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Abstract Lipids are essential components of the nervous sys-
tem. However, the functions of very long-chain fatty acids
(VLC-FA; >28 carbons) in the brain are unknown. The en-
zyme ELOngation of Very Long-chain fatty acids-4
(ELOVLA4) catalyzes the rate-limiting step in the biosynthesis
of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35):
12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698—
708, 2014), which we identified in the brain as saturated fatty
acids (VLC-SFA). Homozygous mutations in ELOVL4 cause
severe neuropathology in humans (Ozaki et al., JAMA Neurol
72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25,
2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475,
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2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015;
Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011)
and are post-natal lethal in mice (Cameron et al., Int J Biol Sci
3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128,
2007; McMabhon et al., Molecular Vision 13: 258-272, 2007;
Vasireddy et al., Hum Mol Genet 16(5): 471-482,2007) from
dehydration due to loss of VLC-SFA that comprise the skin
permeability barrier. Double transgenic mice with homozy-
gous knock-in of the Stargardt-like macular dystrophy
(STDG3; 797-801_AACTT) mutation of Elovl4 with
skin-specific rescue of wild-type Elovi4 expression
(S" Elovi4™"™ mice) develop seizures by P19 and die by
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P21. Electrophysiological analyses of hippocampal slices
showed aberrant epileptogenic activity in S Elovi4™ ™ mice.
FM1-43 dye release studies showed that synapses made by
cultured hippocampal neurons from S*Elovi4™ /"™ mice ex-
hibited accelerated synaptic release kinetics. Supplementation
of VLC-SFA to cultured hippocampal neurons from mutant
mice rescued defective synaptic release to wild-type rates.
Together, these studies establish a critical, novel role for
ELOVLA4 and its VLC-SFA products in regulating synaptic
release kinetics and epileptogenesis. Future studies aimed at
understanding the molecular mechanisms by which VLC-
SFA regulate synaptic function may provide new targets for

improved seizure therapies.

Keywords ELOVL4 - Very long-chain saturated fatty acids -
Synaptic vesicle fusion kinetics - Synaptic dysregulation -
Seizure - Brain lipids

Introduction

Heterozygous inheritance of four different mutations in exon 6
of the gene encoding the enzyme ELOngation of Very Long-
chain fatty acids-4 (ELOVL4) develop a form of macular de-
generation known as Stargardt-like macular dystrophy
(STGD3) [1-3]. Our group discovered that ELOVLA is a fatty
acid elongase responsible for catalyzing the rate-limiting con-
densation reaction in the biosynthesis of very long-chain fatty
acids (VLC-FA; >C28) [4]. We further showed that one of the
STGD3 causing mutations, a 5-bp deletion in the exon 6 of
ELOVLA4 (797-801 AACTT), results in an enzymatically inac-
tive mutant protein [5]. VLC-FA are present as components of
more complex lipid molecules with tissue-specific distribution.
ELOVLA4 synthesizes VLC saturated fatty acids (VLC-SFA)
that are incorporated into several sphingolipids that provide
the epidermal water barrier in the skin [7—10] and into complex
wax esters that contribute to the tear film generated by the
Meibomian gland [11]. We found that the VLC-SFA, 28:0
and 30:0, are the predominant products of ELOVLA4 in the brain
as components of sphingolipids [12]. ELOVL4 also synthe-
sizes VLC polyunsaturated fatty acids (VLC-PUFA) [4] as
components of phosphatidylcholine (PC) that are enriched in
retinal photoreceptor outer segments [13] in the retina and as
components of sphingolipids in testes [12, 14—-16].

ELOVLA4 and its VLC-FA products are critical to the func-
tion of the central nervous system. Several mutations in the
human ELOVL4 gene that cause neurological and skin disor-
ders have been identified [1, 2, 17-22]. Heterozygous inheri-
tance of ELOVL4 mutations causes STGD3, an aggressive
juvenile macular degeneration, in the absence of any other
central nervous system or skin phenotypes [1-3].
Heterozygous inheritance of other ELOVL4 mutations causes
autosomal dominant type 34 spinocerebellar ataxia (SCA34)
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and/or erythrokeratodermia variabilis (EKV) [17, 19, 20];
these patients show no retinal phenotype. Homozygous inher-
itance of ELOVL4 mutations causes devastating neurological
disorders characterized by seizures, intellectual disability,
spastic quadriplegia, ichthyosis, and pre-mature death [18,
21]. Thus, ELOVLA4 and its VLC-FA products play a critical,
albeit unknown role in brain development and function.

ELOVLA4 is poised to play a role in many parts of the
developing and mature brain. ELOVL4 localizes to the endo-
plasmic reticulum [5, 23] and is primarily expressed by neu-
rons in the brain, although some expression of ELOVL4 may
be present in glial cells, particularly oligodendrocytes [24].
Neuronal expression of ELOVLA4 is widespread but varies in
a region and cell type-specific manner. High levels of
ELOVL4 are found in neurons of the cerebral cortex and
portions of the hippocampus [24], consistent with the seizure
phenotypes associated with homozygous inheritance of mu-
tant ELOVLA4. In particular, neurons in the CA3 region of the
hippocampus, a structure intimately involved with
epileptogenesis in a number of seizure disorders, show high
levels of ELOVLA [24]. Similarly, ELOVLA4 is prominently
expressed in the granule cells and Purkinje cells of the cere-
bellum [24], which is affected by the autosomal dominant
mutations in ELOVL4 that cause SCA34 [17, 19, 20].
Expression of ELOVLA4 in the brain is regulated at the geno-
mic level [25]; it begins at embryonic stages and peaks shortly
after birth before declining by 30 days after birth to low, but
steady-state expression into adulthood [25]. The spatial and
temporal regulation of ELOVI14 expression in the brain and
the association of ELOVL4 mutations with varying degrees of
human neural disease indicate that ELOVL4 and its VLC-FA
products are critical to neuronal health and function.

In an attempt to identify the complex roles for ELOVL4
and its VLC-FA products in health and disease, our group
developed a novel animal model to study the effects of
ELOVL4 and VLC-FA depletion on brain function.
Homozygous expression of mutations in Elovi4 or global de-
letion of Elovi4 in mice leads to their death within hours of
birth due to dehydration [6—10], which until now, has
prevented investigation into the function of ELOVL4 or its
VLC-FA products. To circumvent this neonatal lethality, we
generated skin-rescued (S*) mice that express two non-
functional copies of Elovl4 containing the 5-bp deletion found
in STGD3 patients (797-801_AACTT) [1, 3], but with trans-
genic expression of the wild-type Elov/4 minigene in the skin
under control of both the human skin-specific KERATIN-14
and INVOLUCRIN promoters, to rescue the skin barrier de-
fect. These mice (S" ElovI4™™) survived, but starting at
post-natal day 19 (P19), developed a severe, progressive sei-
zure phenotype that resulted in death by P21. This is consis-
tent with the phenotype described of children with homozy-
gous inheritance of ELOVL4 mutations [21]. Thus, we have
developed a novel animal model that recapitulates the human
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condition, which permits for the first time investigation of the
functional role of ELOVL4 and its VLC-FA products in the
brain. The studies presented herein show that the absence of
functional ELOVLA4 and its VLC-FA products from the brain
cause synaptic dysregulation and provide evidence that VLC-
SFA are able to regulate pre-synaptic vesicle fusion kinetics.

Materials and Methods

Transgene Construction and Generation of S"Elovi4™"Y
™4 and Control Mice Three different transgenic mice were
bred to generate the skin-rescued S*Elovi4™"™ mice. These
included mice with heterozygous knock-in of the mouse Elovi4
gene containing the 5-bp (STGD3) deletion (Elovi4"”"™*) and
transgenic mice expressing the mouse wild-type (wt) Elovi4
minigene under the human involucrin promoter, both of which
have been previously described [9, 26]. We generated the third
transgenic mouse line by expressing the mouse wt Elovi4
minigene under control of the human keratin-14 promoter
pGEM3Z vector (kindly provided by Elaine Fuchs, PhD,
Rockefeller University, New York, NY). The human keratin-
14 (K14) promoter drives gene expression in the basal layer of
the epidermis, outer root sheath cells of hair follicles, and in
stratified squamous epithelia cells of the skin [27, 28]. To gen-
erate transgenic mice expressing the wt Elovl4 under the K74
promoter, wt mouse Elovi4 was PCR amplified using high-
quality PCR enzymes (Thermo Fisher Scientific, Carlsbad,
California) and pCMV-Elovi4 templates as previously de-
scribed [4]. The PCR product was digested with Bam HI, pu-
rified, and cloned into the Bam HI site of the pGEM3Z vector
containing the human K14 promoter to generate pGEM3Z-
mouse-Elovi4 transgenic construct. The final construct was se-
quenced to verify proper orientation and sequence integrity of
Elovl4. The Ki14-mouse-Elovl4-K14 polyA transgene cassette
was digested with Eco RI and Hind IIT and used for generation
of transgenic mice at Duke Neurotransgenic Laboratory Core
(Duke University, Durham, NC). We characterized the TgK14-
Elovi4 (Tg""*Elovi4) transgenic founders by PCR. Expression
of wt ELOVLA in the skin was confirmed by western blotting.

