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AbstrAct
Identifying biomarkers of the resistance in multiple myeloma (MM) is a key 

research challenge. We aimed to identify proteins that differentiate plasma cells 
in patients with refractory/relapsed MM (RRMM) who achieved at least very good 
partial response (VGPR) and in those with reduced response to PAD chemotherapy 
(bortezomib, doxorubicin and dexamethasone). Comparative proteomic analysis was 
conducted on pretreatment plasma cells from 77 proteasome inhibitor naïve patients 
treated subsequently with PAD due to RRMM. To increase data confidence we used two 
independent proteomic platforms: isobaric Tags for Relative and Absolute Quantitation 
(iTRAQ) and label free (LF). Proteins were considered as differentially expressed when 
their accumulation between groups differed by at least 50% in iTRAQ and LF. The 
proteomic signature revealed 118 proteins (35 up-regulated and 83 down-regulated in 
≥ VGPR group). Proteins were classified into four classes: (1) involved in proteasome 
function; (2) involved in the response to oxidative stress; (3) related to defense 
response; and (4) regulating the apoptotic process. We confirmed the differential 
expression of proteasome activator complex subunit 1 (PSME1) by enzyme-linked 
immunosorbent assay. Increased expression of proteasomes and proteins involved in 
protection from oxidative stress (eg., TXN, TXNDC5) plays a major role in bortezomib 
resistance.
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IntroductIon

Understanding the biology of multiple myeloma 
(MM) and identifying drug-resistance biomarkers are key 
research challenges that may facilitate the development 
of individualized treatment. Attempts to establish 
algorithms of therapy based on pretreatment genetic 
data have been proposed (e.g., Stratification of Myeloma 
and Risk-adapted Therapy [SMART] guidelines). These 
algorithms are based on the de-escalation of treatment 
in low-risk patients rather than the choice of a particular 
drug or drug combination [1]. The insightful analysis of 
the data points obtained for the biochemical pathways 
responsible for cellular processes, e.g., drug- resistance, 
may pave the way to truly individualized treatment. The 
goal of this study was to identify the biomarkers and 
signaling pathways that differentiate the plasma cells 
(PCs) of patients who achieved very good partial response 
(VGPR) or complete response (CR) from those with lower 
responses using the comparative proteomic profiling of 
pretreatment PCs from patients with refractory/relapsed 
MM (RRMM) subsequently treated with bortezomib, 
doxorubicin, and dexamethasone (PAD) chemotherapy. 
VGPR was defined according to International Myeloma 
Working Group (IMWG) as at least 90% disease 
reduction, while CR as a disappearance of monoclonal 
protein in both electrophoresis and immunofixation [2]. 
Additionally, we aimed to expand the recently published 
[3] catalog of proteins and pathways involved in resistance 
to bortezomib-based therapy in newly diagnosed MM 
(NDMM).

results

PC proteins were collected from 77 patients, 
digested with trypsin, and analyzed using label-free 
(LF) and isobaric Tags for Relative and Absolute 
Quantitation (iTRAQ)-based approaches. In each 
approach, 77 samples were prepared for digestion in 
duplicate. Then, each prepared sample was injected into 
the liquid chromatography (LC) system in duplicate in a 
random order. iTRAQ tag-labeled samples were analyzed 
using two different systems—LC matrix-assisted laser 
desorption/ionization tandem mass spectrometry (LC-
MALDI-MS/MS) and LC electrospray ionization MS/
MS (LC-ESI-MS/MS)—and the obtained data were 
compared. The reproducibility of the technical and 
biological replicates analyzed by LC-ESI-MS/MS was 
assessed by scatter plotting, and the correlation coefficient 
was determined based on the LF quantification (LFQ) 
intensities or iTRAQ reporter ion intensities for both 
experimental groups. Typical scatter plots comparing the 
LFQ intensities and iTRAQ reporter ion intensities are 
presented in Figure 1 and exhibit very good correlation 
among the biological replicates. Correlation analysis 
of the LFQ signal intensities among all biological 

replications gave Pearson coefficients between 0.76 and 
0.96 (0.87 ± 0.09 for the CR/VGPR group; 0.81 ± 0.1  
for the <VGPR group). The correlation analysis of the 
LFQ signal intensities between the technical replications 
revealed Pearson coefficients between 0.9 and 0.99 
(0.94 ± 0.05; mean ± standard deviation [SD]). The 
correlation analysis of the iTRAQ reporter ion intensities 
provided Pearson coefficients between 0.72 and 0.96 
(0.83 ± 0.13; mean ± SD) for both experimental groups. 
These results indicated that the sample replicates had a 
high degree of reproducibility. The Proteome Discoverer 
(PD) analysis revealed that the percentage of overlap 
between the duplicate injections exceeded 90% at the 
protein level. At the protein level, the percentage overlap 
between biological replicates from the same experimental 
group was 81%.

