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Abstract

Background

Pre-gestational diabetes mellitus (PGDM) has been known to be a risk factor for congenital

heart defects (CHDs) for decades. However, the associations between maternal PGDM and

gestational diabetes mellitus (GDM) and the risk of specific types of CHDs and congenital

anomalies (CAs) in other systems remain under debate. We aimed to investigate type-spe-

cific CAs in offspring of women with diabetes and to examine the extent to which types of

maternal diabetes are associated with increased risk of CAs in offspring.

Methods and findings

We searched PubMed and Embase from database inception to 15 October 2021 for popula-

tion-based studies reporting on type-specific CAs in offspring born to women with PGDM

(combined type 1 and 2) or GDM, with no limitation on language. Reviewers extracted data

for relevant outcomes and performed random effects meta-analyses, subgroup analyses,

and multivariable meta-regression. Risk of bias appraisal was performed using the

Cochrane Risk of Bias Tool. This study was registered in PROSPERO (CRD42021229217).

Primary outcomes were overall CAs and CHDs. Secondary outcomes were type-specific

CAs. Overall, 59 population-based studies published from 1990 to 2021 with 80,437,056

participants met the inclusion criteria. Of the participants, 2,407,862 (3.0%) women had

PGDM and 2,353,205 (2.9%) women had GDM. The meta-analyses showed increased

risks of overall CAs/CHDs in offspring born to women with PGDM (for overall CAs, relative

risk [RR] = 1.99, 95% CI 1.82 to 2.17, P < 0.001; for CHDs, RR = 3.46, 95% CI 2.77 to 4.32,

P < 0.001) or GDM (for overall CAs, RR = 1.18, 95% CI 1.13 to 1.23, P < 0.001; for CHDs,

RR = 1.50, 95% CI 1.38 to 1.64, P < 0.001). The results of the meta-regression analyses
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showed significant differences in RRs of CAs/CHDs in PGDM versus GDM (all P < 0.001).

Of the 23 CA categories, excluding CHD-related categories, in offspring, maternal PGDM

was associated with a significantly increased risk of CAs in 21 categories; the corresponding

RRs ranged from 1.57 (for hypospadias, 95% CI 1.22 to 2.02) to 18.18 (for holoprosence-

phaly, 95% CI 4.03 to 82.06). Maternal GDM was associated with a small but significant

increase in the risk of CAs in 9 categories; the corresponding RRs ranged from 1.14 (for

limb reduction, 95% CI 1.06 to 1.23) to 5.70 (for heterotaxia, 95% CI 1.09 to 29.92). The

main limitation of our analysis is that some high significant heterogeneity still persisted in

both subgroup and sensitivity analyses.

Conclusions

In this study, we observed an increased rate of CAs in offspring of women with diabetes and

noted the differences for PGDM versus GDM. The RRs of overall CAs and CHDs in off-

spring of women with PGDM were higher than those in offspring of women with GDM.

Screening for diabetes in pregnant women may enable better glycemic control, and may

enable identification of offspring at risk for CAs.

Author summary

Why was this study done?

• It is controversial whether maternal pre-gestational or gestational diabetes affects spe-

cific types of congenital heart defects (CHDs) and congenital anomalies (CAs) in other

systems.

• Comprehensive estimates of the risks of specific CAs for offspring of women with

maternal diabetes are needed to counsel patients and for public health purposes.

What did the researchers do and find?

• To the best of our knowledge, this is the first comprehensive systematic review and

meta-analysis of population-based studies of over 80 million participants that demon-

strates an increased risk of type-specific CAs, especially CHDs, in offspring born to

women with pre-gestational or gestational diabetes.

• Our study shows that maternal pre-gestational diabetes is associated with a significant

increase in the risk of 38 out of 45 categories of CAs in offspring, while maternal gesta-

tional diabetes is associated with a small but significant increase in the risk of 16 out of

the 45 categories.

• The corresponding relative risks (RRs) of overall CAs/CHDs in offspring of women

with pre-gestational diabetes are higher than those in offspring of women with gesta-

tional diabetes, with no overlap in the 95% CIs.
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What do these findings mean?

• In this study, we observed that there is an increased rate of CAs in offspring of women

with maternal diabetes and noted the differences between pre-gestational and gesta-

tional diabetes.

• Considering the substantial rise in the prevalence of maternal diabetes over recent

decades, the expectation that this prevalence will continue to increase, the number of

pregnancies worldwide, and the significant individual and global burdens associated

with CAs, it is crucial that healthcare providers are aware of this association and can

identify women and offspring who are at risk.

Introduction

Currently, the global prevalence of diabetes is increasing among women of reproductive age

[1,2]. A diabetic intrauterine environment can cause placental dysfunction and hormone alter-

ations, which could lead to various congenital anomalies (CAs) in offspring of women with

diabetes [1]. Notably, pre-gestational diabetes mellitus (PGDM, which includes type 1 and 2

diabetes) has been known to be a risk factor for congenital heart defects (CHDs) for decades

[3]. However, there is controversy among current research regarding the association between

maternal PGDM and the risk of specific types of CHDs and other CAs of the nervous, diges-

tive, genitourinary, and musculoskeletal systems [4–7]. Further studies are thus needed for

clarification of this risk.

Gestational diabetes mellitus (GDM), which is defined as any degree of glucose intolerance

with onset or first recognition during pregnancy, is one of the most common complications of

pregnancy and affects up to 9%–26% of the obstetric population [8,9]. Similar to PGDM,

GDM also has a considerable impact on the health outcomes of the mother and infant during

pregnancy, delivery, and beyond. Recently, an increasing number of studies have concentrated

on evaluating the risks of specific types of CAs in offspring born to women with GDM [4,5,10–

12]. The early period of organogenesis, which occurs during the third to eighth week of gesta-

tion, is an important time for organ development. However, hyperglycemia associated with

GDM occurs after this critical early window for organogenesis. Therefore, the question as to

whether there is an association between GDM and the risk of specific types of CAs in offspring

remains.

Previous meta-analyses have mainly focused on the associations between maternal diabetes

and CHDs in offspring, and little is known about the influence of maternal diabetes on other

specific types of CAs [13,14]. Additionally, new data from population-based studies of more

than 36 million births have provided solid estimates of the risk of CHDs in offspring of

women with diabetes [4,10–12]. This considerable amount of data could also be used to

explore the association between maternal diabetes and other types of CAs. Currently, a quanti-

tative summary of population-based studies on the associations between maternal diabetes

(pre-gestational or gestational) and type-specific CAs in offspring is lacking. Comprehensive

estimates of the risk of specific CAs associated with maternal diabetes are needed to counsel

patients and for public health purposes. Moreover, it is essential that estimates are provided

according to different types of maternal diabetes, given the diversity in etiology, treatment,

and prognosis.
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We performed a detailed systematic review and large-scale meta-analysis to summarize and

quantify the existing population-based data on type-specific CAs in offspring of women with

diabetes. Furthermore, we examined the extent to which specific types of maternal diabetes

(i.e., pre-gestational or gestational) are associated with increased risk of CAs in offspring.

