of
baseline for GABARAPL2. Similarly, we compared pro-
tein expression of LRRK2, HMOX1, TLR2, TLR8, RELA,
ATG7, andGABARAPL2 at baseline, and at 2 and 6months
of sargramostim treatment. At 2 months, 4/5 of patients
exhibited decreased LRRK2 and HMOX1, while TLR2
was diminished in 3/5 of subjects (Figure 3C). In addi-
tion, 3/5 of subjects showed decreased protein expression
of TLR8 and RELA. Additionally, one subject displayed
increased expression of ATG7 and GABARAPL2 proteins.
At 6 months, 4/5 of subjects showed TLR2 downregu-
lation (Figure 3D). Notably, LRRK2, HMOX1, TLR8 and
RELA were reduced in most subjects. One subject dis-
played increased expression of ATG7, while GABARAPL2
was upregulated in 3/5 of subjects.

In addition, for all subjects we compared relation-
ships between gene and protein expression of LRRK2,
HMOX1, TLR2, TLR8, RELA, ATG7, and GABARAPL2
(Table 3 and Figure S4A,B). There was a significant
difference in gene expression of LRRK2, HMOX1, and
TLR2 (p = 0.0213, 0.0021, and 0.0452, respectively). The
gene expression of LRKK2 and HMOX1 decreased sig-
nificantly at 2 months of treatment (p = .0286 for both
genes). In addition, at 6 months the expression of HMOX1
decreased significantly (p = 0.0149), while the downreg-
ulation of TLR2 gene at the level of significance (p =

0.0525). At the protein level, there was significant differ-
ence in gene expression of LRRK2, HMOX1, and RELA
at different time points (p = 0.0345, 0.0007, and 0.0257,
respectively). The protein levels of HMOX1 and RELA sig-
nificantly decreased (p = 0.0059 and 0.0352, respectively)
after 2 and 6 months of treatment, respectively. While
at 6 months of treatment, the protein levels of LRRK2
and HMOX1 were decreased but not significantly (p =

0.0636 for both proteins). Together, these results support
the bioinformatic analyses that demonstrated antioxidant,
anti-inflammatory, and autophagy treatment effects in PD
monocytes.
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F IGURE 3 Gene and protein expression of potential biomarkers in monocytes at 2 and 6 months after sargramostim treatment. The
ddPCR assay was performed to determine the gene expression of LRRK2, HMOX1, TLR2, TLR8, RELA, ATG7, and GABARAPL2 at 2 (A) and 6
(B) months after starting the sargramostim treatment compared to baseline. Gene expression was normalized to HPRT1, and the ddPCR assay
was performed four times (n = 4 technical replicates). Western blot analysis was performed to determine the protein expression of β-actin,
LRRK2, HMOX1, TLR2, TLR8, RELA, ATG7, and GABARAPL2 at 2 (C) and 6 (D) months after starting the sargramostim treatment compared
to baseline. Protein expression was normalized to β-actin and densitometric quantification is shown. Western blot analysis was done thrice (n
= 3 technical replicates). Data represent mean ± SD. Horizontal line in each image represents baseline expression; values above the line
indicate upregulation, while values below the line indicate downregulation

TABLE 3 Differences in the mean values of gene/protein expression during sargramostim treatment

ddPCR
LRRK2 HMOX1 TLR2 TLR8 RELA ATG7 GABARAPL2

Kruskal–Wallis
test (p value)

0.0213 0.0021 0.0452 0.3009 .1644 .1655 .8528

Dunn’s multiple comparison test (adjusted p value)
2M versus baseline
6M versus baseline
6M versus 2M

.0286 0.0286 >.9999 >.9999 0.4495 .4495 >.9999

.2519 .0149 .0525 0.3395 >.9999 0.2155 >0.9999
>.9999 >.9999 .3915 .9402 0.2155 >0.9999 >.9999

Western blot
LRRK2 HMOX1 TLR2 TLR8 RELA ATG7 GABARAPL2

Kruskal-Wallis
test (p value)

0.0345 .0007 0.1796 0.8374 .0257 .1853 0.3515

Dunn’s multiple comparison test (adjusted p value)
2M versus baseline
6M versus baseline
6M versus 2M

0.1313 0.0059 0.2519 >.9999 >0.9999 .3146 >.9999
0.0636 0.0636 0.3915 >0.9999 .0352 0.3146 0.6627

>0.9999 >0.9999 >0.9999 >0.9999 .2155 >0.9999 0.5138
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TABLE 4 Correlation of UPDRS III scores and ddPCR relative expression

UPDRS,
Total

UPDRS,
Change LRRK2 HMOX1 TLR2 TLR8 RELA ATG7 GABARAPL2

UPDRS, Total r 1.0000 0.6867 0.3299 .1598 .3665 −0.0089 −0.1380 −0.5960 −0.0115
p 1.4E-09 0.0100 0.2226 0.0040 0.9462 0.2931 5.1E-07 0.9305

UPDRS, Change r 0.6867 1.0000 0.2469 0.3193 0.4388 0.0385 −0.1464 −0.5662 −0.0360
p 1.4E-09 0.0572 0.0129 .0005 0.7702 0.2643 2.4E-06 0.7847

LRRK2 r 0.3299 .2469 1.0000 0.4972 0.2741 0.4069 −0.0481 −0.5733 −.1201
p 0.0100 0.0572 0.0001 0.0341 0.0013 0.7152 1.7E-06 0.3608

HMOX1 r 0.1598 0.3193 0.4972 1.0000 0.2171 0.2956 0.0207 −0.2649 −0.1893
p 0.2226 0.0129 0.0001 0.0956 0.0218 0.8750 0.0408 0.1475