The data derived from the LF approach were 
analyzed using MaxQuant (MQ) [4, 5] software. As a 
result, 2915 proteins were identified with a false discovery 
rate of 1% (FDR). Among these proteins, 2204 proteins 
were identified with a minimum of 2 peptides. iTRAQ 
data were analyzed using MQ (LC-ESI-MS/MS data) and 
ProteinScape (PS) (LC-MALDI-MS/MS data). In total, 
2664 and 1349 proteins were identified with one peptide, 
and 1389 and 753 were identified with a minimum of 
2 labeled peptides and 1% FDR using MQ and PS, 
respectively. A protein was considered to be differentially 
expressed if the difference was statistically significant 
(p < 0.05) and the minimum fold change was ± 1.5. 
Only proteins identified with a minimum of 2 peptides 
were considered significant. Quantitative analysis in 
MQ identified 245 and 285 differential proteins derived 
from the LF and iTRAQ approach (LC-ESI-MS/MS 
data), respectively. Quantitative analysis performed in PS 
(LC-MALDI-MS/MS data) revealed 213 differentially 
expressed proteins. Only 118 proteins identified by all 
methods and software were considered as differentially 
expressed between two experimental groups; these 
proteins are presented in Supplementary Table S1. The 
results obtained for LF and both iTRAQ techniques are 
compared in Figure 2. Among the differentially expressed 
proteins, 35 proteins were down-regulated, and 83 proteins 
were up-regulated in samples from <VGPR patients. 

We used the Database for Annotation, Visualization 
and Integrated Discovery (DAVID) [6] and Protein 
Analysis Through Evolutionary Relationships (PANTHER) 
[7, 8] tools to identify enriched functional gene ontology 
(GO) annotations in the 118 differentially expressed 
proteins. The data were classified based on their respective 
molecular functions, biological processes and physiological 
pathways. Our analysis revealed that more than half of 
the proteins that were differentially expressed in CR/
VGPR and < VGPR patients could be classified into four 
classes according to GO annotations: proteins involved in 
proteasome function and related to protein folding and the 
endoplasmic reticulum (ER) unfolded protein response 
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(UPR) (16 proteins); proteins involved in the response to 
oxidative stress and cell redox homeostasis (14 proteins); 
proteins regulating apoptotic process and programmed 
cell death (21 proteins); and inflammatory and defense 
response proteins (16 proteins) (Table 1). Some proteins 
were assigned to more than one class. 

All proteins that represent proteasome proteins 
and molecules related to protein folding, exhibited  
up-regulation in <VGPR patients compared with those 
in CR/VGPR patients (Table 1). The accumulation of 
proteasome activator complex subunit 1 (PSME1) and 
PSME2 increased by 3.89- and 2.42-fold in <VGPR 
patients. The altered abundance of PSME1 was confirmed 
by enzyme-linked immunosorbent assay (ELISA) 
(CR/VGPR group: 182.7 ± 14.37; <VGPR group: 
243.2 ± 22.22 pg/ml; p < 0.05) (Figure 3). Eight proteins 
related to the proteasomal structure or function were 
altered, and all were up-regulated in <VGPR patients. 
In addition, calcyclin-binding protein, which is involved 
in calcium-dependent ubiquitination and subsequent 
proteasomal degradation, is increased in <VGPR patients 
(fold change: 3.23). The relative amounts of proteins 
involved in protein folding, including heat shock protein 
90 (HSP90), HSPA9, stress-induced-phosphoprotein 1, 
nucleophosmin and protein disulfide-isomerase, were 
similarly increased in <VGPR patients.

