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Natural language processing (NLP) is rapidly becoming an important topic

in the medical community. The ability to automatically analyze any type

of medical document could be the key factor to fully exploit the data it

contains. Cutting-edge artificial intelligence (AI) architectures, particularly

machine learning and deep learning, have begun to be applied to this topic

and have yielded promising results. We conducted a literature search for 1,024

papers that used NLP technology in neuroscience and psychiatry from 2010

to early 2022. After a selection process, 115 papers were evaluated. Each

publication was classified into one of three categories: information extraction,

classification, and data inference. Automated understanding of clinical reports

in electronic health records has the potential to improve healthcare delivery.

Overall, the performance of NLP applications is high, with an average F1-

score and AUC above 85%. We also derived a composite measure in the

form of Z-scores to better compare the performance of NLP models and

their different classes as a whole. No statistical differences were found in the

unbiased comparison. Strong asymmetry between English and non-English

models, difficulty in obtaining high-quality annotated data, and train biases

causing low generalizability are the main limitations. This review suggests that

NLP could be an effective tool to help clinicians gain insights from medical

reports, clinical research forms, and more, making NLP an effective tool to

improve the quality of healthcare services.
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Introduction

In recent years, natural language processing (NLP) has
become an increasingly important topic in the artificial
intelligence (AI) landscape of medical community. NLP
is, intuitively, an ensemble of techniques to automatically
process human language. It includes various tasks that
can be divided into two main groups: the first group is
represented by techniques that extract insights from a text
(e.g., data extraction from medical reports, patient satisfaction
understanding, sentiment analysis for drug evaluations),
while the second group is related to text generation (e.g.,
translation, summarization, automatic chatbots). The rise in
popularity of NLP in the last decade is due to several
factors. First, the pervasive diffusion of the Internet has
made it possible to access vast amounts of human-written
text with little effort. For example, one of the currently
most popular NLP language models, called bidirectional
encoder representations from transformers (BERT) (1), has
been pre-trained using Wikipedia texts and the Book corpus.
Moreover, social media users produce an enormous amount
of text every day; this source of information can be used
for a variety of NLP tasks (2, 3). Another reason for
the explosion in popularity of NLP is technological: in
the last years, major improvements in neural networks
(NNs) and deep learning (DL) architectures have enabled
the transition from statistical to more complex and flexible
models. One of the latest improvements in NLP is the
introduction of Transformers, an architecture that has broken
several records in NLP tasks (4). Moreover, NLP is strongly
promoted by the world’s leading companies (e.g., Google,
Amazon, OpenAI), which make a large part of their tools
publicly available and open-source, increasing the general
interest in NLP.

In the last decade, NLP improved significantly, thanks to the
breakthroughs represented by word embeddings (5), Attention
mechanism, and Transformers. However, its applications to
neuroscience and psychiatry are still in their infancy. The
ever-growing interest in NLP applications is reflected in the
number of scientific papers on this subject. As can be seen in
Figure 1, NLP-related papers show an exponential-like trend
(R2 = 0.78). In 1990 there were 13, in 2000 59, in 2010 242,
and in 2021 already 1,618. The medical field is one of the
areas that could benefit most from solid and reliable NLP
models, mainly because most of the medical texts produced
daily in hospitals and clinics are unstructured and not exploited
as they could be. NLP can be used effectively for various
medical tasks, such as earlier diagnosis, better identification
of candidates for medical procedures, or to assist physicians
in their decision-making. The purpose of this review is to
explore how NLP can be applied to neuroscience/psychiatric
clinical documents to help clinicians gain insights from
them.

FIGURE 1

Number of scientific papers with keyword “Natural Language
Processing” published on PubMed from 1990 to 2021,
normalized on the number of total papers published on
PubMed.

Related work

The rationale of this review is to provide an overview of the
applications of NLP in neuroscience and psychiatry. The target
audience is primarily clinicians working in these fields, who
could benefit from both the comprehensive yet simple overview
of the state-of-the-art of NLP, and the possible declinations of
these technologies in real case scenarios.