TLR2 r 0.3665 .4388 0.2741 0.2171 1.0000 0.4184 0.1560 −0.6452 −0.0876
p 0.0040 0.0005 0.0341 0.0956 0.0009 0.2340 2.6E-08 0.5057

TLR8 r −0.0089 0.0385 0.4069 0.2956 0.4184 1.0000 0.1341 −0.3704 0.1620
p 0.9462 0.7702 0.0013 0.0218 0.0009 0.3069 0.0036 0.2162

RELA r −0.1380 −0.1464 −0.0481 0.0207 0.1560 0.1341 1.0000 0.0132 0.2511
p 0.2931 0.2643 0.7152 0.8750 0.2340 0.3069 0.9204 0.0530

ATG7 r −0.5960 −0.5662 −0.5733 −0.2649 −0.6452 −0.3704 0.0132 1.0000 0.0417
p 5.1E-07 2.4E-06 1.7E-06 0.0408 2.6E-08 0.0036 0.9204 0.7519

GABARAPL2 r −0.0115 −0.0360 −0.1201 −0.1893 −0.0876 0.1620 0.2511 0.0417 1.0000
p 0.9305 0.7847 0.3608 0.1475 0.5057 0.2162 0.0530 0.7519

r, Pearson product moment correlation coefficient; p, p value.

3.7 Integrated scRNA-seq and
proteomic analysis during sargramostim
treatment

The overlapping expression of genes and proteins as
detected by scRNA-seq and proteomic analyses for subjects
2003, 2004, and 2005 (Additional files 3 and 12, respec-
tively) were identified and illustrated in Additional file 13.
Notably, most of the proteins identified in the proteomic
analysis (2,507 out of 2,560 genes) have been identified
in scRNA-seq analysis as well. Venn diagram depicts the
number of genes identified in each data set and the number
of overlapped genes in both data sets (Figure S5A). In addi-
tion, the unique genes in each data set were identified and
illustrated in Additional file 14. Pearson product-moment
correlation coefficient between scRNA-seq and proteomic
overlapping genes has been calculated (r = 0.3582, p =

8.9627 × 10−77), which showed significant moderate pos-
itive association between mRNA and protein expressions
(Figure S5B). This indicates that expression of multiple
genes was altered in the same direction, either down- or
up-regulated.

3.8 Western blot and ddPCR UPDRS III
score correlations

Our study significantly adds to the knowledge of gene-
protein therapeutic response signatures ofmonocytes from

PDpatients during treatmentwith sargramostim. Correlat-
ing the expression of potential gene or protein biomarkers
with UPDRS III scores would benefit in identifying the
capacity to assess disease progression and predict putative
therapeutic response for immunomodulatory drugs such
as sargramostim. Therefore, we performed correlation
analysis of UPDRS III scores or its change from base-
line with gene expression of selected biomarkers (Table 4),
including LRRK2 (r = 0.2469, p = 0.057), HMOX1 (r =
0.3193, p = 0.013) and TLR2 (r = 0.4388, p = 0.005)
(Figure 4A). Each demonstrated relationships between
decreased gene expression and improved motor function.
An indirect correlation was shown between the change in
UPDRS III scores and ATG7 expression (r = −0.5662, p =
2.4 × 10−6) (Figure 4A). Similarly, total UPDRS III scores
were directly correlated with expression of LRRK2 (r =
0.3299, p = 0.01) and TLR2 (r = 0.3665, p = 0.004), while
indirectly correlated with ATG7 (r = −0.5960, p = 5.1 ×
10−7) (Figure 4B).We next assessed the predictive potential
for those correlated pairs and changes in UPDRS III scores
from baseline and total UPDRS III scores by multiple
regression analysis (Tables 5 and 6, respectively). LRRK2
and HMOX1 showed significant effect on UPDRS III score
change (r = 0.3539, p = 0.0336) (Figure 4C) with HMOX1
having a stronger, though not significant effect (β= 0.2611,
p = 0.0747), whereby change in scores would increase by
4.1 points per fold increase in ddPCR HMOX1 expression
(Table 5). The effect of LRRK2 and TLR2 was signifi-
cant (r = 0.4581, p = 0.0012) (Figure 4C), however TLR2
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F IGURE 4 Prediction of UPDRS III score by gene expression of potential biomarkers. (A) Correlation between genetic expression of
LRRK2, HMOX1, TLR2, and ATG7 and change in UPDRS III score. (B) Correlation between genetic expression of LRRK2, TLR2, and ATG7
and raw UPDRS III score. (C) Multiple linear regression analysis of effect of genetic expression of LRRK2, HMOX1, TLR2, TLR8, and ATG7 on
change in UPDRS III score. (D) Multiple linear regression analysis of effect of genetic expression of LRRK2, HMOX1, TLR2, TLR8, and ATG7
on raw UPDRS III score. (A,B) r = Pearson product-moment correlation coefficient. (C,D) r = regression coefficient. p ≤ 0.05 was considered
significant