Methods

We performed a literature search in accordance with the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) [15] and Meta-analysis Of Observational Stud-

ies in Epidemiology (MOOSE) guidelines [16] (see S1 Text). Before study selection, the

protocol for this review was registered in PROSPERO, registration number CRD42021229217

(S1 Protocol).

Search strategy and inclusion criteria

We searched PubMed and Embase from database inception to 15 October 2021. The search

strategy combined Medical Subject Headings (MeSH) and Embase subject heading (Emtree)

terms with other unindexed or free text terms, with no limitation on language. Details of the

full search strategy are provided in S1 Text. Reference lists of retrieved articles and previous

systematic and narrative reviews were searched manually to retrieve all relevant documents.

Duplicate citations were removed.

Population-based cross-sectional, case–control, and cohort studies that reported original data

were eligible for inclusion if they (1) reported any CAs in offspring born to women with diabetes

(i.e., pre-gestational [combined type 1 and 2] or gestational diabetes), (2) had a comparison

group that included mothers without diabetes, and (3) provided sufficient data from which a risk

estimate could be calculated if a risk estimate was not reported. All conference abstracts, guide-

lines, case reports, case series, commentaries, letters, and animal studies were excluded.

Two independent authors (S-YG and T-NZ) reviewed the titles and abstracts to identify

any relevant studies. The full texts of potentially eligible studies that appeared to meet the

inclusion criteria were then obtained and independently evaluated by the 2 reviewers. Any dis-

agreement was settled by consensus among all authors. If multiple studies were derived from

the same dataset and reported the same associated outcome, the study with the most complete

findings or the greatest number of participants was included for analysis. The literature review

and study selection process referenced the PRISMA flowchart (Fig 1). When information

needed for inclusion in the analyses was missing, the Library of Shengjing Hospital of China

Medical University helped us get full access of the relevant data.

Data extraction

A standardized, pre-designed spreadsheet was used for extracting data from the included studies.

Study quality and synthesis of evidence were assessed. The following data were recorded in the

spreadsheet: first author, publication year, geographic location, study period, study design, data

source, type of diabetes, sample size, types of birth, ascertainment of exposure, definition of out-

come, outcome risk estimates and 95% confidence intervals (CIs), and adjusted confounders.

Primary outcomes were the rates of overall CAs and type-specific CHDs (heterotaxia, cono-

truncal defects, atrioventricular septal defect, anomalous pulmonary venous return, left ven-

tricular outflow tract defect, right ventricular outflow tract defect, septal defects, and single

ventricle). Secondary outcomes were the rates of other type-specific CAs (involving the ner-

vous system; eye, ear, face, and neck; orofacial clefts; digestive system; abdominal wall; genito-

urinary system; and musculoskeletal system). S1 Table shows the definitions of these

outcomes.
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Two authors (T-NZ and S-YG) independently performed data extraction according to the

Cochrane Handbook guidelines [17]. Findings were reported according to PRISMA [15] and

MOOSE guidance [16]. Any disagreement was settled by consensus among all authors. For

studies that did not report any adjusted effect sizes, the crude risk estimate was used. If an

included study reported several risk estimates, we extracted the fully adjusted effect sizes. For

Fig 1. Flowchart of selection of studies included in the meta-analysis.

https://doi.org/10.1371/journal.pmed.1003900.g001
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studies that reported the risk estimates of CAs stratified by isolated and multiple statuses, we

used the effect sizes of the isolated CAs. Because odds ratios, prevalence rate ratios, and hazard

ratios are excellent approximations of risk ratios in the case of rare outcomes [18], all risk esti-

mates are referred to and reported as relative risks (RRs) for simplicity. If an included study

lacked required data, we asked for help from the Library of Shengjing Hospital of China Medi-

cal University to get the missing information.

Risk of bias and study quality

The risk of bias assessment was conducted by T-NZ and S-YG using the Risk of Bias in Non-

randomized Studies–of Interventions (ROBINS-I) tool [19]. This tool comprises 7 domains:

bias due to confounding, bias in the selection of participants, bias in the classification of inter-

ventions, bias due to deviations from intended interventions, bias due to missing data, bias in

measurement of outcomes, and bias in the selection of the reported result. We rated the possi-

ble risk of bias in each of the 7 domains as low risk, moderate risk, serious risk, critical risk, or

no information for each available outcome of each included study.

Statistical analysis

For studies that reported effect sizes separately, the results were pooled using a fixed effects model

to obtain an overall estimate and then included in the pooled effect size in the meta-analysis. The

effective count method proposed by Hamling et al. [20] was used to recalculate the effect sizes. If

a selected study did not include an effect size, the unadjusted risk estimate and 95% CI were cal-

culated from the raw data for simplicity using EpiCalc 2000 (https://en.freedownloadmanager.

org/Windows-PC/EpiCalc-2000-FREE.html). Estimates were pooled using the DerSimonian and

Laird random effects model to calculate summarized RRs and 95% CIs [21], in which I2 values

were calculated as indicators of heterogeneity. I2 values of�25%, 26%–50%, 51%–74%, and

�75% were considered to indicate no, low, moderate, and high heterogeneity between the

included studies, respectively [22]. For the primary outcomes of the study, subgroup analyses

were undertaken to explore causes of heterogeneity: by region (Europe, North/South America, or

Asia-Pacific), year of enrollment (categorized using the median as the cutoff value: before 1997 or

in or after 1997), number of participants (categorized using the median as the cutoff value:

<282,260 or�282,260), and adjustment for confounders (i.e., maternal age, race/ethnicity, body

mass index, education, smoking/alcohol consumption, parity, and pregnancy complications).

Heterogeneity between subgroups was evaluated by meta-regression analysis if data were

reported in more than 10 studies, following to the Cochrane guidelines [23]. Meta-regression

analyses were also used to examine the extent to which the types of maternal diabetes (i.e., pre-

gestational or gestational) are associated with increased risk of overall CAs/CHDs in offspring.

Publication bias was examined by inspecting funnel plots for the outcomes and was further evalu-

ated with Begg’s test [24] and Egger’s test [25] if sufficient studies existed (n� 10) [17]. A sensi-

tivity analysis was undertaken to explore the association of each study with the overall pooled

estimate. Statistical analyses were conducted using Stata version 13.0 (StataCorp, College Station,

Texas). A 2-tailed P value less than 0.05 was considered statistically significant.