As reported in Section “Methods,” other NLP reviews
were also analyzed. Due to their nature, they were not
categorized into any of the three topics presented in Section
“Results.” Some of these reviews are extremely focused on a
specific argument (6–10); this makes them good candidates
for topic-specific analysis, but they lack a general vision.
Other reviews do not present the breakthroughs of the
last 4–5 years (attention mechanism, transformers, BERT-
models, etc.), either because they are relatively old (11–13),
or because they present the current state-of-the-art at a high
level (14–17). Lastly, Wu et al. (18) present a solid review,
which is focused on DL approaches only. For these reasons,
we believe that the current review can be of interest to
the target audience: it provides a broad overview of the
current NLP landscape, both in terms of technical approaches
and clinical applications, and it also presents works that
apply a traditional machine learning (ML) approach (i.e.,
algorithms that do not involve NNs), thus providing a complete
picture of the current state-of-the art of NLP applied to
neuroscience and psychiatry.

The paper is structured as follows: first, an overview of
NLP is presented with a formal definition (Box 1), a brief
history, and an explanation of the main tools available. Then,
follows a paragraph on the selection method of the papers
presented in this work. This is followed by a paragraph on
the three major NLP topics [i.e., information extraction (IE),
classification, data inference]. Discussion and conclusions are
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BOX 1 Natural Language Processing Definition.

NLP is “a theoretically motivated range of computational techniques for analyzing and representing naturally occurring texts at one or more levels of linguistic analysis
for the purpose of achieving human-like language processing for a range of tasks or applications” (115).
NLP is “an area of research and application that explores how computers can be used to understand and manipulate natural language text to do useful things” (116).

BOX 2 Glossary of all the NLP terms used in the review.

Annotation: see Labeling.
Attention: mechanism that enables the model to focus on important parts of the context, no matter how distant from the current word;
Augmentation strategy: techniques used to generate additional, synthetic data;
Corpus (plural corpora): a collection of written texts. They can be structured or not, annotated or not;
Entity Linking: the operation of assigning logical relationships between Named Entities;
Fine-tuning: process of further training a pre-trained model on a specific task by means of labeled data;
Labeling: the process of assigning values to raw data;
Part-of-speech tagging: assigning word types to tokens (e.g., verb, noun);
Pre-training: process of training a model with unlabeled data, thus giving it a general understanding of the subject;
Stemming: reducing a word to its base root by cutting off its end (or beginning);
Transformer: model architecture that relies entirely on the attention mechanism to draw global dependencies between input and output;
Transfer learning: machine learning technique where a model developed for a task is reused as the starting point for a model on a second task;
Tokenizer: component of the NLP pipeline that performs tokenization, i.e., splitting a text into smaller units called tokens (words, subwords, or characters):

then drawn. A glossary of some of the terms used in this review
can be found in Box 2.

Overview of natural language
processing architectures

From a practical point of view, NLP is a class of algorithms
that process text expressed in natural language to achieve a
goal (see Box 3 and Box 4). When we talk about architectures,
we can distinguish a pre-NN era and an NN era. The pre-
NN era started in the late 1940s, with the primary task under
study being machine translation (19). Various approaches were
developed over the years, from grammar theories in the 1960s
(20) to symbolic approaches in the 1980s (21). In the early 1990s,
systems based on hand-written rules were abandoned in favor
of statistical models (22), thanks to the increasing computing
power and the advent of ML algorithms. NLP got a spike of
interest in the last decade, thanks largely to advances in DL and
the availability of human-written texts.

Neural network models

The era of NN models, also called large language models
(LLMs) when applied to NLP, started at the beginning of the
new millenium, when the first neural language model was
created (21). Since then, several NN approaches have appeared
in NLP research (23). In 2010, the model semantic/syntactic
extraction using a neural network architecture (SENNA) was
implemented. It was the first word embedding architecture
able to perform several NLP tasks (5). A few years later, the
Word2Vec model was presented (24): the authors trained an
NN on very large unannotated corpora, showing the power

of using pre-trained embeddings. However, Word2Vec has
limitations: most importantly, it does not take into account
the context of the words. For example, the word “bank” would
have exactly the same representation as “bank-deposit” and
“river-bank.”

In the following years, some popular DL architectures
started to be used in the field of NLP: convolutional
neural networks (CNNs) (25), fast and highly parallelizable,
and recurrent neural networks (RNNs), which are ideal for
sequential data such as texts. CNNs, which have been used
extensively in computer vision, can also be applied to common
NLP tasks, such as text classification (26). Since texts are
sequences of words, RNNs are suitable for NLP applications
(27), because they examine each element of a sequence
once and retain it in memory for reuse when examining
the next elements. However, standard RNNs have difficulty
learning long-term temporal dependencies. The problem has
been solved by the introduction of long short-term memory
networks (LSTM) (28). LSTMs are a special type of RNNs
that are able to retain information in memory over long
periods of time.