provided a greater effect (β = 0.4013, p = 0.0018) predict-
ing an increase of 5 points in change from baseline scores
per unit increase in TLR2 expression (Table 5). LRRK2 and
ATG7 showed strong potential to affect changes in UPDRS
III score (r = 0.5741, p = 1.12 × 10−5) (Figure 4C) while
ATG7 provided a greater effect (β = −0.6326, p = 1.3 ×
10−6) and would predict a lower UPDRS score from base-
line score by 4 points per fold increase in expression of
ATG7 (Table 4). The combined effect of TLR2 and TLR8
was significant (r = 0.4671, p = 0.0009) (Figure 4C) with
TLR2 showing a greater effect (β = 0.5124, p = 0.0002)
and increasing the change in baseline scores by 6.4 points
per unit increase in TLR2 gene expression (Table 5). The
combination of TLR2 and ATG7 expression was signifi-
cantly linked to the UPDRS III score change (r = 0.5743,
p = 1.1 × 10−5) (Figure 4C), with ATG7 having the greater
influence (β = −0.4850, p = 0.0012) providing 3.1 points
decrease in change in baseline score per unit increase in
ATG7 expression (Table 5). The combined effect of TLR8
and ATG7 correlated with the change in UPDRS score (r=
0.5955, p = 3.8 × 10−6) (Figure 4C) with ATG7 producing
a greater diminution effect (β = −0.6398, p = 6.8 × 10−7)
whereby a 1-fold increase in ATG7 expression decreased
UPDRS III score change by 4 points (Table 5). Interestingly,
the combined effects of all 7 variables showed a strong

correlation on score changes from baseline (r = 0.6904,
p = 1.0 × 10−5) that accounted for 48% the variation in
change from baseline (Table 5). The 3 variables producing
the strongest effects from baseline scores, HMOX1, TLR8,
and ATG7, were significantly correlation (r = 0.6354, p =
2.0× 10−6) and accounted for 40% of the score change from
baseline (Table 5). The strongest effect on change from
UPDRS baseline was provided by ATG7 (β = −0.5973, p
= 2.1 × 10−6) leading to a 3.8-point diminution per fold
increase in gene expression.
We also examined whether expression of the same set

of genes had effects on total UPDRS III scores (Table 6).
In combination, expression of all 7 genes accounted for
67% of the change in total UPDRS scores (r = 0.6692, p
= 3.6 × 10−5) from which expression of ATG7 yielded the
most significant of the 7 genes, predicting a diminution of
7.1 points in UPDRS III scores per fold increase in ATG7
expression (Table 6). Interestingly, 4 combinatorial pairs
of genes also demonstrated strong correlations. The cor-
relation of LRRK2 and TLR2 combination (r = 0.4374, p
= 0.0024) (Figure 4D) both predicted effects to increase
total UPDRS scores by 6.2 and 7.3 points, respectively per
fold increase in gene expressions (Table 6). Additionally,
a 1-fold increase in LRRK2 expression in combination with
HMOX1 orTLR8 (Figure 4D)was predicted to increase total
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TABLE 5 Multiple linear regression analysis for ddPCR test results on changes in MDS-UPDRS III scores

Model Predictors
Predictors r r2 adj r2 p Β b P
LRRK2 0.3351 0.1123 0.0811 0.0336 .1170 1.4967 0.4192
HMOX1 0.2611 4.0892 0.0747
LRRK2 0.4581 0.2099 0.1822 0.0012 0.1369 1.7505 0.2682
TLR2 0.4013 5.0326 0.0018
LRRK2 0.2560 0.0655 0.0328 0.1449 0.2771 3.5435 0.0529
TLR8 −0.0742 −0.6706 0.5984
LRRK2 0.5741 0.3296 .3061 1.1E-05 −0.1158 −1.4811 0.3853
ATG7 −0.6326 −4.0035 1.3E-05
TLR2 0.4670 0.2181 .1906 0.0009 0.5124 6.4261 0.0002
TLR8 −0.1759 −1.5889 0.1779
TLR2 0.5743 0.3299 0.3063 1.1E-05 0.1259 1.5786 0.3788
ATG7 −0.4850 −3.0693 .0012
TLR8 0.5955 0.3546 0.3320 3.8E-06 −0.1985 −1.7928 0.0886
ATG7 −0.6398 −4.0486 6.8E-07
LRRK2 0.6904 0.4767 0.4063 1.0E-05 −0.1575 −2.0139 0.2809
HMOX1 0.3212 5.0298 .0095
TLR2 0.2288 2.8699 0.1226
TLR8 −0.2830 −2.5557 0.0256
RELA −0.1867 −4.5497 0.0873
GABARAPL2 0.1408 4.2734 0.2106
ATG7 −0.5320 −3.3667 0.0015
HMOX1 0.6354 0.4037 .3718 2.0E-06 0.2357 3.6915 0.0360
TLR8 −0.2524 −2.2801 0.0307
ATG7 −0.5973 −3.7800 2.1E-06

r, regression coefficient; p, p value; β, standardized coefficient; b, non-standardized coefficient.

UPDRS scores by 8.3 and 9.9 points, respectively (Table 6).
Contrastingly, while the combination of LRRK2 and ATG7
expression strongly correlated with total UPDRS scores (r
= 0.5962, p = 3.7 × 10−6) (Figure 4D), ATG7 exerted a
stronger indirect effect on scores (β = −0.6060, p = 1.9 ×
10−5) than LRRK2 predicting a 7.5-point decrease in total
UPDRS scores per fold increase in expression of ATG7
(Table 6). ATG7 expression in combination with TLR2 also
predicted a strong influence on total UPDRS scores (r =
0.5965, p = 3.6 × 10−6) (Figure 4D) that would decrease
scores by 7.6 points per fold increase in ATG7 expression
(p = 4.4 × 10−5) (Table 6). The most notable diminutive
effect on total scores was afforded by expression of ATG7
in combination with TLR8 (r = 0.6453, p = 2.2 × 10−7)
(Figure 4D), which predicted a decrease of 8.5 points in
total UPDRS scores per fold increase in ATG7 expression
(Table 6). Notably, expression ofTLR2 in combinationwith
TLR8 (r= 0.4077, p= 0.0056) (Figure 4D), was determined
to have the largest effect on total UPDRS scores with the
prediction of adding 10.0 points per fold increase in TLR2
expression (Table 6).