A second set of identified differential proteins 
included proteins that were involved in the response 
to oxidative stress and cellular redox homeostasis 

(Table 1). Compared with CR/VGPR patients, the relative 
abundances of thioredoxin (TXN), thioredoxin domain-
containing protein 5 (TXNDC5), thioredoxin-dependent 
peroxide reductase and thioredoxin-like protein 1 were 
increased in the <VGPR group (fold changes of 2.91, 
1.74, 1.77 and 2.82, respectively). In addition, three 
peroxiredoxins—PRDX2, PRDX5 and PRDX6—were 
up- regulated in <VGPR patients (fold changes of 1.6, 
2.21 and 1.61, respectively). In contrast, the levels of 
catalase, myeloperoxidase and glutathione S-transferase P 
were decreased in <VGPR compared with the levels in the 
CR/VGPR patients (fold changes of 0.31, 0.15 and 0.53, 
respectively). 

A third set of differential proteins was related to 
the regulation of apoptotic processes and programmed 
cell death. Two annexins, A1 and A6, and vimentin were 
down-regulated in <VGPR patients (fold changes of 0.32, 
0.33 and 0.58, respectively). In contrast, four programmed 
cell death proteins were increased in <VGPR patients.

The last class of differential proteins included 
proteins involved in inflammatory and defense response. 
All of these proteins were down-regulated in <VGPR 
compared with CR/VGPR patients, except macrophage 
migration inhibitory factor and human leukocyte antigen 
(HLA) class II histocompatibility antigen, which were 
increased in <VGPR patients (fold changes of 3.3 and 
2.12, respectively).

Ribosomal proteins were identified among the 
remaining differential proteins, and all of them were 

Figure 1: representative correlation plots comparing the lFQ intensities and itrAQ reporter ion intensities of two 
biological replications for the cr/VGPr (A) and < VGPr (b) groups. The Pearson correlation coefficient is provided for each plot.
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increased in <VGPR patients (Supplementary Table S1). 
In addition other translation proteins, including three 
elongation factors and valine tRNA ligase, were up-
regulated in <VGPR patients compared with those 
of CR/VGPR patients. Nucleic acid-binding proteins 
constitute an additional group of proteins that exhibited 
increased accumulation in the <VGPR group. The relative 
abundances of prohibitin and prohibitin-2, which are 
involved in DNA synthesis, were increased in <VGPR 

patients compared with CR/VGPR patients (fold changes 
of 2.84 and 2.48, respectively). Similarly, we observed an 
abundance of histones H2A, H3.2 and H4 (fold changes of 
1.76, 3.92 and 1.69). In addition, three proteins involved 
in iron binding and iron homeostasis were altered. 
However, compared with the CR/VGPR patients, the 
relative abundances of ferritin light and heavy chains and 
lactotransferrin were decreased in <VGPR patients (fold 
changes of 0.31, 0.26 and 0.12, respectively). 

Figure 2: A Venn diagram comparing the results from the lF and itrAQ (esI and MAldI) techniques. The numbers 
indicate differential proteins identified with two peptides using each approach.

Figure 3: serum concentrations of PsMe1 in patients who achieved cr/VGPr (n = 16) to the PAd regimen vs. patients 
with lower response (<VGPr, n = 16). The controls were healthy subjects (n = 6). The results are presented as the mean ± standard error 
of the mean (SEM).
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table 1: comparison of the abundances of four protein classes overrepresented among differentially 
expressed proteins in cr/VGPr and < VGPr patients