Results

Search results and study characteristics

We identified 24,989 potentially eligible articles in PubMed and Embase through the search

strategy plus 1 additional article through hand searching. Of these, 2,331 records were dupli-

cates (Fig 1). In total, 103 articles qualified for full-text review based on title and abstract
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screening. Of these, an additional 44 articles were excluded for the following reasons: 3 studies

enrolled mothers with any type of diabetes and did not distinguish pre-gestational and gesta-

tional diabetes, 1 study did not have a comparison group that included mothers without diabe-

tes, 4 studies were derived from the same dataset and reported the same associated outcome as

another included study, 3 studies enrolled mothers with CAs, 6 studies included data that

could not be extracted or calculated, and 27 studies were not population-based (S2 Table).

Finally, 59 population-based studies (published from 1990 to 2021) that met all eligibility crite-

ria contributed to the quantitative synthesis and included a total of 80,437,056 participants

(range of participants per study: 155 to 29,211,974) for analysis. Of these, 2,407,862 (3.0%)

women had PGDM and 2,353,205 (2.9%) women had GDM; 879,156 cases of overall CAs and

350,051 cases of CHDs were observed. S3 Table gives the method of ascertainment of maternal

diabetes of the included studies. Of the 59 studies included, there were 27 studies from the

European region (United Kingdom [26–30], Finland [31,32], Sweden [10,33–37], Denmark

[10,28,35,38,39], Norway [6,28,40,41], Hungary [7,42–45], Germany [28,46], Netherlands [28],

Belgium [28], Wales [28,30], Ireland [28,30], Switzerland [28], France [28,47], Italy [28,48,49],

Spain [28], Portugal [28], and Malta [28]), 25 studies from North/South America (United

States [4,5,11,12,14,50–57], Canada [50,58–68], and Brazil [69]), and 7 studies from the Asian-

Pacific region (China [70–72], Russia [73], Australia [74], and Qatar [75,76]). Table 1 summa-

rizes the characteristics of the included studies, and a more detailed breakdown can be found

in S4 Table.

Bias assessment

We assessed the risk of bias for 34 of 59 included studies using ROBINS-I. The assessments are

summarized for primary outcomes in Figs A–D in S1 Fig. None of the included studies were

Table 1. Summary characteristics of included studies.

Characteristic Number of studies (number of participants)

Eligible studies 59 (80,437,056)

Region

Europe 27 (19,297,559)

North/South America 25 (52,645,605)

Asia-Pacific 7 (8,493,892)

Year of enrollment

Before 1997 27 (14,896,852)

In or after 1997 32 (65,540,204)

Type of maternal diabetes

Pre-gestational diabetes 46� (2,407,862)

Type 1 diabetes 11 (285,859)

Type 2 diabetes 7 (294,525)

Gestational diabetes 37 (2,353,205)

Primary outcomes

Overall CAs 24 (879,156)

CHDs 23 (350,051)

The median (range) number of participants per study was 282,260 (155 to 29,211,974). Studies included 45 type-

specific CAs. CA, congenital anomaly; CHD, congenital heart defect.

�Of 46 studies, 28 studies also reported results on gestational diabetes

7 studies also reported results on type 1 and type 2 diabetes.

https://doi.org/10.1371/journal.pmed.1003900.t001
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rated with a low risk of bias in all domains. The main causes of serious or critical bias risk

according to ROBINS-I were weaknesses in the confounding bias domain, selection of partici-

pant bias domain, and missing data bias domain.

Exposure to PGDM/GDM and overall CAs in offspring

We first explored whether there was an association between maternal diabetes and overall CAs

(not including CHDs) in offspring. Nineteen studies investigated the relationship between mater-

nal PGDM and overall CAs in offspring [4,11,12,27,29,38,44,46,49,56,58,61–63,65,67,70,74,76],

and 15 studies investigated the relationship between maternal GDM and overall CAs in offspring

[4,11,12,33,39,44,48,56,58,61,62,65,67,69,76]. Our results suggested that maternal PGDM was

associated with overall CAs in offspring (RR = 1.99, 95% CI 1.82 to 2.17, I2 = 90.0%, P< 0.001;

Fig 2), with no evidence of publication bias (Begg’s P = 0.88, Egger’s P = 0.30; Fig E in S1 Fig). A

similar association was observed for overall CAs in offspring of women with type 1 diabetes

Fig 2. Forest plot of the RRs in population-based studies formaternal pre-gestational diabetes and the risk of overall congenital anomalies (RR = 1.99,

95% CI 1.82 to 2.17, I2 = 90.0%, P< 0.001). Analytical weights are from random effects meta-analysis. Grey boxes represent study estimates; their size is

proportional to the respective analytical weight. Lines through the boxes represent the 95% CIs around the study estimates. The diamond represents the mean

estimate and its 95% CI. The vertical red dashed line indicates the mean estimate. CI, confidence interval; DL, DerSimonian and Laird random effects model;

RR, relative risk.

https://doi.org/10.1371/journal.pmed.1003900.g002
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(RR = 2.03, 95% CI 1.66 to 2.48, I2 = 82.5%, P< 0.001; Fig K1 in S1 Fig) and in offspring of

women with GDM (RR = 1.18, 95% CI 1.13 to 1.23, I2 = 76.0%, P< 0.001; Fig 3), with no evi-

dence of publication bias (Begg’s P = 0.39, Egger’s P = 0.32; Fig F in S1 Fig). However, there was

no statistically significant association of the risk of overall CAs in offspring of women with type 2

diabetes (RR = 1.31, 95% CI 0.80 to 2.15, I2 = 98.2%, P< 0.001; Fig L1 in S1 Fig).

Exposure to PGDM and CHDs in offspring

A total of 18 studies reported on the association between maternal PGDM and CHDs in off-

spring [4,6,10–12,28–30,38,44,47,49,52,54,56,63,68,74]. Our results suggested that there is a

statistically significant increase in risk of CHDs in offspring of women with PGDM

(RR = 3.46, 95% CI 2.77 to 4.32, I2 = 98.2%, P< 0.001; Fig 4), with no evidence of publication

bias (Begg’s P = 0.60, Egger’s P = 0.85; Fig E in S1 Fig). Similarly, maternal type 1 and type 2

diabetes were associated with increased risk of CHDs in offspring (type 1: RR = 3.75, 95% CI

Fig 3. Forest plot of the RRs in population-based studies formaternal gestational diabetes and the risk of overall congenital anomalies (RR = 1.18, 95%

CI 1.13 to 1.23, I2 = 76.0%, P< 0.001). Analytical weights are from random effects meta-analysis. Grey boxes represent study estimates; their size is

proportional to the respective analytical weight. Lines through the boxes represent the 95% CIs around the study estimates. The diamond represents the mean

estimate and its 95% CI. The vertical red dashed line indicates the mean estimate. CI, confidence interval; DL, DerSimonian and Laird random effects model;

RR, relative risk.

https://doi.org/10.1371/journal.pmed.1003900.g003
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1.86 to 7.57, I2 = 99.1%, P< 0.001; Fig K2 in S1 Fig; type 2: RR = 3.15, 95% CI 1.72 to 5.78, I2 =

93.6%, P< 0.001; Fig J2 in S1 Fig). Notably, we found that maternal PGDM was associated

with increased risk of all specific types of CHDs available for examination in the present study.