Recently, the NLP scene has been dominated by
transformers, which are based on the attention mechanism (4).
Compared to previous DL architectures, these models proved
to be qualitatively superior while being more parallelizable,
requiring significantly less time to train. Transformers paved
the way for the development of the aforementioned BERT (1),
developed by Google. BERT, which generates representations
of words based on their context, boosted the performance
of various NLP tasks and established itself as state-of-the-art
(29). Since then, several BERT-based architectures have been
developed: robustly optimized BERT approach (RoBERTa) (30),
and a lite BERT (ALBERT) (31) are among the most known.
Another reason for the success of these architectures is transfer
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BOX 3 NLP Extractive tasks - Objective: gain insight from texts.

Named Entity Recognition (NER): identifies words in a text belonging to predefined semantic types, e.g., person, location (117). NER often serves as the
foundation for many other NLP tasks;
Relation extraction: extracts semantic relationships (associations between the meanings of words) connecting two specified named entities in a sentence (118);
Question Answering (QA): inputs are a text (context) and a question. Its goal is to find the span in the context that answers the question, if possible. Most
advanced QA systems can also understand if the question has no answer (119);
Topic modeling: also called topic analysis, its goal is extracting the main topics that occur in a text (120);
Text similarity: also called semantic similarity, its goal is to produce a score that expresses how similar the meanings of texts are (121);
Sentiment analysis: usually performed on reviews, produces an output that tells if the text expresses a positive, neutral, or negative sentiment (122).

BOX 4 NLP Generative tasks–Objective: generate a text starting from another.

Translation: the first task ever studied in NLP; it is the operation of translating a text from a language to another;
Summarization: its goal is to make a text shorter while preserving most of the essential information;
Text generation: generically, it is the task of producing a plausible and readable text in human language from input data. This can be exploited in interactive chat
bots, where a text is generated as a response from the user input, or for data augmentation.

learning (TL), a technique that allows an already pre-trained
model to be used and specialized with much less labeled data.
This operation is called fine-tuning.

Nowadays, hundreds of transformer models are available in
the NLP landscape, and most of them perform better than BERT.
While it is virtually impossible to keep track of every single one,
the most significant are here presented:

1. XLNet (32), which requires a huge amount of data to train
and very high computational power;

2. Generative pre-trained transformer (GPT) (33), whose
latest version 3 was released in summer 2020. The model
has been developed in collaboration with Microsoft and is
not open-source;

3. Text-to-text transfer transformer (T5) (34), an encoder-
decoder model pre-trained on a multi-task mixture of
unsupervised and supervised tasks and for which each task
is converted into a text-to-text format;

4. Wenxin,1 the world’s first knowledge-enhanced 100-
billion-scale pre-trained language model and largest
Chinese-language monolithic model;

5. Megatron-Turing (35), developed by Microsoft and
nVIDIA, the largest and the most powerful monolithic
transformer language model trained to date, with 530
billion parameters (3x GPT-3).

Bidirectional encoder representations
from transformers and bidirectional
encoder representations from
transformers-based models

BERT uses a WordPiece tokenizer (36) (i.e., words are split
into subwords before being processed), and its pre-training is

1 https://wenxin.baidu.com/

based on two principles: the masked language modeling (MLM)
and the next sentence prediction (NSP). MLM randomly masks
15% of the tokens with a [MASK], and the model tries to
predict the original ones based on the surrounding words. In this
way, the representation can merge the left and right contexts,
making the model deeply bidirectional. In the NSP task, the
model is given pairs of sentences and learns to predict whether
they follow each other. BERT has broken records in several
NLP tasks and has become the de facto reference model for
NLP. Moreover, its popularity is based on the possibility of
fine-tuning a model to a specific task by adding further layers
that are trained on task specific data of smaller size, which
significantly reduces the time and resources needed to build
customized models.

Although effectiveness has been achieved in various
NLP tasks, BERT has difficulties when dealing with very
specific contexts. To address this problem, researchers
have developed more focused models, starting from
the original BERT. As far as the biomedical domain is
concerned, three of the most popular BERT-based models are
bidirectional encoder representations from transformers
for biomedical text mining (BioBERT) (37), Clinical
(Bio)BERT (38), and unified medical language system-
bidirectional encoder representations from transformers
(Umls-BERT) (39).