To generate the S*ElovI4™™ mice, we first crossed
Elovi4""™" mice with Tg"'?Elovi4""™" and Tg™VElovi4""*
mice to generate 7g~'?Elovi4""™" and Tg™ Elolv4""™"
mice, respectively. The Tg*"*Elovi4""™" and Tg™VElolv4""
mut were crossed to generate the skin-rescued 7g*'#™ (S™)
ElovIl4™"/™(S* Elovi4™"™) mice and litter mate controls
used in this study. During all crosses, mice from different
parents were used. To promote survival of the S*Elovi4™"
™ mice, pregnant females from the Tg%'*Elovi4""™ and
Tg"™VElolv4""™! lines were maintained in an Ohmeda
Medical Giraffe Incubator (Laurel, MD) until they gave birth
and during the nursing period. The incubator temperature was
maintained at 24 °C and the humidity held at 80-90%. Studies

were performed using S* Elovi4™"™ mice and Elovi4™ "
mice (for embryonic culture) of both sexes and WT littermate
controls of both sexes.

Animals and Husbandry All experimental mice were bred
into a C57B6 background. Mice were maintained in a
pathogen-free barrier facility on a 12 h light:12 h dark daily
cycle. Light intensity at cage level was ~ 150 Ix. Food and
water were available at all times. All animal procedures were
approved by the University of Oklahoma Health Sciences
Center Institutional Animal Care and Use Committee. All
procedures conformed to the National Institute of Health
Guide for the Care and Use of Laboratory Animals, the
Association for Research in Vision and Ophthalmology
Resolution on the Use of Animals in Research, and US
Public Health Service guidelines.

Immunolabeling Brains from S Elovi4"™", S Elovi4""™"
and S*Elovi4™"™" mice were collected for histology and
immunolabeling at post-natal days 19-21 (P19-P21, the peri-
od of seizure activity). At least five animals of each genotype
were examined. Animals were euthanized by cervical disloca-
tion followed by decapitation. The brains were removed from
the skull and hemisected on an aluminum block half-
submerged in liquid nitrogen. The left hemisphere of each
brain was collected for biochemical analyses. The right hemi-
sphere was embedded unfixed in optimal cutting temperature
medium (OCT; Sakura Tissue Tek; VWR, West Chester, PA),
frozen on the aluminum plate, and then stored at —80 °C.
Frozen sections (10 um thickness) were prepared and collect-
ed onto Superfrost Plus slides (Fisher Scientific, Pittsburgh,
PA) and stored at — 20 to — 30 °C until used.

For immunolabeling of brain tissue, cryosections were
thawed and immersed in 100% methanol at —30 °C for
20 min, rinsed in distilled water, and then rinsed in Hank’s
buffered salt solution (HBSS). In some experiments, cryosec-
tions were subjected to high-temperature antigen retrieval in
10 mM citrate buffer (pH 6.0) for 30—60 min prior to rinsing in
HBSS. Non-specific labeling was blocked for 2 h at room
temperature using “blocker” solution (2—10% normal goat
serum + 5% bovine serum albumin + 1% fish gelatin + 0.1—
0.5% Triton X-100 in HBSS). Blocker was removed and a
combination of primary antibodies raised in different host
species was applied overnight at room temperature. Sections
were rinsed in HBSS and incubated in an appropriate combi-
nation of fluorescently conjugated secondary antibodies for
6075 min at room temperature. Sections were rinsed again
and cover-slipped using Prolong Gold + DAPI (Life
Technologies-Molecular Probes) to retard photobleaching.

For immunolabeling of cultured hippocampal neurons, cul-
tured neurons grown on glass coverslips were fixed in 4%
paraformaldehyde for 15-30 min at 4 °C, rinsed in HBSS,
and then incubated in blocker for 45-60 min at room
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temperature to block non-specific labeling. Primary antibodies
were applied for 4 h at room temperature or overnight at 4 °C,
coverslips were rinsed, and appropriate fluorescent secondary
antibodies were applied for 75 min at room temperature.
Coverslips were rinsed and mounted onto glass slides using
Prolong Gold with DAPI (Molecular Probes) and viewed by
epifluorescence microscopy.

Specificity of labeling methods was confirmed by omitting
primary antibody or substituting normal rabbit serum for pri-
mary antibody. Specimens labeled using only one primary
antibody and a combination of secondary antibodies showed
no bleed-through of signals between fluorescence channels.

For histological staining, frozen sections were thawed,
rehydrated in HBSS, and then stained. Nissl staining was per-
formed by applying a 1% toluidine blue solution to frozen
sections of brain for 5-10 min on a hot plate at 60 °C.
Sections were rinsed several times in HBSS at room temper-
ature, cover-slipped using Prolong Gold, and observed on the
microscope. Sudan Black B was prepared as a 0.3% solution
in 70% ethanol, protected from light, and stored at 4 °C until
used [29, 30]. A droplet of filtered Sudan Black B solution
was applied to the sections on the slides, which were allowed
to stand in a humidified chamber for 10 min at room temper-
ature in the dark. Sections were then rinsed several times in
HBSS at room temperature and cover-slipped using Prolong
Gold and observed on the microscope.

Wide-field fluorescence and bright-field imaging were per-
formed using an Olympus IX70 (Olympus America, Center
Valley, PA) microscope fitted with a QICAM CCD camera
controlled via the QCapture software (QImaging, Surrey,
BC) or, for low-magnification imaging, an Olympus
MVX10 microscope fitted with an Olympus DP71 camera
controlled via the CellSens software (Olympus America).
Labeling patterns in fluorescence images were assessed by
superimposing images of matching fields captured indepen-
dently in each fluorescence channel. Low-magnification im-
age montages were assembled using the CellSens or
Photoshop software (Adobe Systems, San Jose, CA). To pre-
pare figures, image scales were calibrated and images were
imported into the Photoshop software. If necessary, brightness
and contrast were adjusted uniformly across the image to
highlight specific labeling.

Primary Antibodies for Immunolabeling Affinity-purified
rabbit polyclonal anti-ELOVL4 was raised against a synthetic
peptide (aa 301-312) of wild-type mouse ELOVL4 conjugat-
ed to keyhole limpet hemocyanin [4]. This antibody recog-
nizes the WT ELOVL4 but does not recognize the mutant
form of ELOVL4 associated with STDG3 [4]. Specificity of
this antibody has been confirmed by western blotting and pre-
adsorption previously [4]. Deletion of WT Elovi4 eliminates
immunolabeling [31, 32]. Anti-ELOVL4 was used at a dilu-
tion of 1:300 to 1:500.
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Neuron-Specific Nuclear Protein (NeuN) Mouse monoclo-
nal anti-NeuN (Millipore, Cat# MAB377B; clone A60) rec-
ognizes three bands at 4648 kDa corresponding to NeuN on
western blots [33, 34] and labels most post-mitotic neurons
immunohistochemically. Anti-NeuN was used at a dilution of
1:500.

Glutamic Acid Decarboxylase, 65 kDa Isoform (GAD-65)
Mouse monoclonal anti-GAD-65 (Millipore, Cat# MAB351;
clone GAD-6) was raised against GAD purified from rat brain
and recognizes a single band on western blots [35]. Anti-
GAD-65 was used at a dilution of 1:300—1:500.

Active Zone Pre-synaptic active zones were identified using a
rabbit polyclonal antibody raised against recombinant Rim2
(aa 1-466) and affinity purified with a peptide corresponding
to aa 41-59 of mouse Piccolo that recognizes a shared epitope
in Riml, Rim2, and Piccolo (Synaptic Systems, Gottingen,
Germany, Cat# 364-003).

Vesicular Glutamate Transporter 1 (VGluT1) Glutamatergic
pre-synaptic terminals were immunolabeled using mouse
monoclonal anti-VGluT1 that was raised against a fusion pro-
tein of aa 493-560 of rat VGIuT1 diluted 1:100-1:200
(NeuroMab, Davis, CA. 75-066; clone N28/9).

