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Abstract

Multidrug resistant organisms (MDROs) are a serious threat to human health1,2. Fast, accurate 

antibiotic susceptibility testing (AST) is a critical need in addressing escalating antibiotic 

resistance, since delays in identifying MDROs increase mortality3,4 and use of broad-spectrum 

antibiotics, further selecting for resistant organisms. Yet current growth-based AST assays, such as 

broth microdilution5, require several days before informing key clinical decisions. Rapid AST 

would transform the care of infected patients while ensuring that our antibiotic arsenal is deployed 

as efficiently as possible. Growth-based assays are fundamentally constrained in speed by 

doubling time of the pathogen, and genotypic assays are limited by the ever-growing diversity and 

complexity of bacterial antibiotic resistance mechanisms. Here, we describe a rapid assay for 

combined Genotypic and Phenotypic AST through RNA detection, GoPhAST-R, that classifies 

strains with 94–99% accuracy by coupling machine learning analysis of early antibiotic-induced 

transcriptional changes with simultaneous detection of key genetic resistance determinants to 

increase accuracy of resistance detection, facilitate molecular epidemiology, and enable early 

detection of emerging resistance mechanisms. This two-pronged approach provides phenotypic 

AST 24–36 hours faster than standard workflows, with <4 hour assay time on a pilot instrument 

for hybridization-based multiplexed RNA detection implemented directly from positive blood 

cultures.

Current gold standard AST assays that measure growth in the presence of an antibiotic, 

while slow, directly answer the key question of whether the antibiotic inhibits pathogen 

growth. By contrast, newer genotypic approaches6 fall short of universal AST because of our 

incomplete knowledge of the innumerable resistance-causing genes and mutations across all 

pathogens and antibiotics, and the interactions of these genetic factors with diverse genomic 

backgrounds within any given bacterial species7–9. While the genomics revolution has 

undeniably transformed our understanding of antibiotic resistance10–12, as a clinical 

diagnostic, WGS remains technically demanding, costly, and slow; and the complexity, 

variability, and continuing evolution of bacterial genomes under ongoing antibiotic exposure 

pose serious challenges to predicting susceptibility accurately enough to direct patient 

care9,13,14. These shortcomings have motivated several novel approaches that focus on faster 

phenotypic AST, including rapid automated microscopy15, ultrafine mass measurements16, 

and others17–19.

Among current MDROs, carbapenem resistant organisms are the most alarming, as their 

resistance to this broad-spectrum antibiotic class often leaves few to no treatment options20. 

Yet phenotypic carbapenem resistance detection can be challenging, as some 

carbapenemase-producing strains may be mistakenly identified as susceptible by current 

phenotypic assays21 while failing clinical carbapenem therapy22. Newer multiplexed PCR 

assays can detect several common carbapenemases in carbapenem-resistant 

Enterobactericeae (CRE)6, yet these genotypic approaches miss a significant fraction of 

CRE isolates (13–68%) with unknown or non-carbapenemase resistance mechanisms8,23. 

For non-Enterobacteriaceae, these alternative genetic resistance mechanisms account for the 

vast majority of resistance; just 1.9% of over 1000 carbapenem-resistant Pseudomonas 
surveyed in 2017 by the US Centers for Disease Control (CDC) harbored known 

carbapenemases23. These challenges have left clinical microbiology laboratories still 
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seeking consensus on how to best apply the multiple possible workflows for detecting 

carbapenem resistance24,25, including phenotypic26, genetic24, and biochemical25 assays.

GoPhAST-R is a novel diagnostic approach that can detect both genotype and phenotype in 

a single assay, allowing integration of all information and simultaneously informing both 

resistance prediction and molecular epidemiology. GoPhAST-R detects specific mRNA 

expression signatures in bacteria after brief antibiotic exposure; susceptible cells that are 

stressed upon antibiotic exposure are transcriptionally distinct from resistant cells that are 

not, agnostic to resistance mechanism17. mRNA is uniquely informative in this regard, as it 

encodes genotypic information in its sequence and phenotypic information in its abundance: 

We show that multiplexed hybridization-based quantification of transcriptional responses 

within minutes of antibiotic exposure can distinguish susceptible from resistant organisms. 

We demonstrate this approach for three major antibiotic classes in common clinical use – 

fluoroquinolones, aminoglycosides, and carbapenems – in five pathogens with a propensity 

for multi-drug resistance through diverse mechanisms. We describe a generalizable process 

to extend this approach to any pathogen-antibiotic pair of interest, requiring only that an 

antibiotic elicit a differential transcriptional response in susceptible versus resistant isolates, 

a biological phenomenon that to date appears universal. For carbapenems, we incorporate 

simultaneous genotypic detection of key resistance determinants to improve accuracy of 

resistance detection and facilitate molecular epidemiology. Finally, we demonstrate 

GoPhAST-R directly on positive blood culture bottles, reporting phenotypic AST within 

hours of a positive culture. Together, this work establishes GoPhAST-R as a novel, accurate, 

rapid approach to AST that leverages the advantages of both phenotypic and genotypic 

assays.

To identify transcripts that robustly distinguish susceptible and resistant bacteria after brief 

antibiotic exposure, we used RNA-Seq to compare transcriptional timecourses of two 

susceptible and two resistant clinical isolates of K. pneumoniae, E. coli, and A. baumannii 
(Supplementary Table 1) treated with either meropenem (a carbapenem that inhibits cell wall 

biosynthesis), ciprofloxacin (a fluoroquinolone that targets DNA gyrase and topoisomerase), 

or gentamicin (an aminoglycoside that inhibits protein synthesis). Doses were chosen to 

match clinical breakpoint concentrations26, defined by the Clinical and Laboratory 

Standards Institute (CLSI) as the antibiotic concentration above which resistant strains (i.e. 

those at high risk of failing clinical therapy) can grow in broth microdilution assays. To 

enable these comparisons, we developed a library construction method optimized from 

RNAtag-Seq27 to include template switching, now termed RNAtag-Seq_TS, to dramatically 

decrease cost and increase throughput (see Supplementary Methods). For each pathogen, 

each antibiotic elicited a transcriptional response within 30–60 minutes in susceptible but 

not resistant organisms (Fig. 1a; Extended Data Figs. 1a and 2).