Gene Protein name Fold change < VGPr  
vs cr/VGPr P value

Proteasome, protein folding and er uPr
PSME1 Proteasome activator complex subunit 1 3.89 1.39E-04
PSME2 Proteasome activator complex subunit 2 2.42 4.31E-02
PSMA5 Proteasome subunit alpha type-5 1.96 1.85E-02
PSMA7 Proteasome subunit alpha type-7 2.03 1.28E-02
PSMB8 Proteasome subunit beta type-8 2.08 1.83E-02
PSMB2 Proteasome subunit beta type-2 1.92 1.99E-02
PSMD1 26S proteasome non-ATPase regulatory subunit 1 2.55 4.78E-02
PSMD11 26S proteasome non-ATPase regulatory subunit 11 2.23 1.83E-02
HSPA9 Stress-70 protein, mitochondrial 3.06 1.37E-05
STIP1 Stress-induced-phosphoprotein 1 1.89 4.47E-02
NPM1 Nucleophosmin 1.75 4.05E-03
GANAB Neutral alpha-glucosidase AB 2.18 6.45E-04
HSPA6 Heat shock 70 kDa protein 2.56 3.92E-02
CACYBP Calcyclin-binding protein 3.23 3.50E-02
PDIA6 Protein disulfide-isomerase A6 2.04 4.16E-03
HSP90AB1 Heat shock protein HSP 90-beta 1.53 1.29E-02
response to oxidative stress and cell redox homeostasis
TXN Thioredoxin 2.91 5.92E-03
TXNDC5 Thioredoxin domain-containing protein 5 1.74 4.31E-02
PRDX3 Thioredoxin-dependent peroxide reductase 1.77 6.24E-03
TXNL1 Thioredoxin-like protein 1 2.82 4.59E-02
MPO Myeloperoxidase 0.15 2.40E-05
PRDX2 Peroxiredoxin-2 1.60 1.99E-02
PRDX5 Peroxiredoxin-5 2.22 3.11E-05
PRDX6 Peroxiredoxin-6 1.61 4.91E-02
CAT Catalase 0.31 4.72E-07
APEX1 DNA-(apurinic or apyrimidinic site) lyase 2.93 4.32E-02
GSTP1 Glutathione S-transferase P 0.53 9.68E-03
GLO1 Lactoylglutathione lyase 2.73 4.27E-02
NONO Non-POU domain-containing octamer-binding protein 2.21 5.28E-03
S100A9 Protein S100-A9 0.33 8.35E-04
regulation of apoptotic process and programmed cell death
YWHAE 14–3-3 protein epsilon 1.69 2.23E-03
ANXA1 Annexin A1 0.62 4.77E-02
ANXA6 Annexin A6 0.33 7.54E-04
EIF5A Eukaryotic translation initiation factor 5A-1 1.68 1.28E-03
LGALS1 Galectin-1 0.64 4.31E-02
HNRNPL Heterogeneous nuclear ribonucleoprotein L 1.60 1.28E-02
HNRNPM Heterogeneous nuclear ribonucleoprotein M 2.24 9.12E-03
MIF Macrophage migration inhibitory factor 3.30 4.19E-05
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dIscussIon

This study presents the first proteomic analysis 
of the MM PCs of patients with RR disease that were 
subsequently treated with a proteasome inhibitor. 
Proteomic signatures differentiating patients who 
achieved at least VGPR and those with a lower response 
to bortezomib-based chemotherapy were assessed using 
samples from 77 patients. To increase the specificity of 
our results, we only analyzed those samples that contained 
at least 90% PCs. For further studies, we used proteins 
detected by at least two peptides with < 1% FDR. Because 
validation studies in high-throughput proteomic studies 
are challenging, we performed our analysis using two 
different independent proteomic platforms: LF and 

4-plex iTRAQ. The LF and iTRAQ results were highly 
correlated (Figure 1). Additionally, the iTRAQ analysis 
was replicated using two different MS systems. Some 
differences were revealed in number of identified proteins 
(Figure 2). These differences may be explained by use of 
different search engines, PS engaged MASCOT, whereas 
for MQ ANDROMEDA engines were in use. We used 
an analogical method of proteomic analysis to that used 
in a previous study on PCs obtained from patients with 
NDMM [3]. 

Among the 118 proteins included in the proteomic 
signature, 16 proteins were involved in protein folding 
and the ER unfolded protein response. Bortezomib 
causes the unfolded protein response and, ultimately, 
cell apoptosis via proteasomal inhibition. Therefore, it 

NCL Nucleolin 1.67 2.59E-03
NPM1 Nucleophosmin 1.75 4.05E-03
PLEC Plectin 0.27 4.57E-03
LMNA Prelamin-A/C 0.49 6.78E-03
PDCD4 Programmed cell death protein 4 1.91 3.26E-02
PDCD5 Programmed cell death protein 5 1.57 3.58E-02
PDCD6 Programmed cell death protein 6 2.47 1.05E-01
PDCD6IP Programmed cell death 6-interacting protein 2.14 1.18E-02
TXNDC5 Thioredoxin domain-containing protein 5 1.74 4.31E-02
PRDX3 Thioredoxin-dependent peroxide reductase 1.77 6.24E-03
TXNL1 Thioredoxin-like protein 1 2.82 4.59E-02
VIM Vimentin 0.58 3.94E-04
VHL Von Hippel-Lindau disease tumor suppressor 1.99 2.42E-02
Inflammatory and defense response
CTSB Cathepsin B 0.38 4.25E-02
ISG20 Interferon-stimulated gene 20 kDa protein 0.66 3.05E-02
ANXA1 Annexin A1 0.62 4.77E-02
ANXA6 Annexin A6 0.33 7.54E-04
HMGB2 High mobility group protein B2 0.42 2.48E-06
HMGB1 High mobility group protein B1 0.65 4.07E-03
LSP1 Lymphocyte-specific protein 1 0.56 2.12E-05
MIF Macrophage migration inhibitory factor 3.30 4.19E-05
PRTN3 Myeloblastin 0.61 1.58E-02
MPO Myeloperoxidase 0.15 2.40E-05
DEFA3 Neutrophil defensin 3 0.21 2.18E-04
ELANE Neutrophil elastase 0.25 4.79E-06
S100A8 Protein S100-A8 0.33 8.35E-04
S100A9 Protein S100-A9 0.33 1.28E-03
STIP Stress-induced-phosphoprotein 1 0.57 4.47E-02
CD74 HLA class II histocompatibility antigen gamma chain 2.12 4.00E-02