Bidirectional encoder representations from
transformers for biomedical text mining

BioBERT is a domain-specific language representation
model, pre-trained on large biomedical corpora (PubMed
abstracts and full-text articles). BioBERT outperforms
BERT and previous state-of-the-art models in several
biomedical text mining tasks performed on biomedical
corpora: named entity recognition (NER) (the task of
identifying words in a text that belong to predefined
semantic types), biomedical relation extraction, question
answering (QA).
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Clinical (Bio)BERT
Clinical BERT and Clinical BioBERT are models fine-

tuned on medical corpora, initialized from BERT-Base and
BioBERT, respectively. They were tested with different NLP
tasks (i.e., MedNLI (40), i2b2 2006,2 2010, 2012, and 2014).
In three out of the five tasks, they showed improvements
over both BERT and BioBERT. These results demonstrate the
utility of using domain-specific contextual embeddings for
biomedical NLP tasks.

Unified medical language system-bidirectional
encoder representations from transformers

Umls-BERT was motivated by the fact that BioBERT
and Clinical BERT do not take into consideration structured
expert domain knowledge from a knowledge base. Umls-BERT
integrates domain knowledge during pre-training by means
of an augmentation strategy. This is done by connecting
words that have the same underlying concept in unified
medical language system (UMLS) and leveraging semantic
type knowledge in UMLS to create clinically meaningful
input embeddings. Umls-BERT outperforms existing domain-
specific models on common NER and clinical natural language
inference tasks.

Natural language processing generic
tools

The research community has developed numerous
tools for performing NLP tasks. Most are open-source
libraries that allow users with basic programming skills
to perform language analysis. We present three of the
most popular open-source libraries for NLP: natural
language toolkit (NLTK),3 spaCy,4 and hugging face
(HF) (41).

Natural language toolkit
Natural language toolkit is a platform for developing

software to work with natural language, originally developed
in 2001 as part of a computational linguistics course at the
University of Pennsylvania. It provides a suite of text processing
libraries for classification, tokenization, stemming (i.e., reducing
a word to its base root), part-of-speech tagging (i.e., assigning
word types to tokens, such as verb or noun), parsing, and more.
NLTK covers symbolic and statistical NLP and is easy to use,
making it suitable for linguists, researchers, and industrial users.
The main limitation of NLTK is that it does not implement
modern NN and DL models.

2 https://www.i2b2.org/

3 https://www.nltk.org/

4 https://spacy.io/

SpaCy
SpaCy is an open-source library for advanced NLP in

Python, designed specifically for production use. It can be used
to build natural language understanding systems, or to pre-
process texts for DL architectures. SpaCy, unlike NLTK, is
not a research software. This means that the user will not be
asked how to implement a pipeline: this is done automatically,
ensuring the highest possible execution speed. DL models are
provided in the library.

Hugging face
Hugging face is a company that develops open-source

resources to easily integrate AI into workflows. In particular,
they have developed the Transformers library, which is designed
to handle Transformer architectures. HF has a very large and
active community and provides thousands of pre-trained and
fine-tuned models, some of which have been developed by
the world’s leading companies (e.g., Google, Microsoft) and
allow to obtain state-of-the-art results on many NLP tasks.
With the HF libraries users can perform many operations, such
as creating personalized tokenizers, pre-training models from
scratch, fine-tuning already existing models, and sharing them
with the community.

Natural language processing medical
tools

Generic NLP tools are very popular in the scientific
community. However, in the last decade, many medical-NLP
tools have also become available, especially for the task of IE,
NER, and entity linking (the operation of assigning logical
relationships between named entities). In this section, the most
popular ones are presented.

Clinical text analysis and knowledge extraction
system

Clinical text analysis and knowledge extraction system
(cTAKES) (42) is an NLP system for extracting information
from electronic health records (EHRs) clinical free text. It can
identify classes of clinical named entities such as drugs, diseases,
and symptoms. Originally developed at the Mayo Clinic, it is
now used by various institutions around the world.

Biomedical-yet another open data information
extraction system

Biomedical-yet another open data information extraction
system (Bio-YODIE) (43) is a named entity linking system for
biomedical texts. Bio-YODIE implements a pipeline that applies
annotations to documents containing a UMLS (44) Concept
Unique Identifier along with other relevant information from
the UMLS. Bio-YODIE shows results comparable to other
named entity linking systems presented in the literature.
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MetaMap
MetaMap (45) is a highly configurable program for

mapping biomedical texts to the UMLS Meta-thesaurus. The
development of MetaMap was guided by linguistic principles
that provide both a rigorous foundation and a flexible
architecture. It uses a knowledge-intensive approach based on
symbolic NLP and computational-linguistic techniques. After
tokenization, part-of-speech-tagging, and syntactic analysis,
candidates are identified and then combined to produce a final
result that best matches the text and the concept of the phrase.
A lite version of MetaMap was developed to focus on real-time
processing speed (46).