Synaptic Vesicle Protein 2 (SV2) Mouse monoclonal anti-
SV2 was raised against purified synaptic vesicles and used ata
dilution of 1:20-1:100 (Developmental Studies Hybridoma
Bank, Cat# SV2, clone SV2. [36]).

Positron Emission Tomography (PET) PET imaging for the
measurement of '*F—labeled fluorodeoxyglucose (FDG) was
performed by the Research Imaging Facility at the OUHSC
College of Pharmacy. '®F-FDG was synthesized in a
Biomarker Generator BG75 (Advanced Biomarker
Technologies, Knoxville, TN, USA). Briefly, ~10 uCi/g
"F_FDG was delivered with a tail vein injection to anesthe-
tized (2% isoflurane—air mixture) mice. Two hours after injec-
tion, the mice were re-anesthetized for imaging and positioned
supine in a gantry of a PET-CT dual modality machine from
Gamma Medica Ideas (Northridge, CA, USA). A fly-mode
CT of brain was acquired before a 10-min long list-mode
PET acquisition. Through the imaging period, the mice were
kept anesthetized by a 2% isoflurane—air mixture. At 2.5 h
post injection, blood was collected prior to euthanasia and
collection of tissues. Radioactivity of the blood, heart, lung,
spleen, liver, retina, and brain was measured, along with a
fraction of the prepared dose for calculation of injected dose.

The acquired images were reconstructed by filtered back
projection algorithm and fused with CT image to generate a
composite PET-CT image using the AMIRA 3.1 software
(FEI Visualization Sciences Group, Burlington, MA, USA).
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Composite images were used for segmentation-based drawing
of a 3D region of interest surrounding the brain. No attempt
was made to correct the images for attenuation.

The radioactive counts in the region of interest were deter-
mined as Ct (counts per unit volume). Ct decay was corrected
to the time of injection and expressed as % injected dose per
gram or per organ.

Metabolomics Mice were anesthetized with isoflurane and
brains were harvested directly into liquid nitrogen by removal
of the skull cap and rapid separation of the brain from the
spinal cord using a pair of curved forceps (store at — 80 °C).
In a cold room (4 °C), frozen brains were crush homogenized
into powder while submerged in liquid nitrogen and stored at
—80 °C.

Separation and Quantification of ATP, ADP, AMP,
NADH, and NADPH Homogenized brain powder was ex-
tracted in 150 mM KOH and proteins were precipitated follow-
ing incubation on ice (20 min) and then pelleted by centrifuga-
tion (10 min at 16,000xg). Supernatant was then filtered
(0.45 pum pore size) prior to analysis. Analysis: Mobile phase
solvent A [100 mM KH,PO,, 1.0 mM tetrabutylammonium
sulfate (TBAS, pH 6.0)]; solvent B (acetonitrile (CH;CN).
The injection was 100 pL and the flow rate was 1.0 mL/min.
Column: Eclipse Plus C18 column with 5 wm diameter beads,
4.6 x 150 mm in length (Agilent). Elution conditions: stepwise
gradients of buffer A/B [(1) 100%/0%, 0 to 2.5 min; (2) 95%/
5%, 2.51 to 7.5 min; (3) 85%/15%, 7.51 to 15 min; and (4)
100%/0%, 15.1 to 25 min]. Detection: ATP, ADP, and AMP
absorption at 254 nm. NADH and NADPH fluorescence exci-
tation at 340 nm and emission at 430 nm.

Separation and Quantification of NAD" and NADP*
Homogenized brain powder was extracted in 5%
metaphosphoric acid (HPOs3); proteins were precipitated fol-
lowing incubation on ice (20 min) and then pelleted by cen-
trifugation (10 min at 16,000xg). Supernatant was then fil-
tered (0.45 um pore size) prior to analysis. Analysis: Mobile
phase solvent A [100 mM KH,PO4, 1.0 mM TBAS,
(pH 6.0)]; solvent B (Acetonitrile (CH;CN)]. The injection
was 100 uL and the flow rate was 1.0 mL/min. Column:
Eclipse Plus C18 column with 5 um diameter beads, 4.6 x
150 mm in length (Agilent). Elution conditions: Stepwise gra-
dients of buffer A/B [(1) 100%/0%, 0 to 5 min; (2) 85%/15%,
5.01 to 10 min; and (3) 100%/0%, 10.01 to 20 min].

Magnetic Resonance Imaging (MRI) MRI experiments
were performed using a Bruker Biospec 7.0 Tesla/30 cm hor-
izontal-bore magnet imaging system (Bruker Biospin,
Ettlingen, Germany). Animals were restrained by using 1.5—
2.5% isoflurane at 0.8 L/min O,, placed in a 72-mm quadra-
ture volume coil for signal transmission, and a surface coil

was used for signal reception. For blood-brain-barrier perme-
ability assessment, T-weighted MR images (FLASH, TR =
60 ms, TE =5.39 ms, 70° flip angle, 256 x 256 matrix, 4 steps
per acquisition, 3.5 x 3.5 cm? field of view, 1 mm slice thick-
ness; spatial resolution of 137 pum x 137 um) were obtained
pre- and post-administration of Gd-DTPA (i.v. injection via
the tail vein; 0.5 mol/L, 0.5 mL/kg body weight; Magnevist,
Bayer HealthCare Pharmaceuticals, Wayne, NJ) at 2—5-min
intervals over a 30-min time-course. Data processing: For de-
termining BBB permeability, MR signal intensities were mea-
sured from regions-of-interest (ROIs) in brain tissue regions
using the Paravision (Bruker) software.

Preparation of Synaptic Membranes from Baboon Brains
We used a modified version of the protocol described by
VanGuilder et al. [37, 38]; see [39] for details. Briefly, five
major membrane fractions were isolated along with a starting
homogenate (H) from freshly dissected baboon hippocampus:
P1 (nuclear), P2 (cytoskeletal), P3 (neurosynaptosomal), PSD
(post-synaptic density), and SV (synaptic vesicle). Synaptic
fractions were then re-suspended in Tris-HCI buffer (pH 7.4)
and separated for electron microscopy, immunoblotting, or
lipid analysis.

Electron Microscopy Samples were fixed in a mixture of 2%
paraformaldehyde and 2% glutaraldehyde in 0.1 M cacodylate
buffer (pH 7.3) for 2 h on ice. The fixative was carefully rinsed
out with three 0.1 M cacodylate buffer washes, keeping the
pellet intact. The pellet was post-fixed in 1% osmium tetrox-
ide in 0.1 M cacodylate buffer for 90 min at room temperature,
rinsed, and dehydrated through an ethanol gradient and finally
propylene oxide. Pellets were infiltrated with epon-araldite
resin and heat-cured. Blocks were sectioned at 100 nm and
sections were mounted on 300 copper mesh grids, stained
with Sato’s lead to enhance contrast, and imaged on a
Hitachi H-7600 transmission electron microscope.

Immunoblots Western blots were performed on 12% SDS-
PAGE gels using standard electrophoresis methods.
Immunoblotting for ELOVL4 in wild-type, heterozygous,
and mutant animals was performed on hemisected brain ho-
mogenates (10 pg protein). ELOVL4 primary antibody
(1:1000) was detected using a HRP anti-host secondary anti-
body (1:1000). 3-Actin primary antibody (1:1000) was used
with an HRP anti-host secondary antibody (1:3000) to re-
probe for densitometry quantification of ELOVLA4 levels.
Homogenized synaptic fractions isolated from baboon hippo-
campus were loaded (10 pg protein). Confirmation of synap-
tic vesicle fraction identification was performed using primary
antibodies (1:4000) against VGIuT1 (rabbit clone #Bc66f),
VGIuT2 (rabbit clone #Dcf68), and NTT4 (rabbit anti-
NTT4), all of which were kindly provided by Drs. Nicolas
Bazan and Jeffery Erickson (LSU, New Orleans, LA). HRP
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anti-host secondary antibodies were used at a concentration of
1:2000. Blots were visualized using a Kodak Imager (Kodak
Inc., Rochester, NY). The Carestream imaging software
(Carestream Health, Inc., Rochester, NY, USA) was used to
measure protein levels. Densitometry data were analyzed
using GraphPad Prism 7 (GraphPad, La Jolla, CA).