To identify transcripts that best distinguish susceptible from resistant strains for each 

pathogen-antibiotic combination, we initially selected 60–100 candidate antibiotic-

responsive transcripts from these RNA-Seq datasets to evaluate in more clinical isolates. We 

used DESeq228 followed by Fisher’s combined probability test to identify transcripts whose 

expression changed more upon antibiotic treatment than under any phase of growth during 

the timecourse, thus enriching for genes directly affected by antibiotic exposure (see 
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Supplementary Methods). Gene ontology enrichment analysis (Supplementary Table 2) 

revealed that meropenem affected lipopolysaccharide biosynthesis in both 

Enterobacteriaceae species, and induced a heat shock response in both E. coli and 

Acinetobacter. In all three species, ciprofloxacin induced the SOS response, while 

gentamicin induced the unfolded protein response and quinone binding. For normalization 

across samples, we also used DESeq2 to select 10–20 control transcripts for each pathogen-

antibiotic pair that were most invariant to antibiotic treatment and growth phase (see 

Methods).

For each pathogen-antibiotic pair, we designed probesets for multiplexed detection of each 

candidate control and responsive transcript using NanoString, a simple, quantitative 

fluorescent hybridization platform that does not require nucleic acid purification or 

enzymology and thus works on crude lysates17,29. Each probeset comprised pairs of 50mer 

probes to conserved regions (see Methods) of the targeted transcripts (Supplementary Table 

3). Using a protocol modified from the standard NanoString nCounter assay to accelerate 

detection (see Methods), we quantified these target transcripts in 18–24 diverse clinical 

isolates of each species collected from various geographic locations (Supplementary Table 

1) and spanning the known phylogenetic landscape of each species (Extended Data Fig. 3). 

Because of a homology screening step in probe design (see Methods), each probe will 

uniquely hybridize to the target transcript from its cognate species, thereby enabling 

simultaneous species identification17. Normalized expression signatures of all responsive 

genes are shown as heatmaps (Extended Data Fig. 4) and summarized as one-dimensional 

projections (Extended Data Fig. 5).

To further test the generalizability of this approach, we repeated these steps from RNA-Seq 

through NanoString detection of candidate responsive and control genes for two additional 

high-priority and frequently multidrug-resistant pathogens – S. aureus, a gram positive, and 

P. aeruginosa, another gram negative – each treated with a fluoroquinolone, levofloxacin 

(given its greater potency against gram positives) and ciprofloxacin, respectively (Extended 

Data Fig. 6). Each robustly induced the SOS response (Supplementary Table S2) in 

susceptible but not resistant clinical isolates.

Importantly, expression signatures alone merely show that reliable differences occur in the 

transcriptional response in susceptible versus resistant organisms, while AST requires binary 

classification of a strain as susceptible or resistant. To address this general classification 

problem, we deployed machine-learning algorithms (Extended Data Fig. 7, Phase 1), first to 

identify the most informative transcripts, and then to use these select transcripts to classify 

unknown isolates. To avoid overtraining, we partitioned the tested strains into a training 

(derivation) cohort for both feature selection and classifier training, and a testing (validation) 

cohort as a naïve strain set for assessing classifier performance. We used reliefF to identify 

the 10 transcripts whose normalized expression best distinguished susceptible from resistant 

organisms among the training cohort (Fig. 1b; Extended Data Figs. 1b and 6b; 

Supplementary Table 3). Although fewer than 10 transcripts were required to robustly 

distinguish between the strains we have thus far tested, we opted to keep more genes in the 

refined signature to lessen the potential impact of unanticipated diversity in gene content, 

sequence, or regulation among clinical isolates.
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We next trained an ensemble classifier using a random forest model for binary classification 

of isolates in the derivation cohort based solely on these selected features, then tested this 

trained classifier on the validation cohort. Across all 11 bacteria-antibiotic combinations, 

109 isolates were used as derivation strains for training, and 108 isolates were tested as 

validation. The ensemble classifier correctly classified 100 of these 108 (93% categorical 

agreement, 95% confidence interval [CI] 87–96%), including 51 of 52 resistant isolates 

(1.9% very major error rate, 95% CI 0.21–8.6%) and 35 of 38 susceptible isolates (7.9% 

major error rate, 95% CI 2.3–20%), compared with standard broth microdilution (Fig. 1c, 

Extended Data Figs. 1c and 6c; Supplementary Table S4). Of note, these error rates are 

typically reported on a natural distribution of isolates. In contrast, for this study, we 

deliberately assembled a “challenge set” of strains, intentionally overrepresented for isolates 

near the clinical breakpoints, which will artificially inflate all errors, since discrepant 

classifications are more common for strains with minimal inhibitory concentrations (MICs) 

near the breakpoint – both due to possible errors in the assay and to one-dilution errors 

inherent in the gold standard broth microdilution assay30. Consistent with this, all major and 

very major errors in Phase 1 testing involved strains less than or equal to two dilutions away 

from the clinical breakpoint (Fig. 1c; Extended Data Figs. 1c and 6c).

To assess this approach to classification as it would be deployed on unknown isolates, and to 

further ensure against overtraining on the initial set of isolates, we performed a second, 

iterative round of training on all strains (from both derivation and validation cohorts) from 

Phase 1. We then tested a new set of K. pneumoniae isolates treated with meropenem and 

ciprofloxacin (Extended Data Fig. 7, Phase 2), this time measuring only the top 10 selected 

responsive transcripts (as we envision for the ultimate assay), rather than the 60–100 

transcripts measured in Phase 1 (Extended Data Fig. 8a). Here, GoPhAST-R correctly 

classified 52 of 55 strains (95% categorical agreement, 95% CI 86–98%), including all 25 

resistant isolates (0% very major error rate, 95% CI 0–9.5%) and 25 of 27 susceptible 

isolates (7.4% major error rate, 95% CI 1.6–22%), compared with broth microdilution 

(Extended Data Fig. 8b). All three discrepant isolates were less than or equal to two 

dilutions from the breakpoint.