Similarly, changes in UPDRS III scores from base-
line were correlated with protein expression of selected
biomarkers (Table 7). Positive correlations were shown
between change from baseline in UPDRS III scores and
protein levels of LRRK2 (r = 0.3534, p = 0.017) and RELA
(r = 0.4258, p = 0.004) (Figure 5A), suggesting that motor
function is improved with decreased expression of these
proteins. In addition, an indirect correlation was shown
between changes in UPDRS III score and protein level
of ATG7 but it did not reach a significant level (r =
−0.2440, p = 0.106). Similarly, positive correlations were
shown between total UPDRS III scores and protein levels
of LRRK2 (r = 0.2659, p = 0.077) and TLR2 (r = 0.3704, p
= 0.012), while a negative correlation was shown between
scores and protein levels of ATG7 (r = −0.3002, p = 0.045)
(Figure 5B). We next evaluated the predictive value of cor-
relations between Western blot test results (Table 7) and
changes from baseline of UPDRS III scores bymultiple lin-
ear regression analysis (Table 8). The ability of LRRK2 and
HMOX1 to predict a change in UPDRS III score trended
toward significance (p= 0.0602) (Figure 5C). In this model
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TABLE 6 Multiple linear regression analysis for ddPCR test results on raw MDS-UPDRS III scores

Model Predictors
Predictors r r2 adj r2 p β B p
LRRK2 .3300 0.1089 0.0776 0.0374 0.3327 8.2686 .0246
HMOX1 −.0056 −0.1711 0.9690
LRRK2 0.4374 0.1913 0.1629 0.0024 .2481 6.1659 0.0499
TLR2 .2985 7.2750 0.0192
LRRK2 0.3653 0.1334 0.1030 0.0169 0.3997 9.9341 0.0045
TLR8 −0.1716 −3.0113 0.2089
LRRK2 0.5962 0.3554 0.3328 3.7E-06 −0.0175 −0.4350 0.8932
ATG7 −0.6060 −7.4527 1.9E-05
TLR2 0.4077 0.1663 0.1370 0.0056 0.4488 10.9379 0.0014
TLR8 −0.1967 −3.4526 0.1451
TLR2 0.5965 0.3558 0.3332 3.6E-06 −0.0309 −0.7524 0.8252
ATG7 −0.6159 −7.5743 4.4E-05
TLR8 .6453 0.4164 0.3959 2.2E-07 −0.2662 −4.6725 0.0177
ATG7 −0.6946 −8.5420 3.5E-08
LRRK2 0.6692 0.4478 0.3734 3.6E-05 0.0727 1.8056 0.6266
HMOX1 0.0681 2.0720 0.5807
TLR2 0.1300 3.1682 0.3894
TLR8 −0.3305 −5.8013 0.0117
RELA −0.1378 −6.5237 0.2162
GABARAPL2 0.1338 7.8883 0.2465
ATG7 −0.5786 −7.1156 0.0009

r, regression coefficient; p, p value; β, standardized coefficient; b, non-standardized coefficient.

TABLE 7 Correlations between UPDRS III and Western blot test scores

UPDRS,
Total

UPDRS,
Change LRRK2 HMOX1 TLR2 TLR8 RELA ATG7 GABARAPL2

UPDRS, Total r 1.0000 0.6867 0.2659 0.1109 0.3704 −0.2513 0.1847 −0.3002 −0.1110
p 1.9E-07 0.0774 0.4682 0.0123 0.0958 0.2245 0.0451 0.4681

UPDRS, Change r 0.6867 1.0000 0.3534 0.0881 −0.0048 .1531 .4258 −0.2440 −0.1376
p 1.9E-07 0.0173 0.5648 0.9752 .3154 0.0035 0.1062 0.3672

LRRK2 r 0.2659 0.3534 1.0000 0.3008 0.2627 −0.1860 0.7456 0.0421 −0.1369
p 0.0774 0.0173 0.0446 0.0812 0.2213 4.2E-09 0.7835 0.3699

HMOX1 r 0.1109 0.0881 0.3008 1.0000 0.2787 −0.2744 .2109 0.2436 −0.2179
p 0.4682 0.5648 0.0446 0.0638 0.0681 0.1643 0.1069 0.1505

TLR2 r 0.3704 −0.0048 0.2627 0.2787 1.0000 −0.3750 −0.0541 −0.2868 0.1867
p 0.0123 0.9752 0.0812 0.0638 0.0111 0.7243 0.0561 0.2194

TLR8 r −0.2513 0.1531 −0.1860 −.2744 −0.3750 1.0000 0.0593 −0.3250 −0.1381
p 0.0958 0.3154 0.2213 0.0681 0.0111 0.6987 0.0294 0.3657

RELA r 0.1847 0.4258 0.7456 0.2109 −0.0541 0.0593 1.0000 −0.0438 −.4844
p 0.2245 0.0035 4.2E-09 .1643 .7243 .6987 0.7754 0.0007

ATG7 r −0.3002 −0.2440 0.0421 0.2436 −0.2868 −.3250 −0.0438 1.0000 0.2289
p 0.0451 0.1062 0.7835 0.1069 0.0561 0.0294 0.7754 0.1304

GABARAPL2 r −0.1110 −.1376 −0.1369 −0.2179 0.1867 −0.1381 −0.4844 0.2289 1.0000
p 0.4681 0.3672 .3699 0.1505 0.2194 0.3657 0.0007 0.1304

r, Pearson product moment correlation coefficient; p, p value.