Lipid Analysis Total lipids from synaptic membrane fractions
were extracted following the method of Bligh and Dyer [40]
with modifications [41]. Fatty acid methyl esters (FAMES)
were prepared, identified, and quantified as previously de-
scribed [4]. Briefly, FAMES were prepared from total lipid
extracts by subjecting them to strong acid hydrolysis (16.6%
HCI in methanol at 85 °C overnight). Total FAMES were
quantified using an Agilent Technologies 6890N gas chro-
matograph (GC) with a flame ionization detector (FID), using
15:0 and 17:0 as internal standards. VLC-SFA were quantified
using an Agilent Technologies 7890 GC [41] with a 5975C
inert XL mass spectrometer (MS) detector (Agilent
Technologies). The GC-MS was operated in the electron im-
pact (EI) single ion monitoring (SIM) mode. The 28:0 and
30:0 response values were obtained by using the m/z ratios
438.4 and 466.5, respectively, along with m/z 74.1 and 87.1.
Sample concentrations were determined by comparison to ex-
ternal standards, using 25:0 and 27:0 as internal standards.
Multivariate ANOVA with Tukey’s post hoc was used to de-
termine statistical significance.

Extracellular Electrophysiology Mice were euthanized and
their brains carefully removed and placed for approximately
1 min in ice-cold oxygenated artificial cerebrospinal fluid
(ACSF) solution containing 126 mM NaCl, 2.5 mM KCl,
1.25 mM NaH,PO,4, 2 mM MgCl,, 2 mM CaCl,, 26 mM
NaHCOs3, 10 mM glucose, 2 mM pyruvic acid, and 0.4 mM
ascorbic acid (final pH 7.4). After trimming away and apply-
ing a cut to the base (20 —30° angle), the brain was fixed to an
ice-cold stage and placed in a HM650V vibrating microtome
(Thermo Scientific, Burlington, ON, USA) filled with cold
oxygenated slicing solution containing 240 mM sucrose,
25 mM NaCl, 2.5 mM KCIl, 1.25 mM NaH,PO,4, 26 mM
NaHCO;, 0.4 mM ascorbic acid, 10 mM glucose, 10 mM
MgCl,, and 2 mM pyruvic acid (final pH 7.4). The brain
was sliced horizontally and hippocampal slices with a thick-
ness of 350 um were collected and transferred to a recovery
chamber containing oxygenated ACSF. The slices were left in
this chamber at 32 °C for 30 min and then at room temperature
for at least 30 min. To record, the slices were positioned on a
P5002A multi-electrode array (Alpha MED Scientific Inc.,
Osaka, Japan). The chamber was perfused with oxygenated
ACSF at arate of 2 mL/min at 32 °C. Six hundred (600) traces
of network activity were recorded, each for a 1-s duration,
under physiological conditions with continuous ACSF perfu-
sion. For high K* challenge to evoke epileptiform activity, the
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K* concentration was increased to 7.5 mM in the ACSF. Field
excitatory post-synaptic potentials (fEPSPs) were generated in
the dentate gyrus (DG) region of the hippocampus by stimu-
lating downstream electrodes along the perforant pathway.
Input/output curves (I/O curves) were generated by applying
increasing stimulus currents from 0 to 100 pA to the pathway
and recording fEPSP responses. Calculation of I/O ratio was
performed by dividing amplitude of evoked fEPSP by the
amplitude of fiber valley and the resulting number was log
normalized for statistical comparison. See below for details
of extraction, quantification, and statistical analyses.

Data Processing Standard testing methods, such as ANOVA
with appropriate post hoc correction, Student’s ¢ test, or
Mann—Whitney exact test were employed when no data col-
lection design embedding was involved.

For electrophysiology data, raw MED64 Mobius workflow
files were opened and spikes were extracted in Mobius (©
WitWerx Inc.). Positive and negative spike-threshold was set
to +0.021 and —0.021 mV, respectively. Spike traces were
extracted along with 1 ms of baseline before and after the
spike event, without down sampling. Raw data were filtered
using a Bessel highpass (2-pole) with a cutoff frequency of
1000 Hz and a DC filter with a typical spike length set to 1 ms.
The resulting file containing all extracted spikes within that
slice recording was then processed in Microsoft Excel using a
visual basic macro that was coded and validated by us to
extract each of the final parameters for statistical comparison.

The impact of genotype and K* depolarization on the five
variables of interest [amplitude (+), amplitude (—), inter-spike
interval, frequency, and active frequency]| was analyzed by
fitting linear mixed effect models as implemented by the
“lme” function in the R package “nlme.” The mixed-effects
model extends the classical linear model (ANOVA/regression)
to accommodate complex data collection design features such
as nested layers and within-group correlation. The method
formulation [42], computational method, and implementation
of the model in R have previously been described [43]. The
complex multilayer nested repeated data collection, with mul-
tiple channels/regions per slices and multiple slices per indi-
vidual brains, was accounted for by proper specification of the
random effect structure. Magnitude coefficient tables and p-

values for the significance of fixed effects were extracted

using the tTable method, while confidence intervals were
returned by the intervals function in the nlme package. In
the figures, the 95% confidence intervals (CIs) for main ef-
fects and differences per region and total are represented as
vertical lines, while the p values above the bars show the
significance of interactions, which are the difference of these
effects across mouse types or K* treatment. When suitable, the
dependent variables were pre-processed with boxcox transfor-
mation [44] to better fulfill the normality assumptions of the
main statistical procedures.



Mol Neurobiol (2018) 55:1795-1813

1801

Temporal variation of frequency over the 600-s observa-
tional period (see Fig. 8) was modeled and contrasted in the
framework of generalized additive models [45], as implement-
ed in the gam function of the R package mgcv. The function
relies on smoothing splines for fitting the temporal curves and
is able to deal with the random effects, capturing the complex
data collection design as well. Spike occurrences were
modeled as Poisson random events. The curve inserts in
Fig. 5 depict the log of average process rates, the link func-
tions of the Poisson family parameter, while the error bars
show 95% CIs. Main effect curves (red, black) were derived
with the plot smooth function, while the differential effect
(blue) was studied with the plot diff function. The time inter-
vals where the difference was significant, retrieved by the
plot_diff function, are marked with horizontal bars at the bot-
tom of the figure.

Primary Embryonic Hippocampal Cultures and
Supplementation Pregnant females were euthanized by
cervical dislocation and embryonic day 18.5 (E18.5) em-
bryos were removed into Hank’s solution + 20% NuSerum
(Corning). Brains were removed and both hippocampi
were micro-dissected under sterile conditions in a tissue
culture hood and placed in fresh ice-cold Hank’s solution
+20% NuSerum. Both hemispheres were sliced into small-
er subsections and transferred to 15 mL Falcon tubes. Each
sample was washed three times with ice-cold Hank’s solu-
tion +20% NuSerum and then three times with ice-cold
Hank’s solution (allowing tissue to settle to the bottom
between each wash). Hippocampal cells were then digested
with 1 mL of pre-warmed digestion solution [140 mM
NaCl, 5 mM KCI, 7 mM Na,HPO,, 2.5 mM HEPES +
trypsin, and DNAse added fresh prior to use (final
pH 7.4)] at 37 °C for 10 min before mechanical dissocia-
tion with flame-tapered/silicone-coated Pasteur pipettes.
Trypsin was neutralized with an equal volume ice-cold
Hank’s solution +20% NuSerum and tissue was washed
three times with ice-cold Hank’s solution +20%
NuSerum and then three times with ice-cold Hank’s solu-
tion (allowing tissue to settle to the bottom between each
wash). Hippocampal cells were then dissociated with
flame-tapered/silicone-coated Pasteur pipettes in 1 mL
ice-cold dissociation solution (12 mM MgSO,47 H,O in
Hank’s solution + DNAse added fresh prior to use). Cells
were then spun down for 5 min at 1200 rpm before being
re-suspended in pre-warmed plating media and counted
(Biorad, Hercules, CA automated cell counter). On day
in vitro 0 (DIV0), 50,000 cells were plated per coverslip
in 1 mL of plating media per well. On DIV1, a 500-uL
50% media change was done, replacing with 500 pL plat-
ing media. On DIV4, a 500-uL 50% media change was
performed, replacing with 500 pL plating media + 4 pM
of the mitotic inhibitor cytosine-arabinoside (ARA-C).

Cells were subjected to FM1-43 imaging between
DIV14-17. Supplementation: To assess the effects of re-
supplying VLC-SFA, 24:0 or 28:0 + 30:0 SFAs were made
into sodium salts, complexed to fraction V bovine serum
albumin (BSA), and delivered to neurons in freshly pre-
pared growth media + ARA-C at a concentration of 5 pg
per milliliter. Supplementation (2.5 pg of each FA) was
performed as a part of the standard DIV4 half media
change (described above); after 1 week of co-incubation,
another half media change was performed to reduce the
amount of lipid in solution, and imaging was performed
between DIV14-17 as before.