Medical concept annotation toolkit
Medical concept annotation toolkit (MedCAT) (47) is an

open-source tool with many features: NER, annotation tool,
and online learning training interface. Its annotation tool,
MedCATtrainer, allows clinicians to review, improve and adapt
extracted concepts via a web interface designed for training
IE pipelines. To evaluate MedCAT, the following corpora were
used: ShARe/CLEF (48) and MIMIC-III (49) datasets. MedCat
outperformed other popular medical NLP tools (e.g., cTAKES,
Bio-YODIE, MetaMap) in almost all aspects and proved to be
an effective tool for specific analyses.

Table 1 gives a summary of the NLP tools and resources
that were utilized in the included studies. Table 2 include some
additional details.

Methods

A search was conducted to identify all potentially relevant
publications on NLP applications in neuroscience and
psychiatry. We focused on publications in the time window
from 2010 to early 2022. The ACL Anthology, PubMed, Embase,
and PsycINFO repositories were queried in January 2022.

All publications that emerged from the search were
independently assessed by two authors (CC, senior engineer
with 24 months of experience in clinical neuroscience;
AR, senior neuroscientist with 14 years of experience in
neuroinformatics). Publications were excluded if full text could
not be retrieved or if they were published in a journal without
an assigned impact factor in the 2022 Journal Citation Report
science edition.

The ACL Anthology database, which included about 77
thousand papers, was screened first. Articles published in
Proceedings were removed to ensure a high-standard for
the present review. This left 2,577 ACL Anthology papers,
which became 884 after date filtering and deduplication. The
remaining ACL Anthology articles were inspected but none
was found to be related to neuroscience or psychiatry domains.
Therefore, the ACL Anthology articles were not included in the
PRISMA chart (Figure 2).

The subsequent search yielded a total of 415 publications
from PubMed, 598 from Embase, and 11 from PsycINFO
for a total of 1,024 initial records, which became 663 after
deduplication. The search queries used to select records in
PubMed, Embase, and PsycINFO are described in Box 5.

These papers were screened to determine whether they met
the eligibility criteria. They were screened only if they were
published in first quartile journals, in order to analyze high-
quality articles. This process resulted in the exclusion of 254
publications, leaving 409 candidate records, that were divided
into two groups: non-relevant and relevant articles. Articles that
were not directly related to NLP topics or that were related to
NLP but focused on biomedical topics unrelated to neuroscience
or psychiatry were classified as non-relevant. A total of 280
articles were non-relevant. The remaining 129 relevant papers
were screened, and 14 of them were excluded from the main
analysis because they were reviews. Nevertheless, they were
examined, and an overview is presented in Section “Related
work.” The full texts of the remaining 115 papers were assessed:
17 of them were excluded because they focused on speech
analysis, and 33 excluded because they did not contain sufficient
information about the NLP algorithms used (Figure 2).

The remaining 65 papers were deemed appropriate and
analyzed. Although they all relate to NLP, three distinct topics
were identified:

1. Natural language processing for IE (N = 18): this class of
articles implements (or applies an existing) system for IE
to get insight into patients’ medical records;

2. Natural language processing for classification (N = 24):
this class of articles describes works that exploit NLP-based
features (e.g., identification and frequency of pathological
words, number of different words used in the text, . . .)
to train and deploy a classifier that predicts patient health
status;

3. Natural language processing for outcome prediction
(N = 23): this class of papers presents systems that use
NLP-based tools to make assumptions and hypotheses
regarding patients, e.g., to stratify potential candidates for
a specific surgical operation.

Results

Natural language processing for
information extraction

This class of papers focuses on IE. Some of them start
from existing tools and extend them, while others use ML/DL
architectures to develop new tools.

Creating a tool to perform IE in the biomedical domain
from scratch is challenging. The process requires both a solid
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MetaMap Average Average Good None Excellent Average Average

MedCAT Average Average Good None Excellent Excellent Good
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for biomedical text mining; NLTK, natural language toolkit; HF, hugging face; cTAKES, clinical text analysis and knowledge extraction system; Bio-YODIE, biomedical-yet another open data information extraction system; MedCAT, medical concept
annotation toolkit. 1Model is free to download. †It is not possible to evaluate BioBERT, Clinical BioBERT, and Umls-BERT ability to perform NLP tasks a priori because they require fine-tuning first.
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TABLE 2 Natural language processing (NLP) tools and web sites.