ABDELMOATY et al. 15 of 22

F IGURE 5 Prediction of UPDRS III score by protein expression of potential biomarkers. (A) Correlation between protein expression of
LRRK2, RELA, and ATG7 and change in UPDRS III score. (B) Correlation between protein expression of LRRK2, TLR2, and ATG7 and raw
UPDRS III score. (C) Multiple linear regression analysis of effect of protein expression of LRRK2, HMOX1, RELA, and GABARAPL2 on
change in UPDRS III score. (D) Multiple linear regression analysis of effect of protein expression of TLR2, TLR8, and ATG7 on raw UPDRS III
score. (A,B) r = Pearson product-moment correlation coefficient. (C,D) r = regression coefficient. p ≤ 0.05 was considered significant

TABLE 8 Multiple linear regression analysis of Western blot tests and MDS-UPDRS III scores

Model Predictors
Predictors r r2 adj r2 p β b p
LRRK2 0.3539 0.1252 0.0836 0.0602 0.3594 4.2727 0.0222
HMOX1 −0.0200 −0.2093 .8956
LRRK2 .4292 0.1842 .1453 0.0139 0.0809 0.9614 0.7010
RELA 0.3655 3.2742 0.0879
RELA 0.4329 0.1874 0.1487 0.0128 0.4692 4.2032 0.0052
GABARAPL2 0.0896 0.6156 0.5761
TLR2 0.1633 0.0267 −0.0197 0.5670 0.0613 0.2707 0.7110
TLR8 0.1761 0.7438 0.2898
TLR8 0.2562 0.0656 0.0211 0.2403 0.0825 0.3485 0.6037
ATG7 −0.2172 −2.0416 0.1757
LRRK2 0.5359 0.2872 0.1523 0.0644 0.1298 1.5436 0.6175
HMOX1 0.1797 1.8818 0.3065
TLR2 −0.2060 −0.9101 0.3216
TLR8 0.0365 0.1540 0.8350
RELA 0.3724 3.3360 0.1825
ATG7 −0.3767 −3.5403 0.0601
GABARAPL2 0.2293 1.5758 0.2410
RELA .5007 0.2507 0.1958 0.0075 0.4919 4.4068 0.0029
ATG7 −0.2591 −2.4353 0.0701
GABARAPL2 0.1599 1.0988 0.3207
RELA 0.4819 0.2322 0.1956 0.0039 0.4159 3.7259 0.0037
ATG7 −0.2258 −2.1225 0.1026

r, regression coefficient; p, p value; β, standardized coefficient; b, non-standardized coefficient.
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TABLE 9 Multiple linear regression analysis of Western blot and MDS-UPDRS III tests scores

Model Predictors of the model
Predictors r r2 adj r2 p Β b p
LRRK2 .2679 0.0718 .0276 0.2093 0.2557 5.9073 0.1084
HMOX1 0.0340 0.6922 0.8284
LRRK2 0.2667 0.0711 .0269 .2123 0.2887 6.6706 0.2028
RELA −.0306 −0.5325 0.8916
RELA 0.1863 0.0347 −0.0112 0.4761 0.1711 2.9787 .3291
GABARAPL2 −.0281 −0.3750 .8720
TLR2 0.3898 0.1519 .1115 0.0314 0.3214 2.7592 .0421
TLR8 −0.1308 −1.0742 0.3982
TLR8 0.4757 0.2263 0.1894 0.0046 −0.3901 −3.2028 0.0095
ATG7 −0.4270 −7.7984 .0048
LRRK2 0.5335 0.2846 0.1492 0.0676 0.1136 2.6248 .6626
HMOX1 0.0198 0.4034 0.9097
TLR2 0.1285 1.1034 0.5354
TLR8 −0.3034 −2.4906 0.0898
RELA 0.0901 1.5677 0.7448
ATG7 −0.3606 −6.5853 0.0718
GABARAPL2 −0.0308 −0.4114 0.8739

r, regression coefficient; p, p value; β, standardized coefficient; b, non-standardized coefficient.

LRRK2 provided a stronger effect (β = 0.3594, p = 0.0222)
with each unit increase in Western blot intensity increas-
ing the change from baseline of UPDRS III scores by 4.3
points (Table 8). The effect of LRRK2 and RELA was sig-
nificant (p = 0.0139) (Figure 5C) with RELA providing a
stronger effect (β = 0.3655, p = 0.0879), although it did not
reach the level of significance. The model predicts that the
change from baseline of UPDRS III score will increase by
3.3 points/unit increase in NF-κB p65 Western blot inten-
sity (Table S7). RELAandGABARAPL2 showed significant
correlation with UPDRS III score (r = 0.4329, p = 0.0128)
(Figure 5C), and RELA provided a greater effect on the
change in UPDRS III score (β = 0.4692, p = 0.0052) pre-
dicting that total UPDRS III scores would increase by 4.2
points per unit increase in RELA intensity (Table 8). The
correlated pairs TLR2/TLR8 (r = −0.375, p = 0.0111) and
TLR8/ATG7 (r = −0.325, p = 0.0294) were assessed as
putative predictors of change in UPDRS scores from base-
line, however neither pair proved of predictive value (p =
0.537 and p = 0.2403, respectively). Assessing all 7 West-
ern blot intensities for an effect on change from baseline in
UPDRS scores showed moderate correlation that trended
to significance (r = 0.5359, p = 0.0644), yet none proved
to have a significant effect on changes in UPDRS scores.
However, assessing 3 of the strongest variables, RELA,
ATGg7, and GABARAPL2, showed significant correlation
(r= 0.5007, p= 0.0075) with change from baseline UPDRS
scores. The stronger effects in this model were exerted by
RELA (β = 0.4919, p = 0.0029) and ATG7 (β = −0.2591,

p = 0.0701), whereby one unit increase in Western blot
intensity for RELA or ATG7 would predict a 4.41 increase
or a 2.44 decrease in baseline change of UPDRS scores,
respectively. In a separate model, RELA and ATG7 corre-
lated with change in scores (r = 0.4819, p = 0.0039) with
RELA providing the stronger effect on change in UPDRS
scores (β= 0.4159, p= 0.0037), whereby change in UPDRS
scores would rise by 3.73 points per unit increase in RELA
Western blot intensity.
We next assessed effects of WB intensities on total