Three isolates classified as meropenem-resistant by GoPhAST-R but susceptible by broth 

microdilution exhibited a large inoculum effect (ref). These three isolates, a K. pneumoniae 
(BAA2524; Fig. 1b–c) and two E. coli (BAA2523 and AR0104; Extended Data Fig. 1b–c), 

all had MICs of 0.5–1 mg/L on standard broth microdilution with an inoculum of 105 

cfu/mL, but MICs of ≥32 mg/L with an inoculum of 107 cfu/mL. Each of these strains 

carried a carbapenemase gene: BAA2523 and BAA2524 contained blaOXA-48, and AR0104 

contained blaKPC-4, as has been reported for other such strains with large inoculum effects31. 

While the clinical consequences of such large inoculum effects are uncertain, they may 

portend clinical failure, particularly in the setting of carbapenemase production22; detection 

of this phenomenon is a known gap in standard broth microdilution assays5,25,32. GoPhAST-

R classified these strains as phenotypically resistant, perhaps because the assay is performed 

at higher cell density (>107 cfu/mL). Thus, the gold standard method likely misclassified 

these isolates as susceptible, while GoPhAST-R correctly recognized their resistance.
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Importantly, classifier performance was independent of resistance mechanism, as 

exemplified for meropenem resistance. In total, 22 of 47 meropenem-resistant isolates, 

including 7 of 22 K. pneumoniae, 4 of 12 E. coli, and 11 of 13 A. baumannii, lacked 

carbapenemases (Supplementary Table 1), yet 46 of these 47 isolates were correctly 

recognized as resistant by GoPhAST-R. These results underscore the ability of GoPhAST-R 

to assess phenotypic resistance, agnostic to its genotypic basis.

GoPhAST-R can readily accommodate simultaneous profiling of additional transcripts, 

including genetic resistance determinants such as carbapenemases. Such genotypic 

information can complement GoPhAST-R’s phenotype-based AST classification while 

providing valuable epidemiological data. For example, each of the three isolates with 

discrepant classifications and prominent inoculum effects carried a carbapenemase gene. 

Indeed, the most common known mechanism for carbapenem resistance among the 

Enterobacteriaceae involves acquisition of one of several carbapenemase genes23, most 

commonly the KPC, NDM, OXA-48, IMP, and VIM families33. We thus incorporated 

probes for these carbapenemases into the GoPhAST-R assay for meropenem AST, as well as 

two extended-spectrum beta-lactamase (ESBL) gene families that have been associated with 

carbapenem resistance when expressed in the context of porin loss-of-function, CTX-

M-1534 and OXA-1035 (Supplementary Table 3).

GoPhAST-R correctly detected all 39 carbapenemase genes across 38 strains known to be 

present by WGS, including at least one member of each of the five targeted classes, and all 

29 ESBL genes across 26 strains; no signal was detected in the 22 meropenem-resistant 

strains nor the 38 susceptible isolates known to lack these gene families, across all three 

species (Fig. 2). This included detection of OXA-48 or KPC in the three cases of discrepant 

phenotypic AST classification and prominent inoculum effects, reinforcing GoPhAST-R’s 

resistant phenotypic classification. Thus, in a single assay, GoPhAST-R can provide both 

phenotypic AST and genotypic information about resistance mechanism, which together 

result in the most accurate AST classification and valuable characterization of resistant 

isolates, including immediate recognition of unexplained resistance.

We previously demonstrated that a simulated positive blood culture bottle contains sufficient 

bacteria to permit mRNA detection36. To demonstrate one valuable clinical application, we 

used GoPhAST-R to rapidly determine ciprofloxacin susceptibility in blood culture bottles 

that grew gram-negative rods from the clinical microbiology laboratory at Massachusetts 

General Hospital (MGH). Ciprofloxacin was chosen because no rapid genotypic method 

exists for detection of fluoroquinolone resistance due to the diversity of genetic causes, and 

because the prevalence of fluoroquinolone resistance facilitated acquisition of both sensitive 

and resistant cases. Of six E. coli and two K. pneumoniae clinical positive blood cultures 

(Fig. 3), GoPhAST-R clearly distinguished three susceptible from three resistant E. coli; 
both K. pneumoniae species were susceptible. Given the relative scarcity of gentamicin and 

meropenem resistance at our institution, in order to test assay performance in this growth 

format, we generated simulated positive blood cultures by spiking in susceptible or resistant 

isolates of K. pneumoniae and E. coli. GoPhAST-R detected transcriptional signatures for 

each pathogen-antibiotic pair directly from these positive blood culture bottles, and blinded 

AST prediction using a random forest model and leave-one-out cross-validation correctly 
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classified 71 of 72 blood cultures (99% categorical agreement with broth microdilution, 95% 

CI 94–100%), including 31 of 31 resistant isolates (0% very major error rate; 95% CI 0–

7.7%) and 37 of 38 susceptible isolates (2.6% major error rate; 95% CI 0.29–11%), 

compared with broth microdilution (Extended Data Fig. 9).

To decrease the time to answer, we deployed GoPhAST-R on a next-generation nucleic acid 

detection platform, NanoString Hyb & Seq™ (J.B., AGBT Precision Health 2017, 

unpublished abstract), whose accelerated detection technology enables AST in <4 hours 

from the time a blood culture turns positive (Fig. 4a). Relative to the nCounter detection 

platform, Hyb & Seq (Fig. 4b) accelerates hybridization by utilizing unlabeled reporter 

probes that are far smaller and thus equilibrate much faster than standard nCounter probes, 

which contain bulky fluorophores. Accelerated optical scanning rapidly quantifies these 

smaller reporter probes via sequential cycles of binding, detection, and removal of 

complementary barcoded fluorophores (Fig. 4c; see Methods). On a prototype Hyb & Seq 

instrument, GoPhAST-R measured meropenem susceptibility signatures and carbapenemase 

content in <4 hours (Fig. 4d). A head-to-head time trial on simulated blood culture bottles 

demonstrated GoPhAST-R results in <4 hours from the time of culture positivity, compared 

with 28–40 hours in the MGH clinical microbiology laboratory by standard methods 

(subculture followed by AST on a VITEK-2 instrument).