NLP tools Brief description Web-site

NLTK Open-source library for low-level NLP operations (stemming, part-of-speech tagging) https://www.nltk.org/

spaCy Open-source library for advanced NLP in Python. Support 64+ languages, implement DL
models

https://spacy.io/

Hugging face Open-source library for NLP in Python. Features thousands of pre-trained models and
datasets in several languages

https://huggingface.co/

cTAKES Open-source NLP tool for IE from clinical EHR unstructured text https://ctakes.apache.org/

Bio-YODIE Open-source NLP tool for biomedical named entity linking pipeline https://github.com/GateNLP/Bio-YODIE

MetaMap Highly configurable program to map biomedical text to the UMLS Meta-thesaurus https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html

MedCAT Open-source NLP tool for IE from EHRs and link it to biomedical ontologies like
SNOMED-CT and UMLS

https://github.com/CogStack/MedCAT

NLP, natural language processing; DL, deep learning; IE, information extraction; EHR, electronic health records; UMLS, unified medical language system; SNOMED-CT, systemized
nomenclature of medicine-clinical terms.

BOX 5 Search strategy.

PubMed: “[(Natural Language Processing) OR (NLP)) AND ((neurology) OR (psychiatry)] [‘2010’ (Date-Publication): ‘2022/01’ (Date-Publication)]”
Embase: “(‘natural language processing’/exp OR ‘natural language processing’) AND (‘neuroscience’/exp OR ‘neuroscience’ OR ‘psychiatry’/exp OR ‘psychiatry’)”
PsycINFO query 1: “Natural Language Processing AND Neuroscience”
PsycINFO query 2: “Natural Language Processing AND Psychiatry”

knowledge of modern NLP architectures and expertise in
biomedical disciplines. While the first requirement is facilitated
by the NLP open-source libraries, the second requires clinicians
to make their skills and expertise available to NLP developers.
This is because, even though TL has mitigated the impact of

FIGURE 2

PRISMA chart.

this issue, a large number of annotated texts are needed to
properly train DL architectures. The annotation process, also
known as labeling, necessarily needs someone knowledgeable in
the medical field.

An overview of the creation process for an NLP-based
biomedical tool is presented by Liao et al. (50). The first step
is to define the main research objectives and the ideal study
design and population. The following steps are to create a
sensitive data repository, define a comprehensive list of potential
variables and terms useful for the algorithm, create a training
set, and develop the classification algorithm. The final step is the
validation of the algorithm and statistical analysis of the results.
The process is tedious, but the performance improvement that
an NLP approach provides makes the effort worth.

This paradigm was also followed in the development of
the aforementioned cTAKES, MedCAT, and ExECT (51). The
ultimate goal was to create a general-purpose, open-source
biomedical NLP tool that can be used for other applications;
such tools can then be used to work on specific pathologies. This
is the case of Johnson et al. (52), who used ClinicalRegex5 to
examine social support in patients with aggressive hematologic
malignancies. Khapre et al. (53) and McDonald et al. (54)
similarly used General Architecture for Text Engineering
(GATE),6 an open-source NLP toolkit, to study symptoms in
women with severe mental illness (i.e., psychotic and bipolar
disorders) and in people with mood instability and/or sleep
disturbance, respectively.

5 http://hdl.handle.net/1721.1/119754

6 https://gate.ac.uk/
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The above tools have highlighted two major problems in the
development of NLP tools, namely:

1. The vast majority of available systems is for the English
language only;

2. One of the critical issues is the difficulty of having large
annotated corpora in specific medical fields.

The first limitation can be overcome with a large corpus,
as shown by Lopes et al. (55), who developed a Portuguese
NER tool that achieves comparable performance to the English
models. This drawback could be less severe with very large
models, since they able to perform zero-shot learning (ZSL)
(33), which means that a model can work on classes of data it
has never seen before. In the NLP context, this allows models
to perform fairly well even on tasks or languages that they
have not been trained for. The second issue can be solved
either manually, which implies a large annotation effort, or
with a (semi)automatic approach, as shown by Yu et al. (56),
who present an active learning system that allows the use of
unannotated samples for training a NER pipeline.