FM1-43 Dye Studies We tested synaptic vesicle trafficking
using amphipathic fluorescent styryl dyes of FM1-43
(Invitrogen, Carlsbad, CA). FM1-43 shows a robust increase
of'its quantum yield when incorporated into vesicles [46, 47].
This process is reversible, resulting in less free extracellular
fluorescent dye in the perfusion solution. FM1-43 (4 uM) was
loaded into the synaptic vesicles by depolarization for 90 s
with 47 mM KCI containing Tyrode solution. After 10 min
of wash with zero-Ca* Tyrode solution, neurons were stimu-
lated with four rounds of 90 mM KCI containing Tyrode so-
lution. Images were collected using an Olympus IX73 micro-
scope, an Olympus 40x objective lens, and an Evolve-512
CCD camera, and analyzed by the MetaFluor imaging soft-
ware (Molecular Devices, PA) as previously described
[48-51]. Fluorescence intensity was corrected for background
fluorescence as detected after the experiment in each selected
region. To compare release kinetics, starting fluorescence
values were normalized for each synaptic bouton with the
pre-stimulus level set to 1.

Results

Depletion of VLC-SFA in the Brain Leads to Seizures and
Pre-mature Lethality in Mice Mice with global deletion
(Elovl4~"") or homozygous for STGD3 mutant Elovi4
(Elovi4™ ™' 5_bp deletion: 797-801 AACTT) die shortly
after birth from dehydration due to the loss of omega-O-
acyl-ceramides that contain VLC-SFA, which are essential
for epidermal water barrier function [7—10]. The S* Elovi4™"
" mice we generated were rescued from neonatal lethality,
but displayed a phenotype similar in many respects to that
reported in human children with inherited homozygous
ELOVL4 mutations [21]. At P19, S Elovi4™"™ mice devel-
oped epileptic seizures that increased in frequency until their
subsequent death at P21 (Online Resource 1). Compared to
their WT littermate controls, S* Elovi4™ "™ mice were devel-
opmentally delayed, with un-opened eyes and half the body
weight of their heterozygous and WT littermates at P20
(Online Resource 2a), indicating an important role for
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ELOVLA4 and its products during development. Interestingly,
the wet weights of brains harvested from S*Elovi4™"™" mice
at P20 did not differ significantly from their WT littermates
(Online Resource 2b).

To determine the role of ELOVL4 in brain function, we
characterized brain ELOVL4 expression by immunolabeling
using a WT ELOVL4-specific antibody (Online Resource 3)
that does not recognize the 5-bp del. mutant form of ELOVL4
[4]. The ELOVLA staining pattern in brain sections from P19-
P21, the period of seizure activity in S Elovi4™"™ mice,
revealed broad but region-specific neuronal expression of
ELOVLA4 in the brains of Elovi4""*" and ElovI4""™" mice
(Fig. 1a), as we have previously reported [24]. In contrast,
S*Elovi4 ™™ mice showed no ELOVL4 labeling
(Fig. 1a); residual labeling in the granule cell layer was not
due to ELOVL4 as confirmed by western blotting (not
shown). In Elovi4*""" mice, ELOVL4 expression in the hip-
pocampal formation was very strong in neurons in CA3,
subiculum, and the hilus of the dentate gyrus (DG), while
neurons in CA1l and CA2 showed substantially weaker
ELOVLA4 labeling (Fig. 1c¢), as reported previously [24]. The
hippocampus in S*Elovi4"""", §*Elovi4*"™"" and
S* Elovi4™ ™ mouse brains showed normal light microscop-
ic organization with no significant differences in size or mor-
phology (Fig. 1c and Online Resource 4). We further con-
firmed loss of ELOVL4 expression in brain tissues of
S*Elovi4™ ™! mice by quantitative immunoblotting
(Fig. 1Db).

Our preliminary studies indicated that synaptic function in
the Schaffer collaterals and perforant path was dysregulated in
S*Elovi4™ ™ mice. Consistent with this finding, ELOVL4
expression is high in the CA3 region of the hippocampus and
the entorhinal cortex, which give rise to the Schaffer collat-
erals and perforant path, respectively. The hippocampus has
well-established links to many different types of seizure dis-
orders, including medial temporal lobe epilepsy [52, 53]. This
is due to the hippocampus serving as a major point of connec-
tion to cortex-associated regions that allows and facilitates the
spread of epileptiform activity between cortical and hippo-
campal networks. Finally, the hippocampus is a tractable and
well-defined experimental system in which to explore neuro-
transmission as it relates to epileptogenesis. For these reasons,
we focused our studies on synaptic structure and function in
the hippocampus of the S* ElovI4™*™ mice.

STElovi4™"™"* Mice Demonstrate Increased Energy
Demand in the Brain In view of the seizure and hyperactivity
phenotype in S* Elovi4™™ mice, we performed PET imag-
ing on P19-21 mice to evaluate uptake of '*F-FDG, an indi-
cator of cellular glucose demand in the brain. The PET results
revealed a nearly threefold increase in the amount of glucose
taken up into the brains of S* Elovi4™"™“ mice compared to
WT littermate controls, indicating increased metabolic
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demand in the brains of these seizure-prone S*Elovi4™" ™
mice (Fig. 2a). Quantification of '8F accumulation in the brain
and other control tissues harvested post-mortem, confirmed
this finding (Fig. 2b).

Increased FDG uptake can be indicative of elevated energy
demand or disruption of the blood-brain barrier (BBB). We
assessed both possibilities by analyzing ATP levels by HPLC
and structural integrity of the BBB using magnetic resonance
imaging (MRI) with Gd-DTPA, respectively. Brains of
S* Elovi4™ ™ mice showed a threefold increase in ATP with
no significant change in the other intermediary metabolites
compared to WT littermate controls (Fig. 2¢). To assess the
integrity of the electron transport chain, we evaluated complex
I activity using a fluorometric NADH oxidase assay. There
were no differences between genotypes for complex I activity
(not shown). MRI with Gd-DTPA contrast enhancement re-
vealed no evidence for differences in BBB permeability in
S*ElovI4™"™ mice compared to WT littermate controls
(Fig. 2d). Collectively, these results suggest that the increase
in ATP levels may simply reflect the large energy requirement
associated with seizure activity.

VLC-SFA Are Enriched in Synaptic Vesicles To determine
the effect of Elovi4 depletion on brain lipids, we analyzed
the glycerophospholipids (GPL) and sphingolipids (SPH)
from hippocampus of P20 Elovi4"""" and S" Elovi4™"™
mice using GC-MS and triple quadrupole tandem MS. The
predominant VLC-FA in Elovi4*"*" mouse brain were 28:0
and 30:0 VLC-SFA. To determine the subcellular localiza-
tion of VLC-SFA in the hippocampus, we prepared synap-
tic vesicles (SV) and other fractions from freshly dissected
baboon hippocampus. Baboon brains were obtained post-
mortem and chosen for these studies to ensure that enough
material was obtained for lipidomics following fraction-
ation. Membrane fractions were confirmed by transmission
electron microscopy (Fig. 3a—d) and western blots
(Online Resource 5). Lipidomic analysis revealed that both
28:0 and 30:0 were enriched in synaptic vesicle mem-
branes compared to other membrane fractions (Fig. 3e).
Low relative levels of VLC-SFA in the starting homoge-
nate, neurosynaptosomal, and post-synaptic density frac-
tions reflect the low abundance of VLC-SFA-containing
species relative to the other lipid species present in these
fractions.