In summary, by quantifying a refined set of transcripts whose antibiotic-induced expression 

reflects susceptibility, GoPhAST-R provides a conceptually distinct approach to rapid 

phenotypic AST, agnostic to resistance mechanism and extendable to any pathogen and 

antibiotic class, while simultaneously providing select, complementary genotypic 

information. The machine learning approach to strain classification developed for 

GoPhAST-R provides actionable AST information in excellent categorical agreement with 

the gold standard broth microdilution assay and should continue to improve in accuracy as it 

is trained on additional strains. Omitting three carbapenemase-producing strains with 

ambiguous and likely errant susceptible classification by the gold standard assay, GoPhAST-

R correctly classified 100 of 106 strains (94%) in Phase 1, 52 of 54 strains (96%) in Phase 2, 

and 71 of 72 (99%) simulated blood cultures, with 8 of the 9 discrepancies occurring on 

strains within two dilutions of the clinical breakpoint.

By integrating genotypic and phenotypic information in a single rapid multiplexed RNA 

detection assay, GoPhAST-R offers several advantages over the current gold standard that 

are unique among other rapid AST assays under development. First, like other phenotypic 

assays, it determines susceptibility agnostic to mechanism of resistance, a clear advantage 

over genotypic AST assays. Second, combining genotypic and phenotypic information 

enhances AST accuracy over conventional growth-based methods, improving sensitivity of 

resistance detection in carbapenemase-producing Enterobacteriaceae that test susceptible by 

standard methods but may exhibit resistance upon treatment21,22,25. Third, identification of 

carbapenem resistance determinants can inform antibiotic choice, as certain novel beta-

lactamase inhibitors like avibactam or vaborbactam will overcome some classes of 

carbapenemases (e.g., KPC) but not others (e.g., metallo-beta-lactamases such as the NDM 

class)37,38. Solely phenotypic assays would require additional, serial testing to provide such 

guidance. Fourth, detecting resistance determinants together with a phenotypic assay enables 
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molecular epidemiology for local, regional, national, or global tracking of the emergence 

and spread of resistance, without requiring additional testing. We demonstrate this advantage 

for one major class of high-value resistance determinants, the carbapenemases; this 

combined approach can readily extend to other critical emerging resistance determinants 

such as mcr genes, plasmid-borne colistin resistance determinants recently found in 

Enterobacteriaceae39, or key virulence factors such as Shiga toxin, in seamless conjunction 

with a phenotypic AST assay. Fifth, strains with unknown resistance mechanisms, such as 

CREs without carbapenemases (see Fig. 1 and Extended Data Fig. 8), can be immediately 

identified from a single assay and flagged for further study such as WGS if desired.

This work represents an important demonstration of this new approach to AST, enabling 

rapid, accurate classification across a genetically diverse sampling (Extended Data Fig. 2) of 

five high-priority pathogens and three major antibiotic classes. Still, further development 

will be needed for translation to clinical practice. With wider testing, while the specific 

classifiers will improve, the general strategy and approach remains valid. Indeed, the 

capacity to learn through iterative retraining is one of the strengths of this approach as it is 

used more broadly. Likewise, extending this assay to more pathogen-antibiotic pairs will be 

critical for widespread clinical utility. Fortunately, the experimental and computational 

approach described here allows rapid and conceptually straightforward extension to all 

pathogens and antibiotic classes, including those with novel mechanisms of action and as-

yet-unknown or newly emerging mechanisms of resistance. Underscoring the 

generalizability of this approach, we have generated preliminary RNA-Seq data for 50 

additional pathogen-antibiotic pairs, spanning gram positive, gram negative, and 

mycobacteria, treated with bactericidal and bacteriostatic antibiotics, that demonstrate early 

differential transcriptional responses to antibiotics in all cases tested (Hung lab, unpublished 

results). Because GoPhAST-R is explicitly informed by MIC, it leverages decades of prior 

studies linking in vitro behavior to clinical outcomes26, facilitating extension to new 

pathogens or antibiotics. GoPhAST-R cannot, however, overcome all limitations of current 

diagnostics, including an initial delay for blood culture, driven by the low abundance of 

bacteria, and thus bacterial mRNA, in the bloodstream of infected patients. Still, considering 

the widespread adoption and clinical benefits40 of rapid pathogen identification by matrix-

associated laser desorption and ionization / time-of-flight (MALDI-TOF) mass spectrometry 

in 2 hours from subcultured colonies streaked from blood culture bottles40, this 

comparatively more informative AST assay directly from blood culture bottles in <4 hours 

would be potentially transformative. We also anticipate the potential to expand GoPhAST-R 

to other clinical specimen types; some, like urine, contain enough bacteria without culture to 

enable direct mRNA profiling17. Additionally, characterizing mixed populations of 

susceptible and resistant strains within an individual sample remains challenging for 

GoPhAST-R, which integrates transcription across bulk populations, just as it is for existing 

gold-standard methods that undergo a single-colony bottleneck during subculture. Finally, 

GoPhAST-R cannot completely overcome the challenge of identifying delayed inducible 

resistance, though this would be true for any rapid phenotypic test. In fact, GoPhAST-R may 

accurately identify at least some of these cases through simultaneous genotypic detection of 

induced resistance determinants, if known.
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We have herein demonstrated the application of a next-generation nucleic acid detection 

platform that can return AST answers in <4 hours. We have shown that the strategy is 

generalizable across a number of bacterial species and antibiotic classes, and will likely be 

widely applicable based on its conserved underlying biological principle. Notably, a reliable 

transcriptional signature of susceptibility is present in ≤1 hour for each of these key 

antibiotic classes. Thus, as RNA detection methods become faster and more sensitive, 

GoPhAST-R has the potential for even faster phenotypic AST on timescales that can inform 

early antibiotic decisions and thus transform infectious disease practice.