This table provides the protein names, gene names, t-test p-values and calculated fold changes for both analyzed patient 
groups.
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is not surprising that these proteins were observed in the 
proteomic signatures predicting non-optimal response 
to PAD chemotherapy. Within that group, most proteins 
are components of the proteasome, including regulatory 
(PSME1, PSME2, PSMD1 and PSMD11) and catalytic 
components (PSMB2 and PMAB8). PSME1 and PSME2, 
which are increased in bortezomib-resistant patients, 
are a part of the 11S (or PA28) complex. Briefly, 11S 
replaces the 19S regulatory unit in the 26S constitutive 
proteasome and with slightly changes 20S, known as 
the i20S complex constitute immunoproteasomes, in 
response to gamma interferon [9,10]. Both constitutive 
and immunoproteasomes are highly expressed in MM 
cells [11]. We suggest that the increased accumulation of 
proteasomes in PCs might be a mechanism of resistance 
to proteasome inhibitors. In vitro studies revealed 
that the overexpression of proteasome subunits (e.g., 
PSMB5) is a response to long exposure to bortezomib, 
but this phenomenon has not been demonstrated in a 
clinical setting [12]. Here, we report that an increased 
accumulation of proteasome subunits observed before 
PAD administration in RRMM PCs might indicate the lack 
of an efficient response to bortezomib-based treatment, 
similar to our previously presented results in NDMM 
patients [3]. Pretreatment proteasome overexpression 
could result in reduced treatment efficacy using standard 
doses of bortezomib, although this finding requires 
further study. We also demonstrated that increased 
PSME1 concentrations in patient sera correlate with the 
clinical response to bortezomib-based treatment and its 
accumulation in PCs. After further confirmation, this 
effect may be used as a biomarker to support treatment 
individualization. Calcyclin-binding protein was also a 
member of that functional group, and its expression has 
been correlated with resistance to chemotherapy in gastric 
cancer [13] and positively correlated with the expression 
of nestin (NES) and the prognostic 80-gene expression 
profiling (GEP80) model in MM [14].

The second set of proteins in the proteomic 
signature consisted of proteins involved in the responses 
to oxidative stress and cell redox homeostasis, including 
TXN, thioredoxin reductase (PRDX3), peroxiredoxins 
(PRDX2, PRDX5 and PRDX6) and TXNDC5, which act 
as antioxidants. All of these proteins were up-regulated 
in bortezomib-resistant patients. Reactive oxygen species 
(ROS) increase in neoplastic cells as a byproduct of 
hypermetabolism what induced the antioxidant pathway 
[15–17]. Increased TXN and PRDX3 accumulation was 
observed in studies on MM cell lines, suggesting that 
TXN inhibition may increase sensitivity to bortezomib 
treatment [18]. This result is consistent with our findings 
in patient samples. Our proteomic signature consisted 
of TXNDC5, which is a member of the protein disulfide 
isomerase family. Previously, we reported that increased 
TXNDC5 expression in PCs and serum correlates with 
worse response to bortezomib-based therapy in NDMM 

and RRMM [3,19]. TXNDC5 is involved in proper folding 
of proteins and can also function as an electron transporter, 
recovering the functional isoform of other protein disulfide 
isomerases and serving the function of reduced glutathione 
[20]. TXN and TXNDC5 may act not only as biomarkers 
predicting resistance to bortezomib-based regimens but 
also as a potential target for treatment. Interestingly, we 
observed reduced expression of another set of antioxidant 
proteins: catalase (CAT) and glutathione S-transferase P, 
as previously observed in resistant acute myeloid leukemia 
cells [21]. 