Moving from general purpose biomedical NLP tools to
more specialized ones, several works can be found in the
neuroscience literature. Goodwin et al. (57), Pruitt et al. (58),
and Choi et al. (59) used DL architectures to apply IE from
electroencephalographic reports, cranial computed tomography
scan reports, and pharmacokinetic and pharmacodynamic
studies, respectively. NLP can also be used to study psychiatric
disorders. As suggested by Palaniyappan (60) and Corcoran
et al. (9), linguistic variables can be considered biomarkers
of psychosis because they reflect biological processes. This
assumption has been proven by Vaci et al. (61) and Mueller et al.
(62), who developed algorithms to extract information from
EHRs for depression and dementia, respectively.

Another subfield of IE is topic modeling, the goal of which
is to discover the abstract topics in a text. This process can
be performed both in both unsupervised and supervised ways.
The former approach has the obvious advantage of eliminating
the tedious annotation phase (63). The latter requires the
development of a pipeline based on a supervised algorithm using
tools, such as cTAKES (64). Conventional ML approaches can
achieve comparable performance to DL models, but are more
clinical interpretable, making them more understandable and
acceptable in the clinical setting. This is not trivial: since such
algorithms are used by clinicians as decision support tools, it is
important for them to understand how decisions are made.

Natural language processing for
classification

The second class of the analyzed works refers to
classification. Its goal is to create a model that performs

classification starting from a text produced either by patients
during a neuropsychological/psychiatric writing test (e.g.,
verbal fluency list) or by clinicians (e.g., medical notes). Such
models typically exploit NLP features (e.g., frequency of
words, number of adverbs, percentage of verbs in the past
tense) along with standard features (e.g., vital parameters,
psychological test scores) to train an AI classifier. Some of them
are implemented using traditional ML models [e.g., support
vector machine (SVM), random forest (RF)], others are based
on DL architectures.

Texts created by patients generally follow certain patterns.
By choosing the right features, models, and a large enough
corpus, good results can be obtained using syntactic and
semantic features to distinguish individuals with mild cognitive
impairment from patients with Alzheimer’s disease or healthy
controls from individuals with semantic dementia and
progressive non-fluent aphasia (65, 66). In recent years,
researchers have recognized that social medias can also be a
source of text for these experiments. This is the case of Low
et al. (67), Wang et al. (68), and Koh et al. (69): the first used
posts from Reddit, the second and third from Twitter, to
investigate how COVID-19 increased anxiety and loneliness
in the population. Similarly, Howard et al. (70) exploited data
from Reachout.com,7 an online mental health service for young
people and their parents in Australia, benchmarking multiple
methods of text feature representation for social media posts
and comparing their downstream use with automated ML
tools. Yu et al. (71) used data from the John Tung Foundation8

to build a framework for discovering linguistic association
patterns, and showed that they are promising features for
classification tasks.

As in the case of IE, the drawback is the lack of non-
English tools. Indeed, there are few non-English NLP efforts in
the literature that have collected large corpora to create ad hoc
SVM classifiers for neuroscience domains that performed well
in discriminating specific and non-specific memories from cue-
recalled Japanese memories (72). However, in the non-English
cases, the efforts required are colossal.

A different approach exploits notes written by clinicians
(patient related notes or reports of instrumental examination).
Some of these works uses NLP combined with traditional
classifiers. Kim et al. (73), Li et al. (74), Castro et al. (75), Garg
et al. (76), Xia et al. (77) exploited this approach using logistic
regression, naïve Bayesian classifiers, RF, and SVM, respectively.
Lineback et al. (78) used an XGBoost (79) and obtained similar
results. Wissel et al. (80) implemented an NLP-based SVM
application to assess eligibility for epilepsy surgery. As with
IE, a similar approach can be applied to psychiatric disorders:
Lin et al. (81), and Maguen et al. (82), implemented models

7 https://au.reachout.com/

8 http://www.jtf.org.tw
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to investigate unhealthy alcohol use and post-traumatic stress
disorder, respectively. These works prove that NLP feature-
based classifiers are feasible and yield good results, but they
present limitations. First, the purpose of these tools is not
to inform clinicians which feature makes the patient a good
candidate, but to identify possible candidates: the models must
be supplemented by medical assessments, which reinforces the
idea that the final decision is always in the human hands.
Another drawback could be the fact that all these models are
trained on the results of one institution, which severely limit
their flexibility. Results from the literature show that increasing
the sample size by including notes from more than one hospital,
rather than expanding the corpus with texts from a single
institution, leads to better performance (83).