Methods

Strain acquisition and characterization:

All strains in this study (Supplementary Table 1) were obtained from clinical or reference 

microbiological laboratories, including both local hospitals and MDRO strain collections 

from the CDC’s Antibiotic Resistance Isolate Bank (https://wwwn.cdc.gov/ARIsolateBank/) 

and the New York State Department of Health. MICs reported from those laboratories were 

validated by standard broth microdilution assays5 in Mueller-Hinton broth (Difco); any 

discrepancies of >1 doubling from reported values were resolved by repeating in triplicate. 

Partners Health Care IRB 2015P002215 approved strain collection under waiver of patient 

consent, since bacterial isolates were obtained from clinical microbiology laboratories 

without any human material. Strains for which WGS data was available at the National 

Center for Biotechnology Information (NCBI) were visualized using the Interactive Tree of 

Life41.

RNA-Seq experimental conditions

For each bacteria-antibiotic pair, selected independent clinical isolates (Supplementary Table 

1), two susceptible and two resistant, were grown at 37°C in Mueller-Hinton broth to early 

logarithmic phase, then treated with the relevant antibiotic at breakpoint concentrations set 

by the Clinical Laboratory Standards Institute (CLSI)26: 2 mg/L for meropenem, 1 mg/L for 

ciprofloxacin, and 4 mg/L for gentamicin. Total RNA was harvested from paired treated and 

untreated samples at 0, 10, 30, and 60 minutes. cDNA libraries were made using a variant of 

the RNAtag-Seq protocol we previously described27 and sequenced on either an Illumina 

HiSeq or NextSeq. Sequencing reads were aligned using BWA42 and tabulated as previously 

described27. See Supplementary Methods for further details.

Differential gene expression analysis and selection of responsive and control transcripts

Differentially expressed genes were determined using the DESeq2 package28, comparing 

treated vs untreated samples at each timepoint using a two-sided Wald test with the 

Benjamini-Hochberg correction for multiple hypothesis testing. Fisher’s combined 

probability test was used to select only those genes whose expression after antibiotic 

treatment is statistically distinguishable from its expression at any timepoint in the untreated 

samples. Gene ontology (GO) terms were assigned using blast2GO43 (version 1.4.4), with 

hypergeometric testing for enrichment. For each pathogen-antibiotic pair, the fold-change 

threshold in DESeq2 used to test statistical significance was increased to select 60–100 

antibiotic-responsive transcripts with maximal stringency, a number readily accommodated 
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by the NanoString assay format. Control transcripts were also determined with DESeq2 

using an inverted hypothesis test as described28 to select genes whose expression we expect 

to be unaffected by antibiotic exposure or growth in both susceptible and resistant isolates, at 

all timepoints and treatment conditions. As with responsive genes, the fold-change threshold 

was varied in order to select the top 10–20 control transcripts. The resulting control and 

responsive gene lists for each pathogen-antibiotic pair, and the fold-change thresholds used 

to generate them, are shown in Supplementary Table 3. See Supplementary Methods for 

further details.

Targeted transcriptional response to antibiotic exposure

After using BLASTn to identify regions of targeted transcripts with maximal conservation 

across all RefSeq genomes from that species (see Supplemental Methods), NanoString 

probes were designed per manufacturer’s standard process29 to these conserved regions. 

Strains treated with antibiotic at the CLSI breakpoint concentration, and untreated controls, 

were lysed via bead-beating at the desired timepoint. The resulting crude lysates were used 

as input for standard NanoString (Seattle, WA) assays, which were performed on the 

nCounter® Sprint platform with variations on the manufacturer’s protocol to enhance speed, 

detailed in Supplementary Methods. Raw counts for each target were extracted and 

processed as described in Supplementary Methods. Briefly, for each sample, each responsive 

gene was normalized by control gene expression as a proxy for cell loading using a variation 

on the geNorm algorithm44, then converted to fold-induction in treated compared with 

untreated strains. Pilot NanoString Hyb & Seq™ assays (Fig. 4) were performed on a 

prototype Hyb&Seq instrument at NanoString, with 20 minute hybridization time and 5 

imaging cycles to detect hybridization probes with two-segment 10-plex barcodes. See 

Supplementary Methods for more details.

Machine learning: feature selection and susceptibility classification

For each pathogen-antibiotic pair, we first partitioned the normalized data, grouping half the 

strains into a derivation cohort on which we trained our algorithm, reserving the other half 

for validation (Extended Data Fig. 5), ensuring equivalent representation of susceptible and 

resistant isolates in each cohort. For comparison of GoPhAST-R classifications with gold-

standard results, confidence intervals for accuracy estimates were calculated using Jeffrey’s 

interval45.

In Phase 1, implemented for all pathogen-antibiotic pairs, normalized fold-induction data of 

responsive genes from strains in the training cohort, along with CLSI susceptibility 

classification for each training strain, were input to the ReliefF algorithm46 using the 

CORElearn package (version 1.52.0) to rank the top 10 responsive transcripts that best 

distinguished susceptible from resistant strains. These 10 features were then used to train a 

random forest classifier47 using the caret package (version 6.0–78) in R (version 3.3.3) on 

the same training strains. Performance of this classifier was then assessed on the testing 

cohort, to which the classifier had yet to be exposed.

In Phase 2, implemented for K. pneumoniae + meropenem and ciprofloxacin, all 18–24 

strains from Phase 1 were combined into a single, larger training set. For each antibiotic, 
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ReliefF was again used to select the 10 most informative responsive transcripts, which were 

then used to train a random forest classifier on the same larger training set. Transcriptional 

data were then collected on a test set of 25–30 new strains using a trimmed NanoString 

nCounter® Elements™ probeset containing only probes for these 10 selected transcripts, 

plus 8–13 control probes. Susceptibility of each strain in this test set was predicted using the 

trained classifier. See Supplemental Methods for further detail on machine learning strategy 

and implementation.

For classification of simulated blood cultures, NanoString data were collected for the top 10 

transcripts (selected in Phase 1) from 12 strains for each pathogen-antibiotic pair, and 

analyzed using a leave-one-out cross-validation approach48, training on 11 strains and 

classifying the 12th, then repeating with each strain omitted once from training and used for 

prediction.