The RRs of specific types of CHDs ranged from 2.23 (for hypoplastic left heart, 95% CI 1.07 to

4.64, I2 = 64.0%, P = 0.040) to 12.16 (for truncus arteriosus, 95% CI 7.52 to 19.68, I2 = 0%, P =
0.866) (Table 2; Figs G1–G18 in S1 Fig).

Exposure to GDM and CHDs in offspring

Eleven studies explored the relationship between GDM and CHDs in offspring

[4,6,11,12,38,44,47,51,52,56,72]. Our results suggested that maternal GDM is associated with

CHDs (RR = 1.50, 95% CI 1.38 to 1.64, I2 = 81.2%, P< 0.001; Fig 5), with no evidence of publi-

cation bias (Begg’s P = 0.837, Egger’s P = 0.885; Fig F in S1 Fig). Regarding specific types of

CHDs, we found that offspring of women with GDM had an increased risk of heterotaxia

Fig 4. Forest plot of the RRs in population-based studies formaternal pre-gestational diabetes and the risk of congenital heart defects (RR = 3.46, 95% CI

2.77 to 4.32, I2 = 98.2%, P< 0.001). Analytical weights are from random effects meta-analysis. Grey boxes represent study estimates; their size is proportional

to the respective analytical weight. Lines through the boxes represent the 95% CIs around the study estimates. The diamond represents the mean estimate and

its 95% CI. The vertical red dashed line indicates the mean estimate. CI, confidence interval; DL, DerSimonian and Laird random effects model; RR, relative

risk.

https://doi.org/10.1371/journal.pmed.1003900.g004
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(RR = 5.70, 95% CI 1.09 to 29.92, I2 = 85.7%, P = 0.008), tetralogy of Fallot (RR = 1.41, 95% CI

1.20 to 1.66, I2 = 0%, P = 0.600), left ventricular outflow tract defect (RR = 1.67, 95% CI 1.15 to

2.41, I2 = 50.0%, P = 0.112), coarctation of aorta (RR = 1.50, 95% CI 1.23 to 1.83, I2 = 35.4%,

P = 0.213), right ventricular outflow tract defect (RR = 1.25, 95% CI 1.03 to 1.53, I2 = 0%,

P = 0.739), ventricular septal defect (RR = 1.31, 95% CI 1.24 to 1.38, I2 = 0%, P = 0.960), and

atrial septal defect (RR = 1.45, 95% CI 1.40 to 1.50, I2 = 0%, P = 0.426) (Table 2; Figs I1–I15 in

S1 Fig).

Exposure to PGDM and other type-specific CAs in offspring

We examined the associations between maternal PGDM and other type-specific CAs in off-

spring. Our results suggested that offspring of women with PGDM had an increased risk of

CAs of the nervous system (RR = 2.54, 95% CI 1.73 to 3.73, I2 = 94.8%, P< 0.001); eye, ear,

face, and neck (RR = 3.14, 95% CI 2.90 to 3.39, I2 = 0%, P = 0.444); digestive system

(RR = 2.02, 95% CI 1.24 to 3.28, I2 = 92.3%, P< 0.001); genitourinary system (RR = 1.73, 95%

CI 1.35 to 2.21, I2 = 89.2%, P< 0.001); and musculoskeletal system (RR = 1.98, 95% CI 1.45 to

2.72, I2 = 94.4%, P< 0.001), as well as an increased risk of multiple CAs (RR = 3.06, 95% CI

2.36 to 3.96, I2 = 39.6%, P = 0.158). The associations were statistically significant in 14 of 16

type-specific CA categories. The corresponding RRs ranged from 1.57 (for hypospadias, 95%

CI 1.22 to 2.02, I2 = 74.1%, P< 0.001) to 18.18 (for holoprosencephaly, 95% CI 4.03 to 82.06,

I2 = 66.3%, P = 0.085) (Table 3; Figs H1–H25 in S1 Fig).

Table 2. Pooled RR and 95% confidence intervals for associations between maternal diabetes and any type of congenital heart defects .

Outcome Number of

events

Pre-gestational diabetes Gestational diabetes

Number of

studies

Pooled RR (95%

CI)

I2 (%) P value Number of

studies

Pooled RR (95%

CI)

I2 (%) P value

Heterotaxia 1,098 4 8.78 (6.66 to 11.56) 0.0 0.423 2 5.70 (1.09 to 29.92) 85.7 0.008

Conotruncal defects 5,495 4 3.76 (2.58 to 5.48) 68.3 0.024 —

Truncus arteriosus 435 3 12.16 (7.52 to

19.68)

0.0 0.866 2 1.77 (0.80 to 3.92) 40.2 0.196

Transposition of great

vessels

6,700 9 3.25 (2.54 to 4.15) 15.9 0.301 2 1.29 (0.99 to 1.67) 61.2 0.109

Tetralogy of Fallot 5,360 6 3.46 (2.27 to 5.28) 64.4 0.015 2 1.41 (1.20 to 1.66) 0.0 0.600

APVR 1,239 4 3.47 (2.13 to 5.64) 0.0 0.684 2 1.42 (0.79 to 2.56) 53.3 0.117

LVOT defects 6,672 7 3.46 (2.59 to 4.62) 37.8 0.140 4 1.67 (1.15 to 2.41) 50.0 0.112

Coarctation of aorta 6,606 5 3.35 (2.25 to 4.99) 61.4 0.035 2 1.50 (1.23 to 1.83) 35.4 0.213

Hypoplastic left heart 2,319 4 2.23 (1.07 to 4.64) 64.0 0.040 2 1.23 (0.54 to 2.82) 81.7 0.019

RVOT defects 6,163 7 3.41 (2.65 to 4.38) 20.9 0.270 3 1.25 (1.03 to 1.53) 0.0 0.739