The third group in the proteomic signature included 
proteins involved in the regulation of apoptotic processes 
and programmed cell death. The annexins A1 (ANXA1) 
and A2 (ANXA2) are down-regulated in resistant 
patients, whereas programmed cell death proteins 4, 5 
and 6 (PDCD4, PDCD5 and PDCD6) are up-regulated. In  
in vitro studies, ANXA1 inhibition increases the sensitivity 
to steroid treatment in both dexamethasone-sensitive and 
resistant MM1 cell lines [22]; these findings are consistent 
with ours. Surprisingly, PDCDs, the tumor suppressor 
proteins that promote apoptosis, were down-regulated in 
refractory patients. PDCD4 down-regulation is associated 
with poor prognosis in breast cancer [23]. 

Among the fourth set of proteins, which are 
involved in inflammation and defense responses, S100A8 
and S100A9 belong to the calcium-binding protein family 
and were down-regulated in the <VGPR group. The 
role of these proteins in drug resistance is well known 
and was previously described as being primarily based 
on autophagy and the activation of myeloid-derived 
suppressor cells (MDSCs) [24, 25]. 

MAterIAls And Methods

subjects and samples

Our study protocol conformed to the Ethical 
Guidelines of the World Medical Association Declaration 
of Helsinki. Before the project commenced, appropriate 
approval was obtained from the Bioethical Commission of 
the Karol Marcinkowski University of Medical Sciences, 
Poznan, Poland. Informed consent was obtained from 
all participating individuals prior to participation in the 
study. Comparative proteome analysis was performed 
on PCs obtained from the pretreatment bone marrow 
of 77 proteasome inhibitor naïve patients (median 
age 67 (52– 75)) who qualified for PAD (bortezomib, 
doxorubicin, dexamethasone) chemotherapy. The first line 
treatment was based on thalidomide (CTD, TD or MPT). 
The PAD regimen was administered as a second-line 
treatment because of RR disease [26]. Patients received 
a median of 6 cycles (range 2–8) of treatment. Treatment 
was interrupted because of toxicity for 10 patients (G3 
neuropathy and G2 infection) and disease progression 
(PD) (8 patients). Disease response to treatment was 
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assessed by International Myeloma Working Group 
(IMWG) criteria [2]. After chemotherapy, 30 patients 
achieved CR or VGPR (CR/VGPR group), and 47 
achieved lower responses (<VGPR group), including 
partial response PR (27), stable disease (SD) (2) and 
progressive disease (PD) (18). 

Pc isolation

Bone marrow samples were obtained after patients 
signed informed consent and were freshly purified by 
negative selection (EasySep, STEMCELL Technologies, 
Vancouver, Canada) according to the manufacturer’s 
protocol. PCs were frozen as pellets containing 500,000 
cells in liquid nitrogen and stored until proteomic analysis.

Protein extraction

PCs were lysed in buffer with 1 M triethylammonium 
bicarbonate (TEAB) and 0.1% sodium dodecyl sulfate 
(SDS) and automatically homogenized using a Precellys 
24 homogenizer (Bertin Technologies, France) in 0.5-mL 
tubes pre-filled with ceramic (zirconium oxide) beads 
(Bertin Technologies, France). For all homogenization 
procedures, 20 ml of buffer was added to each 100,000 
cells and processed at 6,300 rpm for 30 seconds three 
times. Then, the material was sonicated in a bath for three 
1-minute cycles on ice and homogenized again using the 
Precellys 24 instrument. The homogenized suspension 
was centrifuged at 16,000 × g for 10 min at 4°C, and 
the supernatants were retained for analysis. The protein 
concentration was determined using the bicinchoninic acid 
assay (BCA; Pierce) method.

lF-based proteomic approach

nanolc-Ms/Ms analysis

Ten micrograms of PC protein was digested and 
prepared for analysis as previously described [27]. Each 
sample was prepared for digestion in duplicate. For each 
run, 1.5 µg of the digested protein samples was subjected 
to nano-LC MS/MS analysis using a Dionex UltiMate 
3000 RSLC nano System and Q-Exactive Orbitrap 
mass spectrometer (Thermo Fisher Scientific, USA), as 
previously described [27]. The normalized collision energy 
was set to 28. Each sample was injected in duplicate at 
random. 