Blood culture processing

Under Partners Health Care IRB 2015P002215, bacteria were isolated from real or simulated 

blood cultures in the MGH clinical microbiology laboratory, isolated by differential 

centrifugation, resuspended in Mueller-Hinton broth, and immediately split for treatment 

with the indicated antibiotics. Lysis and targeted RNA detection were performed as above. 

Specimens were blinded until all data acquisition and analysis was complete. See 

Supplemental Methods for more detail. As approved by Partners IRB, samples were 

collected under waiver of patient consent due to experimental focus only on the bacterial 

isolates, not the patients from which they were derived.

Code availability

Custom scripts for transcript selection from RNA-Seq data are available at https://

github.com/broadinstitute/GeneSelection/. Custom scripts for feature selection and strain 

classification from NanoString data are available at https://github.com/broadinstitute/

DecisionAnalysis/. See Life Sciences Reporting Summary for additional detail.

Data availability

All RNA-Seq data generated and analyzed for this study, supporting the analyses in Fig. 1, 

and Extended Data Figs. 1, 2, and 5, have been deposited as aligned bam files in the NCBI 

Sequencing Read Archive under study ID PRJNA518730. All other datasets generated 

during the current study, including raw and processed NanoString data, are available from 

the corresponding author on reasonable request.

Extended Data
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Extended Data Figure 1. Differential gene expression upon antibiotic exposure distinguishes 
susceptible and resistant strains.
(a) RNA-Seq data from two susceptible (left panels) or two resistant (right panels) clinical 

isolates of E. coli or A. baumannii treated with meropenem (60 min), ciprofloxacin (30 

min), or gentamicin (60 min) at CLSI breakpoint concentrations are presented as MA plots. 

Statistical significance was determined by a two-sided Wald test with the Benjamini-

Hochberg correction for multiple hypothesis testing, using the DESeq2 package47. (b) 
Heatmaps of normalized, log-transformed fold-induction of top 10 antibiotic-responsive 

transcripts from 24 clinical isolates of E. coli or A. baumannii treated at CLSI breakpoint 

concentrations with meropenem, ciprofloxacin, or gentamicin. Gene identifiers are listed at 

right, along with gene names if available. CLSI classifications of each strain based on broth 
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microdilution are shown below. * = strains with large inoculum effects in meropenem MIC; 

x = strains discordant by more than one dilution. (c) GoPhAST-R predictions of probability 

of resistance from a random forest model trained on NanoString data from the derivation 

cohort and tested on the validation cohort (y-axis) are compared with standard CLSI 

classification based on broth microdilution MIC (x-axis) for E. coli (top) or A. baumannii 
isolates treated with meropenem, ciprofloxacin, and gentamicin. Horizontal dashed lines 

indicate 50% probability of resistance. Vertical dashed lines indicate the CLSI breakpoint 

between susceptible and not susceptible (i.e. intermediate/resistant). Numbers in each 

quadrant indicate concordant and discordant classifications between GoPhAST-R and broth 

microdilution. Carbapenemase (square outline) and select ESBL (diamond outline) gene 

content as detected by GoPhAST-R are also displayed on the meropenem plot.
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Extended Data Figure 2. Timecourse of RNA-Seq data upon antibiotic exposure reveals 
differential gene expression between susceptible and resistant clinical isolates.
Susceptible (left panels) or resistant (right panels) clinical isolates of K. pneumoniae, E. coli, 
or A. baumannii treated with meropenem, ciprofloxacin, or gentamicin at CLSI breakpoint 

concentrations for the indicated times. Data are presented as MA plots, Statistical 

significance was determined by a two-sided Wald test with the Benjamini-Hochberg 

correction for multiple hypothesis testing, using the DESeq2 package47.
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Extended Data Figure 3. Phylogenetic trees highlight the diversity of strains used in this study.
Phylogenetic trees of all sequenced isolates deposited in NCBI for (a) K. pneumoniae, (b) E. 
coli, (c) A. baumannii, and (d) P. aeruginosa, with all sequenced isolates used in this study 

indicated by colored arrowheads around the periphery. See Supplemental Methods for 

details.

Bhattacharyya et al. Page 15

Nat Med. Author manuscript; available in PMC 2020 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 4. NanoString data from dozens of antibiotic-responsive genes distinguish 
susceptible from resistant isolates.
Heatmaps of normalized, log-transformed fold-induction of antibiotic-responsive transcripts 

from clinical isolates of K. pneumoniae (24, 18, and 26 independent clinical isolates for the 

three antibiotics, respectively), E. coli (24 independent clinical isolates for each antibiotic), 

or A. baumannii (24 clinical isolates for each antibiotic) treated at CLSI breakpoint 

concentrations with meropenem, ciprofloxacin, or gentamicin. CLSI classifications are 

shown below. All antibiotic-responsive transcripts chosen as described from RNA-Seq data 

are shown here; the subset of these chosen by reliefF as the 10 most discriminating 

transcripts are shown in Fig. 1b or Supplemental Fig. 1b. * = strains with large inoculum 

effects in meropenem MIC; + = one-dilution errors; x = strains discordant by more than one 

dilution.
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Extended Data Figure 5. One-dimensional projection of NanoString data distinguishes 
susceptible from resistant isolates and reflects MIC.
(a) Phase 1 NanoString data from Extended Data Fig. 2 (i.e., normalized, log-transformed 

fold-induction for each responsive transcript), analyzed as described to generate squared 

projected distance (SPD) metrics (y-axes) for each strain (see Supplemental Methods), are 

binned by CLSI classifications (x-axes), for clinical isolates of K. pneumoniae (24, 18, and 