Pulmonary artery

anomalies

17,215 3 2.81 (2.48 to 3.18) 0.0 0.865 2 1.02 (0.36 to 2.87) 71.6 0.060

Pulmonary valve stenosis 7,273 5 2.51 (1.51 to 4.17) 76.2 0.002 2 1.30 (0.96 to 1.76) 64.5 0.093

Septal defects 12,368 2 3.23 (2.20 to 4.74) 86.2 0.007 —

AVSD 5,126 6 3.94 (2.95 to 5.26) 40.0 0.139 3 1.02 (0.83 to 1.24) 0.0 0.751

VSD 64,844 10 3.10 (2.32 to 4.16) 90.2 <0.001 2 1.31 (1.24 to 1.38) 0.0 0.960

ASD 91,683 7 3.12 (2.42 to 4.02) 81.9 <0.001 2 1.45 (1.40 to 1.50) 0.0 0.426

VSD + ASD 1,089 2 6.36 (4.38 to 9.24) 0.0 0.527 —

Single ventricle 1,228 4 5.91 (2.43 to 14.38) 80.2 0.002 2 1.14 (0.77 to 1.69) 0.0 0.851

APVR, anomalous pulmonary venous return; ASD, atrial septal defect; AVSD, atrioventricular septal defect; CHD, congenital heart defect; CI, confidence interval;

LVOT, left ventricular outflow tract; RR, relative risk; RVOT, right ventricular outflow tract; VSD, ventricular septal defect.

https://doi.org/10.1371/journal.pmed.1003900.t002
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Exposure to GDM and other type-specific CAs in offspring

Maternal GDM was associated with an increased risk of CAs of the eye, ear, face, and neck

(RR = 1.15, 95% CI 1.09 to 1.22, I2 = 0%, P = 0.355) and musculoskeletal system (RR = 1.18,

95% CI 1.15 to 1.22, I2 = 0%, P = 0.424) in offspring. In addition, maternal GDM also contrib-

uted to an increased risk of specific types of CAs in offspring, including hydrocephaly

(RR = 1.34, 95% CI 1.16 to 1.54, I2 = 0%, P = 0.960), holoprosencephaly (RR = 1.87, 95% CI

1.09 to 3.22, I2 = 0%, P = 0.558), cleft lip with or without cleft palate (RR = 1.26, 95% CI 1.19 to

1.34, I2 = 0%, P = 0.547), diaphragmatic hernia (RR = 1.21, 95% CI 1.08 to 1.37, I2 = 0%,

P = 0.779), omphalocele (RR = 1.21, 95% CI 1.05 to 1.40, I2 = 0%, P = 0.743), and hypospadias

(RR = 1.29, 95% CI 1.16 to 1.44, I2 = 45.9%, P = 0.100) (Table 3; Figs J1–J22 in S1 Fig).

Subgroup, meta-regression, and sensitivity analyses

The sensitivity analysis evaluated the effect of omitting 1 study at a time from each analysis. In

the sensitivity analysis, we observed that the high I2 value of 81.2% shown in the results for

Fig 5. Forest plot of the RRs in population-based studies formaternal gestational diabetes and the risk of congenital heart defects (RR = 1.50, 95% CI

1.38 to 1.64, I2 = 81.2%, P< 0.001). Analytical weights are from random effects meta-analysis. Grey boxes represent study estimates; their size is proportional

to the respective analytical weight. Lines through the boxes represent the 95% CIs around the study estimates. The diamond represents the mean estimate and

its 95% CI. The vertical red dashed line indicates the mean estimate. CI, confidence interval; DL, DerSimonian and Laird random effects model; RR, relative

risk.

https://doi.org/10.1371/journal.pmed.1003900.g005
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CHDs in offspring of mothers with GDM reduced to a moderate I2 value of 55.0% when

excluding the study by Billionnet et al. [47]. Although the increased risk association remained

robust across scenarios, some moderate to significant heterogeneity still persisted and could

not be reduced in sensitivity analyses. To explore the source of heterogeneity, we performed

subgroup and meta-regression analyses in the predefined subgroups of study location, year of

enrollment, study sample size, and adjustment for confounders (Tables 4 and 5). The findings

of increased overall CA/CHD risk associated with maternal diabetes were consistently

observed in most of the subgroup analyses. The results of the subgroup analyses suggested that

differences in study sample size, population region, year of enrollment, and adjustment for

confounders were major sources of heterogeneity. We observed that the high I2 value of 81.2%

observed in the results for CHDs in offspring of mothers with GDM was reduced to no (I2 =

0%) or low (I2 = 47.7%) heterogeneity after adjustment for race/ethnicity, body mass index,

education, smoking/alcohol consumption, parity, and pregnancy complications (Table 5). In

addition, the results of meta-regression analyses showed statistically significant differences in

the RRs of CAs/CHDs in PGDM versus GDM (all Pmeta-regression < 0.001) (Fig 6).

Table 3. Pooled RRs and 95% confidence intervals for associations between maternal diabetes and other type-specific congenital anomalies.

Outcome Number of

events

Pre-gestational diabetes Gestational diabetes

Number of

studies

Pooled RR (95%

CI)

I2 (%) P value Number of

studies

Pooled RR (95%

CI)

I2 (%) P value

Nervous system defects 42,339 9 2.54 (1.73 to 3.73) 94.8 <0.001 2 1.64 (0.74 to 3.61) 78.6 0.031

Neural tube defects 8,791 6 2.74 (1.46 to 5.14) 75.5 0.001 2 1.06 (0.55 to 2.06) 0.0 0.669

Anencephaly 3,859 3 2.72 (2.16 to 3.44) 0.0 0.416 3 0.80 (0.62 to 1.04) 25.4 0.262

Encephalocele 1,108 3 5.53 (3.24 to 9.45) 52.8 0.120 2 1.03 (0.67 to 1.59) 3.5 0.309

Spina bifida 9,948 8 1.89 (1.15 to 3.09) 71.1 0.001 5 1.10 (0.99 to 1.22) 0.0 0.459

Hydrocephaly 10,733 5 3.46 (1.62 to 7.42) 85.0 <0.001 4 1.34 (1.16 to 1.54) 0.0 0.960

Holoprosencephaly 301 2 18.18 (4.03 to

82.06)

66.3 0.085 3 1.87 (1.09 to 3.22) 0.0 0.558

Eye, ear, face, and neck defects 39,570 6 3.14 (2.90 to 3.39) 0.0 0.444 2 1.15 (1.09 to 1.22) 0.0 0.355

Orofacial clefts 6,602 5 1.27 (0.54 to 2.98) 90.4 <0.001 —

Cleft palate 11,259 6 1.75 (1.04 to 2.94) 74.6 0.001 5 1.21 (0.95 to 1.56) 54.9 0.064