UPDRS III scores. In contrast to changes from baseline,
no significant correlations with total UPDRS scores and
LRRK2/HMOX1, LRRK2/RELA, and RELA/GABARAPL2
Western blot intensities (p = 0.2093, 0.2123, and 0.4761,
respectively) (Table 9). However, two pairs of predictors,
TLR2/TLR8 and TLR8/ATG7, showed significant effects
on total UPDRS scores (p = 0.0314 and p = 0.0046, respec-
tively) (Figure 5D). Western blot intensities for TLR2 and
TLR8 showed significant correlation with total UPDRS
scores (r = 0.3898, p = 0.0314), whereby TLR2 showed a
stronger significant effect (β = 0.3214, p = 0.0421) predict-
ing a 2.76-point increase per unit increase in TLR2 inten-
sity. TLR8 and ATG7 Western blot intensities correlated
with total scores (r= 0.4757, p= 0.0046). Interestingly, both
TLR8 and ATG7 expression were significant predictors for
effects on total scores (β = −0.3901, p = 0.0095; and β =
−0.4270, p = 0.0048, respectively). Moreover, assessment
of allWestern blot intensities as putative predictors yielded
a correlation that trended to significance (r = 0.5335,
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p = 0.0676), and indicated that with all other predictors
controlled, the strongest effect was exerted by ATG7 (β =
−0.3606, p = 0.0718), and yielded a predictive decrease in
total UPDRS score of 6.59 points per unit increase in ATG7
Western blot intensity.

4 DISCUSSION

Neurodegenerative disorders that include PD, AD, ALS,
Huntington’s disease, and prion diseases, are an increas-
ing global public health threat.41 Each is difficult to
diagnose or treat, and as such, an urgent need exists
to develop biomarkers that reflect both the underlying
pathophysiology and responses to therapy.42,43 These are
critically important for pre-clinical research as well as
designing clinical trials. To date, reliable tests of disease
progression include bioimaging with positron emission
tomography (PET), single photon emission computed
tomography (SPECT),magnetic resonance imaging (MRI),
transcranial sonography (TCS), and magnetoencephalog-
raphy (MEG).44 However, each of these measures have
limitations such as lack of specificity, high costs, time
needed, invasiveness, and lack of sensitivity to detect dis-
ease processes at the molecular level and the therapeutic
effects thereof.45 For PD and beyond bioimaging, stud-
ies exploring genetic and biochemical biomarkers have
proven helpful, but have so far failed to yield a set of
definitive disease biomarkers.46,47 The importance ofα-syn
in PD pathogenesis directs studies to focus on measure-
ments of total α-syn, oligomeric, and modified forms of
this protein in blood,47 cerebrospinal fluid (CSF),48 and
in neuron-specific extracellular vesicles.49 Studies have
also explored α-syn in various forms of PD within the
gut,50 submandibular glands,51 skin,52 and retina53 for
reflecting α-syn as a definitive PD biomarker. While blood
α-syn species, neurofilament light chain, and lysosomal
enzymes could supplement CSF findings, these have yet
to show accuracy for following disease progression, and
thus strongly supports the need for validation by other
measurements.42,54–56 Moreover, α-syn has neither been
consistent as a systemic biomarker for disease progression
nor for response to therapy. All make reliable diagnostic
and prognostic biomarkers of urgent need.
Monocytes are known to be involved in the recogni-

tion and phagocytosis of protein aggregates and debris
from degenerating neurons and other cells, or frommicro-
bial organisms and their components.57,58 In PD patho-
biology, monocytes produce inflammatory cytokines in
response to TLR and inflammasome stimulation by α-syn
or other pathogen- or damage-associated molecular pat-
terns (PAMPs and DAMPs),58 which, in turn, drive inflam-
matory responses. Monocyte-derived cells may also play

a role in the presentation of pathogenic α-syn and other
antigens to T lymphocytes59 mediated byHLA-DR.60 How-
ever, PD patient monocytes are typically unchanged in
number, thus pro-inflammatory cytokine elevations result
from changes of monocyte activation.3 Peripheral blood
monocytes in PD patients present impaired functions and
altered subpopulations.61 This implies a close link between
peripheral monocytes and PD pathology. Mounting evi-
dence confirms that peripheral inflammation triggers neu-
roinflammation and neurodegeneration.62 Therefore, both
peripheral monocytes and microglia have been suggested
to contribute to the inflammatory process in PD.63
Clinical and pathobiological diversity of PD presents