26 independent clinical isolates for the three antibiotics, respectively), E. coli (24 

independent clinical isolates for each antibiotic), or A. baumannii (24 clinical isolates for 

each antibiotic) treated at CLSI breakpoint concentrations with meropenem, ciprofloxacin, 

or gentamicin (the same isolates shown in Fig. 1b–c and Extended Data Fig. 1b–c). By 

definition, an SPD of 0 indicates a transcriptional response to antibiotic equivalent to that of 
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an average susceptible strain, while an SPD of 1 indicates a response equivalent to that of an 

average resistant strain. See Supplemental Methods for details. Data are summarized as box-

and-whisker plots, where boxes extend from the 25th to 75th percentile for each category, 

with a line at the median, and whiskers extend from the minimum to the maximum. Note 

that for A. baumannii and meropenem, the clustering of the majority of susceptible strains 

by this simple metric (aside from one outlier which is misclassified as resistant by 

GoPhAST-R) underscores the true differences in transcription between susceptible and 

resistant isolates, despite the more subtle-appearing differences in heatmaps for this 

combination (Extended Data Fig. 1b), which is largely caused by one strain with an 

exaggerated transcriptional response (seen here as the strain with a markedly negative SPD) 

that affects scaling of the heatmap. (b) The same SPD data (y-axes) plotted against broth 

microdilution MICs (x-axes) reveal that the magnitude of the transcriptional response to 

antibiotic exposure correlates with MIC. In both (a) and (b), strains with a large inoculum 

effect upon meropenem treatment are displayed in red and enlarged. Vertical dashed line 

indicates the CLSI breakpoint between susceptible and not susceptible (i.e., intermediate or 

resistant).
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Extended Data Figure 6. RNA-Seq and NanoString data reveal differential gene expression that 
distinguishes susceptible from resistant clinical isolates for S. aureus + levofloxacin and P. 
aeruginosa + ciprofloxacin.
(a) RNA-Seq data from two susceptible or two resistant clinical isolates of each species 

treated with the indicated fluoroquinolone at 1 mg/L for 60 minutes are presented as MA 

plots. Statistical significance was determined by a two-sided Wald test with the Benjamini-

Hochberg correction for multiple hypothesis testing, using the DESeq2 package47. (b) 
Heatmaps of normalized, log-transformed fold-induction of antibiotic-responsive transcripts 

from 24 independent clinical isolates of each species treated with the indicated 

fluoroquinolone at 1 mg/L for 60 minutes. For each species, NanoString data from all 

candidate transcripts are shown at left, and top the 10 transcripts selected from Phase 1 

testing are shown at right. (c) GoPhAST-R predictions of probability of resistance from a 

random forest model trained on Phase 1 NanoString data from the derivation cohort and 

tested on the validation cohort (y-axis) compared with standard CLSI classification based on 
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broth microdilution MIC (x-axis). Horizontal dashed lines indicate 50% probability of 

resistance. Vertical dashed lines indicate the CLSI breakpoint between susceptible and not 

susceptible (i.e. intermediate/resistant). Numbers in each quadrant indicate concordant and 

discordant classifications between GoPhAST-R and broth microdilution.
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Extended Data Figure 7. Schematic of data analysis scheme, including “two-phase” machine 
learning approach to feature selection and strain classification.
Schematic representation of major data analysis steps in identifying antibiotic-responsive 

transcriptional signatures from RNA-Seq data, validating and optimizing these signatures 

using NanoString in two phases, and using these signatures to classify strains of unknown 

MIC, also in two phases. First, candidate antibiotic-responsive and control transcripts were 

chosen from RNA-Seq data using custom scripts built around the DESeq2 package47, and 

conserved regions of these transcripts were identified for targeting in a hybridization assay. 

In phase 1 (implemented for all pathogen-antibiotic pairs), these candidate transcripts were 

quantitated on the NanoString assay platform, and the resulting data were partitioned by 

strain into training and testing cohorts. Ten transcripts that best distinguish susceptible from 

resistant strains within the training cohort were then selected (step 1A) using the reliefF 

feature selection algorithm (implemented via the CORElearn package), then used to train an 

ensemble classifier (step 1B) on the same training cohort using a random forest algorithm 

(implemented via the caret package). This trained classifier was then used to predict 

susceptibilities of strains in the testing cohort (step 1C), and accuracy was assessed by 

comparing with broth microdilution results (Supplementary Table 4). In phase 2 

(implemented for K. pneumoniae + meropenem and ciprofloxacin), the same process was 

repeated, but the phase 1 training and testing cohorts were combined into a single, larger 

training cohort for feature selection (step 2A) and classifier training (step 2B), and a new set 

of strains were obtained as a testing cohort. The 10 genes selected from the phase 2 training 

cohort were measured from this phase 2 testing cohort, and the trained classifier was used 

for AST on these new strains (step 2C), with accuracy again assessed by comparison with 
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broth microdilution (Supplementary Table 4). See Supplemental Methods for detailed 

descriptions of each of these analysis steps.
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Extended Data Figure 8. GoPhAST-R accurately classifies K. pneumoniae isolates tested in phase 
2.
(a) Heatmaps of normalized, log-transformed fold-induction of top 10 antibiotic-responsive 

transcripts from K. pneumoniae treated at CLSI breakpoint concentrations with meropenem 

(31 independent clinical isolates) or ciprofloxacin (25 independent clinical isolates). CLSI 

classifications are shown below. * = strain with large inoculum effects in meropenem MIC; 

+ = one-dilution error; x = strain discordant by more than one dilution. Note that the 10 

responsive transcripts shown are the only 10 tested for this second phase of GoPhAST-R 

implementation. (b) GoPhAST-R predictions of probability of resistance from a random 

forest model trained on all Phase 1 NanoString data the independent Phase 2 cohort (y-axis) 

compared with standard CLSI classification based on broth microdilution MIC (x-axis). 

Horizontal dashed lines indicate 50% probability of resistance. Vertical dashed lines indicate 

the CLSI breakpoint between susceptible and not susceptible (i.e. intermediate/resistant). 