Cleft lip with or without cleft

palate

32,641 7 1.89 (1.22 to 2.92) 81.1 <0.001 5 1.26 (1.19 to 1.34) 0.0 0.547

Digestive system defects 14,286 7 2.02 (1.24 to 3.28) 92.3 <0.001 —

Diaphragmatic hernia 5,882 3 1.66 (1.32 to 2.10) 0.0 0.520 4 1.21 (1.08 to 1.37) 0.0 0.779

Abdominal wall defects 1,691 2 1.31 (0.80 to 2.15) 0.0 0.729 —

Omphalocele 4,163 3 1.90 (1.48 to 2.44) 0.0 0.447 2 1.21 (1.05 to 1.40) 0.0 0.743

Gastroschisis 9,268 3 0.92 (0.68 to 1.24) 0.0 0.399 4 0.71 (0.58 to 0.85) 0.0 0.424

Genitourinary system defects 128,657 10 1.73 (1.35 to 2.21) 89.2 <0.001 2 1.82 (0.90 to 3.66) 93.4 <0.001

Renal agenesis/dysgenesis 5,239 6 5.63 (2.48 to

12.76)

86.1 <0.001 2 0.90 (0.25 to 3.25) 78.8 0.030

Hypospadias 44,963 9 1.57 (1.22 to 2.02) 74.1 <0.001 6 1.29 (1.16 to 1.44) 45.9 0.100

CAKUT 4,143 3 1.80 (1.41 to 2.30) 0.0 0.865 3 1.28 (0.99 to 1.66) 31.1 0.234

Musculoskeletal system defects 123,365 11 1.98 (1.45 to 2.72) 94.4 <0.001 3 1.18 (1.15 to 1.22) 0.0 0.424

Limb reduction 23,963 9 2.73 (1.98 to 3.76) 81.7 <0.001 5 1.14 (1.06 to 1.23) 0.0 0.866

Polydactyly/syndactyly 20,328 4 0.95 (0.57 to 1.57) 71.8 0.003 2 0.84 (0.42 to 1.66) 62.5 0.102

Multiple congenital anomalies 2,448 5 3.06 (2.36 to 3.96) 39.6 0.158 2 1.15 (0.59 to 2.24) 63.0 0.100

Major congenital anomalies 52,171 6 2.14 (1.65 to 2.77) 81.8 <0.001 3 1.23 (1.03 to 1.47) 18.5 0.293

CAKUT, congenital anomalies of the kidney and urinary tract; CI, confidence interval; RR, relative risk.

https://doi.org/10.1371/journal.pmed.1003900.t003
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Discussion

To the best of our knowledge, the present study is the first comprehensive systematic review

and meta-analysis of population-based studies of over 80 million participants that shows an

increased risk of type-specific CAs, especially CHDs, in offspring of women with pre-gesta-

tional or gestational diabetes. The study findings suggested that maternal PGDM was associ-

ated with a significant increase in the risk of CAs in offspring in 38 of 45 categories, while

Table 4. Subgroup analysis of the association between maternal diabetes and risk of overall congenital anomalies in offspring: Results of meta-analyses.

Subgroup Pre-gestational diabetes Gestational diabetes

Number of

studies

Pooled RR (95%

CI)

I2 (%) P value� P value�� Number of

studies

Pooled RR (95%

CI)

I2 (%) P value� P value��

Region 0.39 0.32

Europe 6 2.10 (1.44 to 3.04) 94.5 <0.001 4 1.09 (0.97 to 1.23) 73.7 <0.001

North/South America 10 2.03 (1.85 to 2.22) 88.5 <0.001 10 1.19 (1.13 to 1.25) 79.5 <0.001

Asia-Pacific 3 1.67 (1.31 to 2.11) 42.1 0.178 1 1.18 (0.79 to 1.77) — —

Year of enrollment† 0.87 0.18

Before 1997 8 1.94 (1.51 to 2.49) 93.2 <0.001 5 1.10 (0.97 to 1.25) 81.1 <0.001

In or after 1997 11 2.04 (1.86 to 2.23) 90.0 <0.001 10 1.21 (1.16 to 1.26) 67.4 0.001

Number of participants† 0.44 0.78

<282,260 4 1.56 (3.32 to 9.74) 57.9 0.068 3 1.40 (0.71 to 2.77) 47.9 0.147

�282,260 15 1.96 (1.79 to 2.15) 91.7 <0.001 12 1.17 (1.13 to 1.22) 79.5 <0.001

Adjustment for

confounders

Maternal age 0.19 0.71

Yes 16 1.92 (1.77 to 2.10) 89.0 <0.001 13 1.17 (1.13 to 1.22) 77.8 <0.001

No 3 2.31 (1.17 to 4.57) 91.8 <0.001 2 2.59 (0.36 to 18.9) 73.3 0.053

Race/ethnicity 0.14 0.24

Yes 7 2.20 (1.98 to 2.45) 88.6 <0.001 5 1.22 (1.17 to 1.27) 74.2 0.004

No 12 1.82 (1.54 to 2.16) 91.2 <0.001 10 1.13 (1.04 to 1.23) 73.3 <0.001

Body mass index 0.70 0.70

Yes 4 2.08 (1.55 to 2.80) 83.4 <0.001 4 1.19 (1.08 to 1.32) 74.3 0.009

No 15 1.96 (1.78 to 2.17) 89.6 <0.001 11 1.16 (1.11 to 1.22) 68.8 <0.001

Education 0.40 0.76

Yes 5 1.85 (1.59 to 2.15) 93.7 <0.001 6 1.17 (1.10 to 1.24) 87.7 <0.001

No 14 2.05 (1.80 to 2.33) 88.0 <0.001 9 1.18 (1.12 to 1.26) 33.9 0.147

Smoking/alcohol

consumption

0.55 0.49

Yes 6 2.11 (1.67 to 2.66) 79.1 <0.001 6 1.21 (1.11 to 1.32) 59.7 0.030

No 13 1.94 (1.75 to 2.15) 90.5 <0.001 9 1.16 (1.10 to 1.21) 73.4 <0.001

Parity 0.89 0.92

Yes 8 1.99 (1.80 to 2.20) 90.1 <0.001 8 1.17 (1.11 to 1.23) 84.4 <0.001

No 11 1.98 (1.59 to 2.47) 90.8 <0.001 7 1.18 (1.08 to 1.29) 43.0 0.104

Pregnancy complications 0.05 0.44

Yes 6 1.69 (1.29 to 2.20) 93.6 <0.001 6 1.13 (1.02 to 1.25) 87.5 <0.001

No 13 2.20 (2.00 to 2.42) 90.0 <0.001 9 1.20 (1.16 to 1.24) 28.4 0.192

CI, confidence interval; RR, relative risk.