Qualitative analysis of lF proteomic data

After each LC-MS/MS run, the raw files were 
qualitatively analyzed by PD version 1.4.14 (Thermo Fisher 
Scientific, USA). To evaluate the quality of the performed 
runs, the numbers of peptide spectrum matches (PSMs) 
and identified proteins were calculated. LC-MS/MS  

runs with fewer than 150,000 PSMs and fewer than 
2,000 identified proteins (1% FDR) were excluded from 
further analysis. The identification of proteins by PD was 
performed using the SEQUEST engine against the UniProt 
Complete Proteome Set of Humans (123,619 sequences) 
using the following parameters: a tolerance level of 
10 ppm for MS and 0.05 Da for MS/MS, and two missed 
cleavages were allowed. The carbamidomethylation of 
cysteines was set as a fixed modification, and the oxidation 
of methionines was allowed as a variable modification.

Assessment of variability/reproducibility 

The technical and biological variabilities of each 
plasma sample from both experimental groups were 
estimated by scatter plot and calculated using the Pearson 
correlation coefficients of the LFQ intensities in Perseus. 
To assess the reproducibility, the percentage overlap 
between the protein identifications for both the technical/
injection and biological replicates was calculated using 
PD software. The LFQ intensities derived from all of 
the samples evaluated in PD were subjected to statistical 
analysis. 

Quantitative analysis of lF proteomic data 
and statistical analysis

The raw files that were positively evaluated by PD 
were quantitatively analyzed by MQ/Perseus [4, 5] version 
1.5.1.2, as previously described [27]. A protein was 
considered to be differentially expressed if the difference 
was statistically significant (p < 0.05), the minimum fold 
change was +/– 1.5, and it was identified with a minimum 
of 2 peptides with >99% confidence. Multivariate analyses 
were conducted by untargeted principal component 
analysis (PCA). All statistical analyses were performed 
using Statistica v. 10.0 software (StatSoft, Inc., www.
statsoft.com) and Perseus 1.4.1.3, which is freely available 
from the MQ web site.

itrAQ-based proteomic approach

Protein digestion and itrAQ labeling

Protein digestion was performed before iTRAQ 
labeling on 75-μg aliquots of PC proteins according to 
the manufacturer’s instructions (AB Sciex, USA) with 
the following minor modifications. The proteins were 
overnight digested with 2 μg of sequencing-grade trypsin 
(Promega, Germany) at 37°C. For labeling, each iTRAQ 
reagent (AB Sciex, USA) was added to the respective 
peptide mixture for 120 min. In all of the iTRAQ 
experiments, all of the analyzed groups were labeled with 
the same iTRAQ tag as follows: 114 and 115, samples 
from CR/VGPR patients; 116 and 117, samples from 
<VGPR patients. The labeling reaction was quenched by 
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the addition of 125 μl of Milli-Q water, and four labeled 
samples were then pooled into one sample according to 
the manufacturer’s instructions. After pooling, the samples 
were evaporated to 50 μl by vacuum concentration to 
remove excess water, TEAB, and ethanol. The labeled 
digest was purified and fractionated on a SCX cartridge 
system (AB Sciex, USA) off-line. The peptides were 
sequentially eluted from the columns with increasing 
concentrations of KCl. Four fractions were collected in 
87.5, 175, 350, and 500 mM KCl using 350-μl aliquots 
of KCl in 10 mM KH2PO4 and 25% (v/v) acetonitrile. 
The collected fractions were finally desalted on SPE 
BakerBond™ C18 Cartridges (J.T. Baker, USA) and then 
evaporated to 50 μl by vacuum concentration to remove 
the acetonitrile. 

esI-nanolc-Ms/Ms analysis

For each iTRAQ experiment, 5 µl of each respective 
KCl fraction was injected into the same LC-MS/MS 
system using the same conditions as for the LF approach 
with the following minor modifications. The fixed first 
mass was m/z 100.0. The normalized collision energy 
was set to 30. To reduce the interference of precursor co-
fragmentation with the iTRAQ quantification, the isolation 
window was set to 1.2 m/z.