Numbers in each quadrant indicate concordant and discordant classifications between 

GoPhAST-R and broth microdilution. * = strain with large inoculum effects in meropenem 

MIC.
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Extended Data Figure 9. GoPhAST-R accurately classifies AST and detects key resistance 
elements directly from simulated positive blood culture bottles in <4 hours.
(a) Heatmaps of normalized, log-transformed fold-induction NanoString data from the top 

10 antibiotic-responsive transcripts directly from 12 simulated positive blood culture bottles 

for each indicated pathogen-antibiotic combination reveal antibiotic-responsive transcription 

in susceptible but not resistant isolates. For meropenem, results of carbapenemase / ESBL 

gene detection are also displayed as a normalized, background-subtracted, log-transformed 

heatmap above. CLSI classifications of isolates, which were blinded until analysis was 

complete, are displayed below each heatmap. (b) Probability of resistance from a random 

forest model trained by leave-one-out cross-validation on NanoString data from (a) (y-axis) 

compared with standard CLSI classification based on broth microdilution MIC (x-axis) for 
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each isolate. Horizontal dashed lines indicate 50% chance of resistance based on random 

forest model. Vertical dashed lines indicate CLSI breakpoint between susceptible and 

resistant. Carbapenemase (square outline) and select ESBL (diamond outline) gene content 

as detected by GoPhAST-R are also displayed on meropenem plots. See Supplementary 

Methods for details of spike-in protocol.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Differential gene expression upon antibiotic exposure distinguishes susceptible and 
resistant strains.
(a) RNA-Seq data from two susceptible (left panels) or two resistant (right panels) clinical 

isolates of K. pneumoniae treated with meropenem (60 min), ciprofloxacin (30 min), or 

gentamicin (60 min) at CLSI breakpoint concentrations are presented as MA plots. 

Statistical significance was determined by a two-sided Wald test with the Benjamini-

Hochberg correction for multiple hypothesis testing, using the DESeq2 package28. (b) 
Heatmaps of normalized, log-transformed fold-induction of top 10 antibiotic-responsive 

transcripts from K. pneumoniae treated at CLSI breakpoint concentrations with meropenem 

(left, 24 independent clinical isolates), ciprofloxacin (center, 18 independent clinical 

isolates), or gentamicin (right, 26 independent clinical isolates). Gene identifiers are listed at 

right, along with gene names if available. CLSI classifications of each strain based on broth 

microdilution are shown below. + = strains with one-dilution errors in classification. (c) 
GoPhAST-R predictions of probability of resistance from a random forest model trained on 

NanoString data from the derivation cohort and tested on the validation cohort (y-axis) are 

compared with standard CLSI classification based on broth microdilution MIC (x-axis) for 

K. pneumoniae isolates treated with meropenem, ciprofloxacin, and gentamicin. Horizontal 

dashed lines indicate 50% probability of resistance. Vertical dashed lines indicate the CLSI 

breakpoint between susceptible and not susceptible (i.e. intermediate/resistant). Numbers in 

each quadrant indicate concordant and discordant classifications between GoPhAST-R and 
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broth microdilution. Carbapenemase (square outline) and select ESBL (diamond outline) 

gene content as detected by GoPhAST-R are also displayed on the meropenem plot. Arrow 

indicates a strain with high-level meropenem resistance, but no carbapenemase.
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Fig. 2. GoPhAST-R detects carbapenemase and ESBL gene content from tested strains.
Known carbapenemase and select ESBL transcript content based on WGS data (left panels) 

are compared with heatmaps of GoPhAST-R results (right panels) for all (a) K. pneumoniae, 

(b) E. coli (, and (c) A. baumannii isolates tested for meropenem susceptibility for which 

WGS data was available (42, 20, and 13 independent clinical isolates, respectively). 

Heatmap intensity reflects normalized, background-subtracted, log-transformed NanoString 

data from probes for the indicated gene families. Vertical dashed line separates 

carbapenemases (left) from ESBL genes (right). Phenotypic AST classification by broth 

microdilution and GoPhAST-R is shown at right (“S” = susceptible, “I” = intermediate, “R” 

= resistant; “tr.” = strain used in training cohort, thus not classified by GoPhAST-R). * = 

strains with large inoculum effects in meropenem MIC; x = strain discordant by more than 

one dilution.
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Fig. 3. GoPhAST-R detects antibiotic-responsive transcripts directly from positive blood culture 
bottles.
Heatmaps of normalized, log-transformed fold-induction of the top 10 ciprofloxacin-

responsive transcripts from 8 positive blood culture bottles that grew either E. coli (6 

independent bottles, A-F) or K. pneumoniae (2 independent bottles, G-H). CLSI 

classifications of isolates performed by the clinical microbiology laboratory, which were 

blinded until analysis was complete, are displayed below each heatmap.
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Fig. 4. GoPhAST-R workflow with the NanoString Hyb & Seq™ platform distinguishes 
phenotypically susceptible from resistant strains and detects genetic resistance determinants in 
<4 hours.
(a) The GoPhAST-R workflow on the Hyb & Seq detection platform begins once growth is 

detected in a blood culture bottle. Pathogen identification could either be done prior to this 

process, or in parallel by multiplexing mRNA targets from multiple organisms (see 

Supplementary Text). (b) Hyb & Seq hybridization scheme: probe pairs targeting each RNA 

transcript are hybridized in crude lysate. Each probe A contains a unique barcode sequence 

(green) for detection and a shared 3’ capture sequence; each probe B contains a biotin group 

(gray circle) for surface immobilization and a shared 5’ capture sequence. (c) Hyb & Seq 

detection strategy: immobilized, purified ternary probe-target complexes undergo sequential 

cycles of multi-step imaging for spatially resolved single-molecule detection. Each cycle 

consists of reporter probe binding and detection, UV cleavage, a second round of reporter 

probe binding and detection, and a low-salt wash to regenerate the unbound probe-target 

complex. 5 Hyb & Seq cycles were used to generate the data shown. See Supplemental 

Methods for details. (d) Pilot studies for accelerated meropenem susceptibility testing of 6 

clinical K. pneumoniae isolates. Above: heatmaps of normalized, log-transformed fold-

induction of top 10 meropenem-responsive transcripts measured using this Hyb & Seq 

workflow, with strains arranged in order of MIC for each antibiotic. CLSI classifications are 

shown below. Below: heatmaps of normalized, background-subtracted, log-transformed 

NanoString data from carbapenemase (“CPase”) and select ESBL transcripts measured in 

the same Hyb & Seq assay.
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