�P for heterogeneity within each subgroup.

��P for heterogeneity between subgroups with meta-regression analysis.
†Categorized using the median as the cutoff value.

https://doi.org/10.1371/journal.pmed.1003900.t004
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maternal GDM was associated with a small but significant increase in the risk of CAs in 16 of

45 categories. The corresponding RRs of overall CAs/CHDs in offspring of women with

PGDM were higher than those in offspring of women with GDM, with no overlap in the 95%

CIs.

Although the exact pathophysiology of the relationship between maternal diabetes and CAs

in offspring remains unclear, metabolic changes in women with diabetes could play a critical

Table 5. Subgroup analysis of the association between maternal diabetes and risk of congenital heart defects in offspring: Results of meta-analyses.

Subgroup Pre-gestational diabetes Gestational diabetes

Number of

studies

Pooled RR (95%

CI)

I2 (%) P value� P value�� Number of

studies

Pooled RR (95%

CI)

I2 (%) P value� P value��

Region 0.04 0.98

Europe 9 2.63 (1.81 to 3.80) 97.6 <0.001 4 1.57 (1.09 to 2.27) 90.8 <0.001

North/South America 8 4.90 (3.92 to 6.13) 96.2 <0.001 6 1.46 (1.37 to 1.56) 64.0 0.016

Asia-Pacific 1 2.84 (1.89 to 4.26) — — 1 1.80 (1.31 to 1.55) — —

Year of enrollment† 0.46 0.07

Before 1997 10 3.17 (2.49 to 4.03) 88.4 <0.001 5 1.29 (1.17 to 1.44) 23.9 0.255

In or after 1997 8 3.80 (2.67 to 5.40) 99.2 <0.001 6 1.68 (1.50 to 1.88) 86.7 <0.001

Number of participants† 0.20 0.62

<282,260 3 4.93 (3.61 to 6.74) 0.0 0.714 3 1.37 (1.09 to 1.72) 61.1 0.08

�282,260 15 3.27 (2.57 to 4.15) 98.5 <0.001 8 1.55 (1.40 to 1.70) 82.3 <0.001

Adjustment for

confounders

Maternal age 0.97 0.40

Yes 16 3.46 (2.72 to 4.39) 98.4 <0.001 10 1.55 (1.42 to 1.69) 77.9 <0.001

No 2 3.50 (2.84 to 4.32) 0.0 0.789 1 1.19 (1.05 to 1.35) — —

Race/ethnicity 0.21 0.94

Yes 6 4.14 (3.42 to 5.01) 89.3 <0.001 5 1.52 (1.49 to 1.55) 0.0 0.964

No 12 3.15 (2.11 to 4.69) 98.7 <0.001 6 1.53 (1.19 to 1.98) 89.1 <0.001

Body mass index 0.17 0.83

Yes 4 4.62 (4.30 to 4.96) 0.0 0.989 4 1.51 (1.44 to 1.58) 0.0 0.654

No 14 3.20 (2.45 to 4.20) 98.5 <0.001 7 1.50 (1.26 to 1.77) 87.7 <0.001

Education 0.38 0.90

Yes 3 4.18 (3.32 to 5.27) 95.2 <0.001 4 1.52 (1.49 to 1.55) 0.0 0.671

No 15 3.33 (2.34 to 4.75) 98.3 <0.001 7 1.51 (1.20 to 1.89) 87.0 <0.001

Smoking/alcohol

consumption

0.02 0.91

Yes 4 4.68 (4.38 to 5.01) 0.0 0.491 4 1.50 (1.43 to 1.58) 0.0 0.706

No 14 2.98 (2.24 to 3.96) 98.6 <0.001 7 1.50 (1.29 to 1.76) 87.8 <0.001

Parity 0.17 0.86

Yes 6 4.23 (3.38 to 5.30) 97.5 <0.001 4 1.52 (1.49 to 1.55) 0.0 0.676

No 12 3.13 (2.20 to 4.47) 96.6 <0.001 7 1.50 (1.17 to 1.93) 86.9 <0.001

Pregnancy complications 0.88 0.61

Yes 4 3.58 (2.11 to 6.09) 91.6 <0.001 4 1.45 (1.23 to 1.71) 47.7 0.13

No 14 3.44 (2.62 to 4.50) 98.5 <0.001 7 1.56 (1.33 to 1.82) 86.7 <0.001

CI, confidence interval; RR, relative risk.

�P for heterogeneity within each subgroup.

��P for heterogeneity between subgroups with meta-regression analysis.
†Categorized using the median as the cutoff value.

https://doi.org/10.1371/journal.pmed.1003900.t005
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role in the development of CAs in their offspring. Sustained hyperglycemia is the main charac-

teristic of diabetes; this activates multiple metabolic pathways that play a role in the formation

of CAs [77]. Notably, a common mechanism behind diabetic complications is mitochondrial

superoxide radical production [77]. The production of reactive oxygen species (ROS) is

induced by hyperglycemia, which is the crucial process in diabetes mellitus pathogenesis, and

oxidative stress (OS) is known to affect embryonic development [77–79]. Although OS does

not cause a direct genotoxic effect, a previous study showed that OS affects the expression of

some genes involved in the various stages of embryonic development, and each gene affected

might have a specific sensitivity to hyperglycemic conditions and changes in the cellular redox

state, thus mediating the formation of CAs in offspring [77]. Studies have suggested that the

formation of CAs involves AMP-activated protein kinase (AMPK), an enzyme with kinase

activity that is activated in response to an increase in adenosine monophosphate nucleoside

levels [78,80]. AMPK could play a key role in the formation of CAs; it participates in the regu-

lation of energy metabolism and, once activated, moves into the cell nucleus and phosphory-

lates multiple proteins, including hypoxia-inducible factor 1α, which could mediate the

development of CAs [77]. However, further study is needed to discern the exact mechanisms

involved in the activation of AMPK and the induction of CAs by ROS.