major challenges in development of relevant biomarkers to
monitor disease progression and disease-modifying ther-
apies. We have shown that GM-CSF (sargramostim) is
effective in restoring immune homeostasis and clinical
improvement in PD patients, and as GM-CSF preferen-
tially targets myeloid lineages,14 we utilized monocytes-
macrophages as a means to uncover therapeutic-related
biomarkers at the molecular level. Notably, GM-CSF not
only affects macrophage immunity, but also is known
to influence CNS function through altering microglia
immune responses.64,65 We posit that innate immunity via
monocytes, macrophages, and microglial are linked and,
in measure, orchestrate Teff and Treg cell responses. Both
innate and T cell-mediated immunity are affected dur-
ing sargramostim therapy, and as such, provide protection
against nigrostriatal degeneration in PD.13–16 Indeed in our
studies, translation to humans validatedGM-CSF activities
in two Phase 1 PD clinical trials, whereby sargramostim
treatment increased Treg numbers and function with
improved motor function and associated brain activity.13,14
For these reasons, we sought to characterize gene and
protein activities of monocytes isolated from PD patients
during immune modulatory therapy. The results showed
that monocyte immune profiling could reflect operative
processes in microglia, and is linked to a general adaptive
immune transformative response. The results have proven
to be predictive in clinical responses bymonitoringUPDRS
III scores during timed-disease progression.
Herein, the monocyte transcriptome and proteome

showed that sargramostim enriched different immune
processes, pointing an activation of monocytes as well
as a connection between innate and adaptive immune
responses. Our data are in agreement with a recent study
which showed enrichment of biological processes involved
in regulation of immune responses in the transcriptome
of human monocytes and microglia.46 Our findings are
also consistent with previous reports depicting the acti-
vation effect of GM-CSF on monocyte-macrophage cell
lineages.66 In parallel, proteomic data displayed enrich-
ment of different cellular transport and degradative and
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microbicidal pathways such as endoplasmic reticulum to
Golgi vesicle-mediated transport, protein targeting to lyso-
some, phagosome formation, and chemokine signalling.
In addition, the monocyte proteome displayed enriched
cellular components related to the aforementioned biolog-
ical processes, such as secretory vesicle, endocytic vesicle,
phagocytic vesicle, Golgi-associated vesicle, phagosome,
and lysosome. This supports the ability of monocytes,
after sargramostim treatments, to recognize danger sig-
nals (PAMPs and DAMPs), phagocytose, present antigens,
and secrete both cytokines and chemokines.58 The inter-
play between innate and adaptive immunity59 underscores
sargramostim-based enrichment of regulation of RNA pro-
cessing, splicing, and transport. All lead to the restoration
of cell-based homeostasis.
Interestingly, the sargramostim-affected monocytic pro-

teome was characterized by downregulation of both
inflammatory and oxidative stress factors such as IL-
8, ILK, TNF, nitric oxide, and oxidative phosphoryla-
tion. Similarly, mitochondrial functions through oxidative
phosphorylation67 also were enriched by treatment. IL-
8 is known to be an inflammatory factor involved in
cell infiltration across the blood-brain barrier (BBB)68
and is increased during idiopathic PD.69 In addition,
HMOX1 promoter contains response elements which
allow its induction by factors implicated in PD patho-
genesis. These include IL-1β, TNF-α, hydrogen peroxide,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like
xenobiotics, and heavy metals.70,71 Overproduction of car-
bon monoxide and free ferrous iron by HMOX1 supports
ROS production in mitochondrial and other intracellu-
lar compartments and induces cellular injury.72 Moreover,
prior studies suggest that modified and misfolded α-syn
serves as aDAMP ligand that activatesmyeloid phagocytes,
including microglia, monocyte-derived macrophages, and
dendritic cells; by pattern recognition receptors (PRRs)
such as TLR2, TLR4, and CD11b.73–76 Activation of TLRs
may also be induced by DAMP-related mediators of oxida-
tive stress such as those factors released by damaged or
dying neurons.77,78 The recognition of damage-associated
signals by PRRs plays a pivotal role, once again, in
the induction of oxidative stress and inflammation in
PD.79 Furthermore, NF-κB activation and inflammatory
signalling are chronically perturbed in disease.80 Acti-
vation of NF-κB leads to the transcription of several
pro-inflammatorymolecules such as IL-1β, inducible nitric
oxide synthase (iNOS), and TNF-α.81,82 Similarly, inhibitor
of NF-κB kinase subunit gamma (IKBKG); a subunit of
the IκB kinase complex which activates NF-κB, results in
activation of inflammatory genes.83 All serve to exacer-
bate dopaminergic neurons damage in PD.84 Therefore,
downregulation of HMOX1, TLR2, TLR8, IKBKG, and
RELA proteins, as well as inhibition of several different

inflammation and oxidative stress signalling pathways,
support anti-inflammatory, antioxidant, and consequently,
potential neuroprotective mechanisms in PD.
The pathobiology of PD involves cyclic phases of neu-

rodegeneration and failure of the proteasome-ubiquitin
system to clear excess α-syn.85 Mounting evidence sug-
gests that aggregation of α-syn in PD is a consequence of
impaired autophagic-lysosomal degradation.86,87 In turn,
α-syn impacts mitochondrial, lysosomal, and autophagic
functions.87,88 Subsequently, α-syn misfolds, and accumu-
lates in dopaminergic neurons preceding neuronal death.
Neuronal degeneration leads to release of α-syn, which is
oxidatively modified, misfolded, and oligomerized, then
serves to activate microglia.89 This shifts the brain’s
microenvironment and exacerbates neurodegeneration.76
Autophagy is an important cellular process working to
counter these effects. It helps in maintaining cellular
homeostasis as one of the major degradation pathways
playing a pivotal role in maintaining intracellular effective
protein and damaged organelle turnover.90 Importantly,
the sargramostim-affected monocytic proteome showed
enrichment of autophagy, by activated sirtuin signalling
pathway, as a possible mechanism for clearance of mis-
folded and aggregated proteins. Under cellular stress,
including nutrient depletion or starvation, sirtuin 1 activ-
ity is increased, autophagy proteins are deacetylated,
and subsequently, autophagy is induced.91 Autophagy
related proteins (ATGs), including ATG7 and ATG8,
directly interact with and are deacetylated by SIRT1.91
Additionally, ATG3 catalyses the formation of ATG8-
phosphatidylethanolamine (PE) conjugate which is essen-
tial for autophagy.40 Moreover, GABARAPs are required
for autophagosomal maturation and play an important
role in the degradation of autophagosomes.92 Our data
showed upregulation of autophagy proteins ATG3, ATG7,
and GABARAPL2, pointing to the restoration of nor-
mal autophagy following sargramostim treatment. On
the other hand, LRRK2 (PARK8), a PD-associated gene
whose mutations account for the majority of autosomal
dominant cases in PD, was found to be primarily local-
ized in membrane microdomains, multivesicular bodies,
and autophagic vesicles, and involved in different cellular
signalling pathways, including autophagy.93 Our find-
ings showed downregulation of LRRK2 in PD monocytes
after treatment, which are in accordance with a recent
study which showed increased gene expression of LRRK2
in PD monocytes compared to control monocytes and
microglia.46
Interestingly, Western blot analysis confirmed that