VLC-SFA Deficiency Causes Dysregulated Pre-synaptic
Vesicle Fusion To assess the influence of VLC-SFA on
synaptic vesicle fusion kinetics, we performed FM1-43
dye studies [47, 50, 54] to measure pre-synaptic vesicle
fusion rates in primary hippocampal neuronal cultures
from non-skin-rescued E18.5 embryos from Elovi4"""
and ElovI4™"™ mice. Hippocampal neurons cultured
from Elovi4™"™" and Elovi4™"™"" embryos formed
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Fig.1 Expression of ELOVL4 in a
the mouse brain a ELOVL4
expression in S* Elovi4""*",

S" Elovi4""™ and S" Elovi4™"
" mice. b Western immunoblot
probing for ELOVLA4 in
hemisected whole brain from
S*Elovi4*""", S* Elovl4"""™", and
S" Elovi4™™ mice normalized
to [3-actin and quantified by
densitometry. Statistics: one-way
ANOVA with Tukey’s multiple
comparisons test, ****p < 0.0001
(n=06) error = SD. ¢ Distribution
of ELOVLA (red) co-localized
with the neuronal nuclear marker
NeuN (green) in the hippocampal
formation in S* Elovi4""*" and
S" Elovi4™™ mice at P20.
Cornu Ammonis field 3 (CA3),
polymorph layer (arrow), Cornu
Ammonis field 1 (CA1), dentate
gyrus (DG), subiculum (Sub), fo
(fornix), VL (lateral ventricle).
Scale bar =250 pm
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synapses, as indicated by the presence of synaptic vesicle
clusters and active zones, which are only assembled in the
presence of a post-synaptic terminal, demonstrating that
WT ELOVL4 is not required for synapse formation
(Fig. 4). Cultured neurons of both genotypes formed glu-
tamatergic (Fig. 4g-1) and GABAergic synapses
(Fig. 4m-r). Furthermore, there were no overt differences
in synapse formation between genotypes. As expected,
immunolabeling confirmed that ELOVL4 was expressed
in neurons cultured from Elovi4"”" mice, while neuronal
cultures from Elovi4™ "™ mice showed no labeling for
WT ELOVL4 (Online Resource 6).

To test whether the enrichment of VLC-SFA in synaptic
vesicle membranes affected pre-synaptic function, we per-
formed a detailed assessment of synaptic vesicle fusion kinetics
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in individual synapses using FM1-43 dye [46, 47, 4951, 54].
Loading and release of FM1-43 dye from synaptic vesicles was
driven with depolarizing high K* solution [50]. Analysis of
synaptic vesicle fusion was performed between DIV14-17 on
samples of over 2200 individual synapses per genotype (n =9
cultures per genotype). Neurons from Elovi4™*“™ hippocam-
pus showed faster pre-synaptic release of FM1-43 dye than
neurons from WT control hippocampus (Fig. Sa, c).
Interestingly, this shift of cumulative release frequency was
not achieved by a general acceleration of all pre-synaptic neu-
rotransmission, but rather by what appears to be selective ac-
celeration of synaptic vesicle fusion in a subset of synapses in
the absence of VLC-SFA. The fact that different synaptic pop-
ulations respond to the Elovi4 mutation differently fits with the
observation that not all hippocampal neurons express
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Fig. 2 S*ELOVL4™™ mice demonstrate increased energy demand
and ATP production. a Qualitative positron emission tomography (PET)
imaging of S"ELOVL4""*" and S"ELOVL4™"™" mice. b Post-mortem
tissue quantification of FDG radioactivity in §*ELOVL4"""" and
STELOVL4™ "™ mice. Statistics: multiple ¢ tests per row, Holm-
Sidak’s multiple comparisons correction, ****p <(0.0001. ¢ HPLC
assessment and quantification of general intermediary metabolites and

ELOVLA. In addition, assessment of total fluorescence change
revealed that the recycling synaptic vesicle pool was smaller in
Elovi4™"™ synapses than in WT synapses (Fig. 5d).

To distinguish any pleiotropic effects of the genetic manip-
ulation from VLC-SFA deficiency arising from the inactivity
of the mutant Elovl4 on synaptic vesicle fusion kinetics, we
supplemented neuronal cultures with an equimolar mixture of
the two major ELOVL4 products in the brain (28:0 + 30:0), or
with 24:0, a precursor for ELOVL4 elongation present in neu-
rons of both genotypes, which served as a control long-chain
(LC)-SFA. Assessment of Elovi4™™“! synaptic vesicle fu-
sion kinetics in the presence of 28:0+30:0 VLC-SFA
(1600+ individual synapses per genotype; n =10 cultures)
showed rescue of synaptic release kinetics, shifting the release
rate curve back to wild-type levels (Fig. 5b, c). This
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energy charge (E.C.) in whole brain from S*ELOVL4"*"*" and
STELOVL4™ "™ mice. Statistics: multiple ¢ tests per row, Holm-
Sidak’s multiple comparisons correction, **p <0.01. d Magnetic
resonance imaging with the gadolinium-based contrast agent revealed
no abnormal uptake in the brains of STELOVL4™ "™ mice compared
to wild-type controls

demonstrates that VLC-SFA regulate pre-synaptic release ki-
netics. Conversely, supplementation with the LC-SFA 24:0
(900+ individual synapses; 7 = 10 cultures) did not affect the
release kinetics of Elovi4™™ synapses (Fig. 5c). Together,
these results indicate that the absence of the VLC-SFA rather
than the presence of the mutant STGD3 ELOVLA4 protein is
responsible for the pre-synaptic dysregulation observed in
Elovl4™"™ neurons. Unexpectedly, supplementation with
24:0 or 28:0 + 30:0 SFA did not rescue cumulative FM1-43
fluorescence uptake, which reflects the size of the synaptic
vesicle pool (Fig. 5d). This suggests that this particular
observation may be a secondary developmental or regula-
tory factor arising from the fact that these neurons still
developed from E7.5 (onset of Elovi4 expression) [25] un-
til DIV4 without VLC-FA.
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Fig. 3 Brain-derived ELOVL4 products are 28:0 and 30:0 that are
enriched in synaptic vesicle membranes. Electron micrographs of
synaptic fractions isolated from baboon hippocampus by sucrose
gradient centrifugation (scale bar =500 nm). a Starting homogenate
(Homo.) with a single neurosynaptosomal unit (arrow). b
Neurosynaptosomal fraction (Synapt.) with multiple
neurosynaptosomes in frame (arrows). ¢ Post-synaptic density fraction

8" ElovI4™"™ Mice Show Aberrant Neuronal Firing
Patterns Under Spontaneous and Evoked Conditions To
better understand the epileptiform activity in the brains of
S*Elovi4™ ™ mice, we performed spontaneous and evoked
extracellular hippocampal field recordings. Using a 64 chan-
nel multi-electrode array, we assessed activity in the hippo-
campus as a whole as well as within specific sub-regions (DG,
CA3, and CAl). Field potential recordings (600 consecutive
1 s traces) were performed in hippocampal slices and extracted
spikes were analyzed for frequency, inter-spike interval, and
amplitude to assess network activity (Fig. 6).

Under normal artificial cerebral spinal fluid (ACSF) condi-
tions (2.5 mM K*), recording of spontaneous extracellular hip-
pocampal field potentials confirmed a burst-like firing pattern
in slices from S"Elovi4™“" animals distinct from the more
sporadic, tonic firing patterns observed in WT littermate con-
trols. In two cases, slices from S* Elovi4™™ mice displayed
spontaneous epileptiform activity (Online Resources 7 and 8).
However, S*Elovi4™™ hippocampal slices showed de-
creased average frequency of spontaneous network events
overall compared to WT control slices (Fig. 6a). This bursting
activity could initiate spontaneous spreading epileptiform activ-
ity throughout the whole hippocampus under physiologic con-
ditions. Indeed, the inter-spike interval in S Elovi4™"™ slices
was significantly reduced compared to WT controls, demon-
strating a shift from a variable sporadic activity pattern in

(PSD) with multiple isolated densities indicated (arrows). d Synaptic
vesicle fraction (SV) with high purity, vesicle indicated in zoomed inset
(arrow). e Lipidomic analysis (GC-MS followed by GC-FID) reveals
enrichment of both 28:0 and 30:0 in synaptic vesicle membranes
relative to the other synaptic fractions. Statistics: two-way ANOVA with
Tukey’s multiple comparison test, ****p <0.0001 (n=3) error + SEM

control slices to a predominately burst-like response in the mu-
tant animals (Fig. 6b). To further analyze the pattern of re-
sponses in S* ElovI4™™ mice, we calculated the spontaneous
frequency of activity, for which we divided the number of
spikes by the duration of their activity rather than the duration
of the entire recording. This measurement revealed that despite
the decrease in overall frequency, when neurons in S* Elovi4™"
" slices fire, they do so with a significantly higher frequency
of activity (Fig. 6¢), indicating that the hippocampus of mutant
animals showed distinct periods of burst-like responses with a
high frequency of activity, separated by periods of low activity
or silence. The average spike amplitude under physiological
conditions also was significantly lower in S Elovi4™™ slices
compared to WT controls (Fig. 6d, e).