An important finding from our meta-regression analyses is the statistically significant dif-

ference in the risk of overall CAs in offspring of women with PGDM versus offspring of

women with GDM. That is, the risk of CAs in offspring was higher in women with PGDM

than in those with GDM. Pregnancy begins at fertilization, and organogenesis begins during

the third to eighth week post-conception and continues until birth. Therefore, the first trimes-

ter of pregnancy is the most critical period for organogenesis. In women with PGDM, there

Fig 6. Risks of overall congenital anomalies and congenital heart defects in offspring according to different types of maternal diabetes. Relative risks

(RRs) and 95% confidence intervals (CIs) are presented to show the risk of overall congenital anomalies and congenital heart defects in offspring born to

women with different types of maternal diabetes compared with the risk among offspring born to women without diabetes. Pmeta-regression values were<0.001

for the comparison within congenital anomalies and congenital heart defects between gestational diabetes and pre-gestational diabetes.

https://doi.org/10.1371/journal.pmed.1003900.g006
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can be a lengthy period of sustained hyperglycemia before and during pregnancy, which can

significantly impact organogenesis and contribute to CAs in offspring. This differs from

GDM, which is usually diagnosed during the 24th to 28th week of gestation [8]. Therefore, in a

woman with GDM, blood glucose levels could be normal or just slightly elevated during the

first trimester, leading to minimal influence on organogenesis. This could partly explain why

offspring of women with PGDM were at greater risk for CAs compared with offspring of

women with GDM. However, women who develop GDM during pregnancy usually have evi-

dence of metabolic dysfunction before pregnancy, such as pancreatic β-cell defects and

increased insulin resistance [81,82], which may contribute to the development of hyperglyce-

mia and thus increase the rate of malformations in infants, although further studies are needed

to elucidate the potential mechanisms involved. Another key finding from our meta-regression

analysis was the similar result observed regarding CHDs in offspring of women with PGDM

and offspring of women with GDM. The heart is the first functional organ to develop and

starts to beat and pump blood at around 22 days after fertilization [83]. The septum, including

the interatrial septum, begins to form at 4 to 7 weeks of gestation.

Hyperglycemia could have a more critical influence on heart development in the early stage

of pregnancy than in the late stage of pregnancy. Therefore, screening for diabetes in pregnant

women will enable better glycemic control, which might reduce the rate of malformations,

especially during organogenesis. However, the exact mechanisms underlying the influence of

diabetes on organogenesis in different stages remain unclear and require further study.

In the present study, the results regarding specific types of CHDs in offspring with maternal

PGDM were consistent with 2 previous meta-analyses [13,14]. A recent systematic review and

meta-analysis conducted by Chen and colleagues involved a pooled analysis of 24 population-

based studies and 18 hospital-based studies; the findings suggested that maternal GDM was

significantly associated with the risk of most phenotypes of CHDs [13]. New data from popula-

tion-based studies of more than 36 million births provided solid estimates of the associations

between maternal GDM and specific types of CHDs in offspring [4,10–12]. However, these

studies mainly focused on the association between different types of maternal diabetes and

CHDs. Little is known about the association between maternal diabetes and other specific

types of CAs in offspring or the extent to which types of maternal diabetes are associated with

the increased risk of CAs.

One recent meta-analysis by Parimi and colleagues explored the association between mater-

nal diabetes and the risk in offspring of CAKUT, which refers to a range of structural and func-

tional anomalies of the kidney, collecting system, bladder, and urethra [84]. Our findings were

in line with the results from Parimi et al. [84] that showed that offspring of mothers with

PGDM had an almost 2-fold increased risk of CAKUT; however, results regarding the associa-

tion between maternal GDM and the risk of CAKUT were inconsistent. Our findings demon-

strated associations between maternal diabetes and 23 CA categories (excluding CHD-related

categories) in offspring and suggested that offspring of women with PGDM had an increased

risk of 21 specific types of CAs, while increased risks of 9 specific types of CAs were observed

in offspring of women with GDM.

Strengths and limitations

Our study has several strengths. The first strength is the large sample size of over 80 million

births from population-based data, which provides robust evidence regarding the risk of CAs

in offspring of women with diabetes and are widely generalizable. Second, our study examined

the associations between maternal diabetes and various types of CAs across multiple categories

of maternal diabetes. Unlike previous studies [13,14,84] that only assessed the risk of CHDs or
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CAKUT in maternal diabetes, the present study systematically and quantitatively summarized

the associations between maternal diabetes and 45 type-specific CAs in offspring. Third, con-

sistent results of the pooled RRs supported the robustness of the findings of our study. Finally,

the current study examined the extent to which types of maternal diabetes (i.e., pre-gestational

and gestational) are associated with increased risk of CAs in offspring. The relative consistency

of associations observed appears to support the hypothesis that maternal diabetes, especially

PGDM, increases the likelihood of type-specific CAs in offspring.

However, several limitations should be noted. Although the increased risk association

remained robust across various scenarios, some high levels of statistical heterogeneity generally

persisted and could not be reduced in subgroup and sensitivity analyses. There were some

causes of heterogeneity in the included studies. First, there is lack of consensus and uniformity

in the screening standards and diagnostic criteria for GDM. Also, pre-pregnancy diabetes is

sometimes unrecognized and discovered only during pregnancy as GDM, which could lead to

overestimation of RRs associated with GDM. Second, the ascertainment of some CAs may

vary substantially between studies. Some CAs are easy to ascertain (e.g., anencephaly), while

some may not be recognized immediately after birth and may be discovered only later in

infancy (e.g., milder atrial septal defects). This also contributes to the heterogeneity of the

results. Third, most studies included live births only; the lack of information on stillbirths and

terminations of pregnancy for fetal anomaly could introduce selection bias and lead to under-

estimation of the strength of the associations between maternal diabetes and risk of CAs in off-

spring. Fourth, there may be other unmeasured confounding factors in addition to those

adjusted for in each study. In this regard, further study could be performed to reduce the afore-

mentioned causes of heterogeneity in a more in-depth analysis. An additional limitation was

that although we summarized and quantified the existing population-based data on overall

CAs/CHD observed under maternal type 1 or type 2 diabetes, data on other type-specific CAs

in offspring associated with maternal type 1 or type 2 diabetes are limited. Additional studies

are needed to address this issue. Furthermore, information on treatment (e.g., insulin use) or

how well-controlled blood glucose levels were in the study participants was not available in

most of the studies included in the current study. Further work should strive to address this

lack of information. Finally, we observed a negative association between maternal GDM and

risk of gastroschisis. The reasons for why maternal GDM was inversely associated with the risk

of gastroschisis are currently unknown; this finding warrants confirmation and further investi-

gation in future studies. Residual confounding may contribute to the inverse association, but

further confirmation is still needed.

Conclusion

In the present study, we observed an increased rate of CAs in the offspring of women with

maternal diabetes and noted the differences between PGDM and GDM. Considering the sub-

stantial rise in the prevalence of maternal diabetes over recent decades, the expectation that

this prevalence will continue to increase, the number of pregnancies worldwide, and the signif-

icant individual and global burdens associated with CAs in offspring, screening for diabetes in

pregnant women may enable better glycemic control, and may enable identification of off-

spring at risk for CAs.
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