LRRK2, HMOX1, and TLR2 proteins were significantly
downregulated in 60%–80% of patients at 2 and 6
months of sargramostim treatment, thus verifying the
proteomic data. Additionally, Western blots validated
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downregulation of TLR8 and RELA proteins after 2
months in 60% (3/5) of patients with significant downreg-
ulation in 1/3 of patients for each protein, thus supporting
the proteomic results. Moreover, Western blot analysis
confirmed the downregulation of TLR8 protein after 6
months in 60% (3/5) of patients with significant downregu-
lation in 2/3 of patients (2004 and 2005), and a near signifi-
cant downregulation in the third patient (2006), which also
supported the proteomic results. Interestingly, Western
blot tests showed significant downregulation of RELA in
80% (4/5) of patients after 6months. Furthermore,Western
blot confirmed the upregulation of GABARAPL2 protein
in 60% (3/5) of patients after 6 months. One of the major
challenges of protein detection by Western blot is sensi-
tivity to detect low-abundance proteins in some samples.
This could explain in some monocyte samples the low
or normal expression of ATG7 and GABARAPL2 proteins
by Western blot, while detectable by mass spectrometry,
for instance, during sargramostim treatment compared to
baseline. Similarly, ddPCR results confirmed that LRRK2,
HMOX1, TLR2, TLR8 genes were significantly downreg-
ulated in 60%–100% of patients at 2 and 6 months of
sargramostim treatment, and supported both proteomic
and Western blot analyses. In addition, ddPCR validated
that RELA gene was significantly downregulated in 60%
of patients after 2 months, corroborating the relative pro-
tein levels as determined by proteomic and Western blot
results. RELA gene expression was not altered notably
after 6 months, thus supporting the proteomic results for
RELA protein. Interestingly, ddPCR confirmed that ATG7
gene expression was significantly upregulated in 80% of
patients after 6 months, supporting the proteomic data.
In accordance with 6 month-Western blot results, ddPCR
also confirmed upregulation of GABARAPL2 gene in 60%
of patients which supported the proteomic analysis.
We posit that the discrepancy between mRNA and

protein expression of some genes, at 2 or 6 months com-
pared to baseline, may be due to the fact that RNA and
protein represent different steps of the multi-stepped cel-
lular genetic information flow process, in which they
are dynamically produced and degraded.94 In this study,
monocytes were collected at baseline and at 2 and 6
months of treatment, thus, mRNA and protein expression
were static, not dynamic, which reflects the expression
level at the moment of sample collection. The spatial and
temporal variations of mRNAs, as well as the local avail-
ability of resources for protein synthesis, strongly affect
the relationship between protein levels and their coding
transcripts.95 Overall, our data suggests the potential for
using gene and/or protein expression levels of LRRK2,
HMOX1, TLR2, TLR8, RELA, ATG7, and GABARAPL2
to follow therapeutic response with sargramostim dur-
ing progression of PD. Therefore, these genes/proteins

may serve as potential biomarkers to predict therapeu-
tic response in PD patients treated with sargramostim or
similar immunomodulatory therapies. Significantly, our
data showed the predictive potential of LRRK2 gene and
protein expression for UPDRS III scores and changes in
scores. Similarly, HMOX1, TLR2, and ATG7 gene expres-
sion, as well as RELA, TLR2, andATG7 protein expression,
showed predictive potential for UPDRS III scores and
changes in scores, thus suggesting their utility as putative
biomarkers for sargramostim therapy. A limitation of the
current study is the small sample size employed which
may overestimate the veracity of the conclusions. Due
to the limited study participants, the recorded difference
in the gene/protein expression of the examined putative
biomarkers will require larger sample analysis in order to
confirm the results recorded in the current evaluation.
To our knowledge, this study is the first to address the

association between monocyte profiles and both clinical
motor function and disease progression during immune
modulatory therapy. We demonstrated that the monocyte
signature profile would present relevant biomarkers to
monitor the clinical improvement and disease progression
during anti-parkinsonism immune modulatory therapy
trials. Despite the small sample size of patients and lack
of placebo controls, the utilization of patients’ baseline
samples before starting the treatment allowed for before
and after treatment comparisons and temporal evalua-
tions. In addition, the nature of the study as an unblinded,
open-label phase 1 represents a limitation of this study
because it introduces a significant risk for bias. Addition-
ally, all enrolled study participants were male. However,
these limitations require further validation in a larger dou-
ble blinded placebo-controlled phase II trial that includes
both sexes.
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