Given the observation of spontaneous epileptiform activity
in mutant slices (Online Resource 8), we tested whether driv-
ing activity in mutant slices using a depolarizing stimulus
evoked similarly enhanced neuronal activity compared to con-
trols, by artificially elevating the probability of release. First,
we compared the evoked synaptic responses following elec-
trode stimulation in DG, which receives the main input from
temporal cortex via the perforant path. We recorded excitatory
post-synaptic field potentials (fEPSPs) evoked by electrode
stimulation using a series of stepwise increased stimuli up to
100 pA. Synaptic I/O ratios showed significantly enhanced
synaptic transmission in slices from S* Elovi4™ ™" mice

@ Springer



1806

Mol Neurobiol (2018) 55:1795-1813

Fig. 4 Cultured hippocampal
neurons develop synapses in the
absence of WT ELOVL4 with
formation of both excitatory
glutamatergic and inhibitory
GABAergic synapses
Hippocampal neurons cultured
from Elovi4""* and Elovi4™ /"
embryos all formed pre-synaptic
terminals in vitro (arrowheads) as
shown by labeling for SV2 (a, b),
a ubiquitous synapse marker;
VGIuT]1 (¢, d), a marker for
glutamatergic terminals; and
GAD-65 (e, f), a marker for
GABAergic terminals. Double
labeling for VGIuT1 and the pre-
synaptic active zone (AZ)
confirmed glutamatergic synapse
formation (arrowheads) by
hippocampal neurons cultured
from Elovi4""*" and Elovi4™ /!
embryos (g-1). Double labeling
for GAD-65 and the pre-synaptic
active zone confirmed
GABAergic synapse formation
(arrowheads) by hippocampal
neurons cultured from Elovi4™"*!
and ElovI4™"" embryos (m-r).
Scale bars =20 pum for all panels
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compared to WT littermate controls (Fig. 6f). Second, we
induced global, synchronized depolarization using ACSF with
high potassium (7.5 mM K*) (Figs. 7 and 8) and repeated the
multi-electrode array recordings. Field recordings obtained
under physiological ACSF conditions and under depolarizing
high K* conditions showed a dramatic difference in network
activation between S*ElovI4™"™ slices and WT control
slices. As expected, under depolarizing conditions,
S*Elovi4™™" slices showed strong activation, with higher
evoked spike frequency than WT controls (Fig. 7a). The
inter-spike interval (ISI) in S Elovi4™“™ slices showed no
difference between normal and high K* conditions, suggest-
ing that the mutant hippocampus was limited to burst-like
responses regardless of the degree of depolarization. In con-
trast, WT control hippocampus showed reduced ISI in re-
sponse to elevated K, shifting to a more burst-like response,
as expected (Fig. 7b). The average fEPSP amplitude for pos-
itive spikes under high K conditions increased in
S*Elovi4™™ slices compared to WT control slice. Thus,
when pre-synaptic release is synchronized, S*Elovi4™ /"
neurons generate a significantly larger positive fEPSP ampli-
tude response than the WT controls and the magnitude of this
difference was much larger downstream in CA3 and CA1 than
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it was in DG (Fig. 7c). Interestingly, the fEPSP amplitude
response for negative spikes showed the opposite effect with
a larger negative amplitude response in the WT control slices
and in this case, the magnitude of this difference was much
larger upstream in DG compared to CA3 and CAl (Fig. 7d).

Temporal analysis of the responses to high K* stimulation
revealed striking differences between S* Elovi4™ ™ and WT
hippocampus as a whole and among hippocampal sub-regions
(Fig. 8). Onset of activity in DG (Fig. 8b) in response to high
K* was significantly faster in the S*Elovi4™™ hippocam-
pus compared to WT control hippocampus. Despite high ac-
tivity levels in the DG of WT slices, there was no subsequent
downstream increase in activity in CA3 or CAl (Fig. &c, d).
This is in stark contrast to the increased downstream activity
in CA3 and CA1 of the S* Elovi4™ ™ hippocampus. These
findings are consistent with the significantly higher negative
spike amplitudes in DG for the WT control animals (Fig. 7d).
Critically, this downregulation of activity seen in the WT con-
trol hippocampus animals was entirely absent from the
S* Elovi4™™ hippocampus. Of particular interest, the CA1
region in the S* Elovi4™“™ hippocampus maintained a level
of high activity in response to K* depolarization compared to
the wt control hippocampus (Fig. 8d), consistent with the
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Fig. 5 Dysregulation of synaptic vesicle release in mutant neurons
lacking ELOVL4. FM1-43 fluorometric assessment of synaptic vesicle
release rates and pool size in E18.5 primary hippocampal cultures
collected from Elovi4"”*" and Elovi4™™" embryos +/— treatment with
either 28:0 + 30:0 or 24:0. a Representative destaining curves comparing
release rates in WT (black) and mutant animals (red) in response to high
K* depolarization. b Representative destaining curves comparing release
rates in mutant animals supplemented with either 24:0 (blue) or 28:0 +
30:0 (green) in response to high K* depolarization. ¢ Cumulative
distribution of release rates for all synapses measured (Kolmogorov—

increased positive spike amplitude observed in the CAl re-
gion of the S* ElovI4™“/™! hippocampus under high K™ stim-
ulation (Fig. 7c).

Discussion

This report establishes a double transgenic mouse model, the
S* Elovi4™™ mouse, with homozygous knock-in of the
Stargardt-like macular dystrophy (STGD3) mutation of
Elovi4 and skin-specific rescue of WT Elovi4 expression to
prevent neonatal lethality, that recapitulates critical aspects of
the devastating central nervous system dysfunction associated
with homozygous inheritance of ELOVL4 mutations in
humans. Critically, S* Elovi4™™ mice develop seizures sim-
ilar to those seen in the human disease that appear by P19 and
lead to death by P21. Electrophysiological analysis of hippo-
campal slices showed spontaneous epileptogenic activity in
the S* Elovi4™“/™ hippocampus and aberrant neurotransmis-
sion through the principle circuit of the hippocampus. Dye
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Smirnov non-parametric examination of equality, p <0.001). Inset:
Frequency distribution of responses with slowest responding synapses
falling to the left and the fastest to the right on the curve. d Cumulative
distribution of the recycling pool of synaptic vesicles measured as total
fluorescence released during the course of the experiment for all synapses
measured. Inset: Frequency distribution of total fluorescent load turned
over by each synapse with the synapses made up of the smallest pool at
any given moment in time falling to the left, and those synapses with a
larger pool at any given moment falling to the right of the curve

imaging studies showed accelerated pre-synaptic release ki-
netics in individual synaptic terminals of cultured S* Elovi4™*"
"™ hippocampal neurons. Aberrant synaptic release in these
cells was rescued to WT levels by supplementation of VLC-
SFA via the culture medium, but not by LC-SFA. These stud-
ies establish a previously unrecognized role for ELOVL4 and
its VLC-SFA products as regulators of pre-synaptic release
kinetics and epileptogenesis.

A key attribute of the S* Elovi4™™** mouse model is that it
recapitulates the severe seizure phenotype of human syn-
dromes that arise from homozygous inheritance of mutant
ELOVLA4. Our PET and metabolic studies also revealed that
the S* Elovi4™™" mouse brain has greatly elevated energy
demands and elevated ATP levels compared to the brains of
WT littermate control mice. The BBB remained intact in
S* ElovI4™""™" mice, suggesting that the increased energy de-
mands reflect the seizures and elevated neural activity ob-
served in these animals. Under prolonged neuronal activation,
the brain will utilize the astrocyte-neuron lactate shuttle to try
and sustain their energy requirement via conversion of glucose
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Fig. 6 Altered hippocampal network properties and spontaneous activity
in Elovl4™"™ mice. Extracellular electrophysiology under physiological
conditions in hippocampal slices ex vivo collected from S*Elovi4"*"*" and
S*Elovi4™""™" mice. The following measurements were made during
600 trace (1 s/trace) recordings of extracellular field potentials in
hippocampal slices perfused with normal ACSF at 37 °C (see also
suppl. Video 3). a Spontaneous frequency as a measure of spikes/s. b
Spontaneous inter-spike interval (ISI) as a measure of time between
spikes. ¢ “Active” spontaneous frequency as a measure of spikes/s of

to lactate to be used as an additional energy substrate for
oxidative-derived ATP production [55]. The seizures and met-
abolic abnormalities that characterize the S Elovi4™/" brain
occur in the absence of any gross defects in brain size, struc-
ture, or organization, suggesting that VLC-SFA deficiency
had little effect on cell proliferation or migration in the devel-
oping brain.