MAldI off-line lc-Ms/Ms analysis

For each iTRAQ experiment, 5 µl of the respective 
KCl fraction was analyzed in duplicate. The samples 
from each iTRAQ experiment were subjected to nano-
LC separation using an EASY-nLC Proxeon (Bruker 
Daltonics, Germany) coupled to a Proteineer fc II (Bruker 
Daltonics, Germany) fraction collector, as previously 
described [28]. MS/MS analyses were performed using 
a UltrafleXtreme MALDI-TOF/TOF (Bruker Daltonics, 
Germany) instrument, as previously described [28].

Analysis of itrAQ data

Raw files derived from ESI-LC-MS/MS were 
analyzed in PD version 1.4.14 (Thermo Fisher Scientific) 
and MQ/Perseus software version 1.5.1.2 using the same 
database as for the LF approach. The Percolator software 
integrated in the PD was used to evaluate the database 
search results. The obtained MALDI data were analyzed 
using the PS (Bruker Daltonics) database software against 
the UniProt database. The FDR for peptide identification 
in PD, MQ and PS was set at 1%. The parameters for 
database searching were as follows: iTRAQ 4-plex 
(peptide-labeled) modification and tolerance levels of 
10 ppm for MS, 0.05 Da for MS/MS (ESI-LC-MS/
MS), 0.3 Da for MS, and 0.5 Da for MS/MS (MALDI-
LC-MS/MS). Other parameters were the same as for 
the LF approach. The relative peptide abundance was 

measured using the iTRAQ reporter ion peak area ratios. 
The following ratios were calculated: 114/115, 114/116, 
114/117, 115/116, 115/117 and 116/117. MQ data were 
evaluated, and statistical analysis was performed using the 
Perseus software (version 1.4.1.3, Max Planck Institute of 
Biochemistry, Martinsried) as previously described [27]. 
The mean values ± SDs were calculated from the reporter 
peak area ratios of all labeled peptides for a given protein. 
Proteins with a fold change of at least 1.5 identified by 
MQ/Perseus and PS were considered to be differentially 
expressed and were then statistically analyzed.

Assessment of variability/reproducibility and 
statistical analysis

The reproducibility of technical and biological 
replicates was assessed by scatter plotting and correlation 
coefficient determination based on reporter ion signals. 
The percentage overlap in protein identification between 
both technical/injection and biological replicates was 
calculated. Coefficient of variation (CV) values were the 
primary parameters used to validate the data. Proteins 
with variability in reporter ion signals exceeding 30% 
were excluded from the analysis, as described earlier [29]. 
Positively evaluated reporter ion intensities derived from all 
samples and from all iTRAQ experiments were considered 
in the statistical analysis, as for the LF approach. 

elIsA validation

Serum samples from patients treated with a 
PAD regimen were collected before the first dose of 
proteasome inhibitor. Samples were frozen and stored at 
-80°C until assessment. The assay was performed using 
PSME1 ELISA kits (Cusabio, USA) according to the 
manufacturer’s instructions. Mathematical and statistical 
analyses were performed using Curve Expert v1.3 (Hyams 
Development) and PRISM. The results are presented as 
the mean ± standard error of the mean (SEM).

Functional analyses of dysregulated proteins in 
Pc samples

Only the proteins that were quantified as unique 
and non-redundant were used in the subsequent analyses. 
Proteins with a fold change of at least 1.5 that were 
identified as differential by both LF- and iTRAQ-based 
approaches were considered to be differentially expressed 
and were subsequently analyzed. The dysregulated 
proteins were chosen based on the criterion that the 
protein must be quantified by a minimum of two peptides 
with >99% confidence. Uncharacterized proteins were 
excluded from the analysis. The differential proteins were 
analyzed using the DAVID (http://david.abcc.ncifcrf.
gov/) [6] and PANTHER (http://pantherdb.org/) [7] 
analysis tools to identify enriched functions, biological 



Oncotarget56735www.impactjournals.com/oncotarget

process and pathways categories [8]. Benjamini-corrected 
P-values less than 0.05 were considered significant. 
Pathway analysis using the DAVID tool was based on the 
REACTOME, KEGG pathway and PANTHER databases.

supplementary table s1

Complete list of differential proteins identified in 
the PCs of <VGPR and CR/VGPR patients. The table 
provides the protein names, numbers of identified peptides, 
scores, MS/MS counts, sequence coverages, molecular 
weights, calculated mean fold changes for iTRAQ and 
LF approaches, SwissProt accession numbers and the GO 
terms of the molecular function/biological process.
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