In contrast, functional ELOVL4 and VLC-SFA are essen-
tial for normal synaptic function. Our studies of cultured hip-
pocampal neurons indicate that functional ELOVL4 and its
VLC-SFA products are not essential for formation of gluta-
matergic or GABAergic synapses. However, FM1-43 dye im-
aging experiments to visualize pre-synaptic release kinetics
showed that synapses made by S ElovI4™" neurons exhib-
ited accelerated kinetics from a subpopulation of synapses.
Critically, re-supply of 28:0 and 30:0 via the medium rescued
this synaptic release kinetics back to WT control levels, indi-
cating that the defect arose from VLC-SFA deficiency rather
than the presence of mutant ELOVLA4. Furthermore, the effect
on pre-synaptic release was not rescued by supplying 24:0, a
precursor for ELOVL4-mediated synthesis of VLC-SFA.
Thus, functional ELOVL4 is essential for VLC-SFA synthe-
sis, consistent with previous biochemical studies [4, 5, 23]. A
critical unresolved question is the identity of the specific syn-
apses that show aberrant pre-synaptic release kinetics in the

@ Springer

activity. d Amplitude (+) spikes as a measure of spike magnitude (mV).
e Amplitude (—) spikes as a measure of spike magnitude (mV). See
methods for detailed statistics (WT: n=7, slice # = 13; mut: n= 14, slice
#=34) error+95% confidence interval. f The input/output ratio in re-
sponse to stepwise increased stimulation (20 pA minus 100 pA). Note
logarithmic normalization on y-axis (statistics: two-way RM ANOVA,
*p < 0.05 from 70 to 100 pA, error +95% confidence interval. WT: n=
3; mut: n=10)

absence of VLC-SFA. CA3 pyramidal cells show the highest
ELOVLA levels in the hippocampus, which makes their syn-
apses onto the CA1 pyramidal cells via the Shaffer collaterals
excellent candidates to have aberrant release kinetics and con-
tribute to epileptogenesis.

The aberrant synaptic release kinetics observed in the FM-
dye release experiments are consistent with the spontaneous
seizure activity and aberrant network responses observed in
S*Elovl4™Y™" hippocampal slices. The striking difference in
neuronal activity seen in mutant slices during normal vs. high
K* ACSF conditions may reflect dysregulated summation
[56-59]. The observed pattern of spontaneous activity may
represent an uncoupling of the neuron’s control over the
timing and duration of its pre-synaptic release. Although the
overall spike rate in the S*Elovl4™ ™" hippocampal slices
under normal ACSF conditions is reduced compared to WT
controls, neural activity in S* Elovl4™™ hippocampal slices
in the absence of VLC-SFA shifts to a pronounced bursting
activity pattern that is not observed in the WT slices. This
bursting activity is a potential substrate for seizure formation,
in that over time the synchronization of these bursting evens
would produce highly coordinated bursts of neurotransmitter
release in the " ELOVL4™™ hippocampus, enhancing syn-
aptic summation and increasing the likelihood of reaching the
threshold to initiate seizure activity. This is especially true in
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Fig. 7 Extracellular electrophysiology under physiological conditions
followed by depolarizing conditions in hippocampal slices ex vivo
collected from S*Elovi4"”*" and S*Elovi4™*™ mice. The following
measurements were made during 600 trace (1 s/trace) recordings of
extracellular field potentials in hippocampal slices perfused with
physiological ACSF (normal ACSF=2.5 mM K%*) followed
immediately by a second 600 trace (1 s/trace) recording during which
perfusion was switched to depolarizing, higher extracellular potassium
ACSF (high K* ACSF=7.5 mM K%) at time=20 s. a Evoked

the CA1 region of the hippocampus, which receives the larg-
est number of pre-synaptic inputs from the ELOVLA4 positive
neurons in the CA3.

Mutations in the Drosophila ceramidase gene, slab, cause a
loss of readily releasable vesicles as shown by FM1-43 dye
studies [60]. TEM of synapses isolated from these flies re-
vealed an increase in linked synaptic vesicles tethered at the
plasma membrane, but unable to fuse. Ceramidase enzymes
cleave esterified fatty acids from molecules with a sphingo-
sine backbone [61]. In brain tissue, this class of enzymes dem-
onstrated a significantly higher cleavage preference for longer
chain saturated fatty acids [61]. Regulation of the concentra-
tion of these saturated fatty acids within SV membranes by
ongoing cleavage and esterification of different length acyl
chains may fine-tune pre-synaptic release; the higher the con-
centration of VLC-SFA, the more rigid and less fusible SV
membranes may be. Confirming this concept, but using
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frequency presented as the difference between spikes/s at high K*
ACSF and spikes/s at normal K*. b Evoked inter-spike interval (ISI)
presented as the time difference between spikes at high K* and spikes
at normal K*. ¢ Evoked amplitude (+) spikes presented as the difference
between spike magnitudes (mV) in high K™ and normal K*. d Evoked
amplitude (—) spikes presented as the difference between spike
magnitudes (mV) at high K* and normal K*. See methods for detailed
statistics (WT: n=09, slice #=22; mut: n=9, slice #=22) error+95%
confidence interval

PUFA, which would impose the opposite effect (increased
membrane fusion), FM1-43 dye studies revealed that the lon-
ger and more polyunsaturated the fatty acid supplemented, the
more FM1-43 dye accumulated in the vesicles within the cell,
indicating faster vesicle fusion and turnover [62]. These stud-
ies support the notion that synaptic vesicle membrane fatty
acid composition may be an important factor in the kinetics
of neurotransmitter release.

The molecular mechanism by which VLC-SFA regulates
the kinetics of pre-synaptic vesicle release is currently un-
known. One possible explanation is that because of their
length and the absence of any cis double bonds, VLC-SFA
could extend through the lipid bilayer and interact with fatty
acyl chains esterified to glycerophospholipids and
sphingolipids in the opposing bilayer. Such acyl-acyl hydro-
phobic interactions across the lipid bilayer could increase the
van der Waals forces within the bilayer, thereby stabilizing the
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Fig. 8 Uncontrolled spread of epileptiform activity under depolarizing
condition to CA1 hippocampal region in Elovi4™“"“ mice. a Frequency
matrix (all 64 channels x 600 s) as total spikes/s/channel (high K* ACSF
perfusion begins at =20 s). Inset: Sum of all regions. Spline smoothed
curves of log frequency with 95% confidence bands; intervals over which
the difference is significant are marked by a blue bar below. b Frequency
matrix (all DG channels x 600 s) as total spikes/s/DG channel (high K*
ACSF perfusion begins at =20 s). Inset: DG region. Spline smoothed
curves of log frequency with 95% confidence bands; intervals over which
the difference is significant are marked by a blue bar below. ¢ Frequency

membranes and resisting fusion with other membranes. The
absence of these interactions, which would result from the loss
of functional Elovi4 in the S*Elovi4™"™ mice, could in-
crease the probability of release events such as we observed
in the current study. However, follow-up studies aimed at
identifying the mechanism by which the absence of VLC-
SFA alters synaptic vesicle fusion kinetics will be of critical
importance moving forward. Interestingly, our results suggest
a role for VLC-SFA in synaptic release that is markedly dif-
ferent from that described for cholesterol, which facilitates
synchronized evoked transmitter release [63, 64]. Such regu-
latory function of VLC-SFA in synaptic transmission is novel
and markedly different from other lipid or lipophilic sub-
stances previously tested that acted via a receptor. For in-
stance, platelet-activating factor (PAF) has been shown to
serve a critical modulatory effect on pre-synaptic events, but
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matrix (all CA3 channels x 600 s) as total spikes/second/CA3 channel
(high K* ACSF perfusion begins at =20 s). Inset: CA3 region. Spline
smoothed curves of log frequency with 95% confidence bands; intervals
over which the difference is significant are marked by a blue bar below. d
Frequency matrix (all CAl channels x 600 s) as total spikes/s/CA1
channel (high K* ACSF perfusion begins at 1=20 s). Inset: CAl
region. Spline smoothed curves of log frequency with 95% confidence
bands; intervals over which the difference is significant are marked by a
blue bar below. See methods for detailed statistics (WT: n=09, slice #=
22; mut: n =9, slice # =22) error (insets) = 95% confidence interval

all of its effects, including an influence on long-term potenti-
ation and memory formation, were prevented by PAF receptor
inhibitors [65-68].

In summary, we have identified a previously unknown role
for VLC-SFA as regulators of synaptic vesicle release. These
studies demonstrate that the absence of 28:0 and 30:0 causes
dysregulated pre-synaptic release kinetics in hippocampal
neurons by some yet-to-be determined mechanism. This dis-
ruption in synaptic transmission is one possible mechanism
underlying the severe epileptiform seizures that arise from
VLC-SFA deficiency. These novel findings raise further ques-
tions that must be addressed.
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