Other works create classifiers by exploiting modern DL
architectures, such as CNNs, LSTMs, or RNNs. These models
have been applied to classify free text reports from neuroimaging
and magnetic resonance imaging (MRI) showing promising
results (84, 85). In Tanana et al. (86) modern DL was used
to identify sentiments in interactions between therapists and
clients. Using a similar approach, Bacchi et al. (87) implemented
a DL architecture to classify the causes of transient ischemic
attacks from free medical texts. In all these efforts, the main
limitations have always been related to DL architectures, as they
require a huge amount of data to be trained.

An intrinsic limitation of NLP models based on feature-
based extraction is that they do not take into account the
context of words. Sarzynska-Wawer et al. (88) experienced this
when they used the embeddings from language models (ELMo)
approach (89) to represent interviews with patients suffering
from schizophrenia and healthy individuals. Similar to BERT,
ELMo is trained on a massive corpus to predict the next word in
a sequence of words. This allows it to represent each token in an
appropriate way, while retaining information about its context.
This approach is more flexible compared to the feature-based
approach, and provide solid performance.

Natural language processing for data
inference

The third class of papers is related to inference, which
generally means that starting from the results of the NLP
algorithm, some insights are obtained. In some cases, the
models predict the patient’s disposition, while in others they are
used to identify candidates for a particular treatment. Finally,
some papers present models for the automatic analysis of
specific pathologies.

One of the main challenges in predicting patient disposition
is the limited nature of medical data, especially when working
with DL architectures. This problem can be solved by using a
medical tool developed for this purpose or by implementing
a traditional ML model, that requires much less data. An

example of the first solution is presented by Segev et al.
(90), who used a clinical tool similar to Bio-YODIE to
distinguish between side-effects of Clozapine (an antipsychotic
drug) and myocarditis symptoms by analyzing case notes.
Other examples are presented by Zhang et al. (91) and Funk
et al. (92), who developed MetaPred, a framework for clinical
risk prediction from longitudinal EHRs, and a framework
to support automated analysis of text data in digital health
interventions, respectively. The second approach is to use
traditional classifiers, possibly in combination with one of the
previously presented medical NLP tools. As already mentioned,
these models have the advantage of requiring far less data
to perform well compared to DL architectures. Examples
of this approach are presented by Klang et al. (93), Ahuja
et al. (94), and Irving et al. (95). The first developed an
XGBoost model to predict admission to the intensive care
unit within 30 min of emergency department (ED) arrival
using free-text and tabular data, with good discriminatory
performance. The second used a solution that combines both
approaches: this study presents a model based on cTAKES
for predicting relapse risk in multiple sclerosis, based on an
L1-regularized logistic regression (LASSO) architecture. The
third study used a similar architecture to identify individuals
at risk for psychosis. When a large corpus is available,
DL models are also a viable approach. This is the case
with Tahayori et al. (96), who developed a BERT model to
predict patient disposition based on triage notes in ED. This
algorithm was specifically trained on free-text triage notes only,
without considering other influential parameters such as age
or vital signs; nevertheless, the performance of the approach
is still robust.

Other works focus on a very crucial topic: identifying the
best candidates for a given treatment. A reliable candidate
selection algorithm could help overcome several limitations
that have been demonstrated in the standard procedures
used today: the benefits of timeliness of intervention, with
better outcomes associated with earlier treatment (97); racial
disparities in the use of some surgeries (98); the lack of
a unifying pathophysiology (Iverson) (99). Dai et al. (100)
tackled this problem from a generic standpoint, demonstrating
that cohort selection of longitudinal patient records can be
formulated as a multiple instance learning task. Candidate
identification can be applied to very different medical topics:
surgical intervention for drug-resistant pediatric epilepsy (101),
risk factors for pediatric post-concussion symptoms (102),
error reduction in determining eligibility for intravenous
thrombolytic therapy (103).

On a slightly different topic, Wissel et al. (104) investigated
a very sensitive matter, i.e., bias in ML algorithms trained on
physician notes. This work assumed racial disparities in the use
of epilepsy surgery. The authors developed an NLP algorithm
and demonstrated that candidacy for epilepsy surgery was not
biased by patient demographic information.
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All the above-mentioned papers showed that free-text data
from EHR are a valuable source of insight, and processing them
with the proper tools could help clinicians to take decisions
faster and more reliably.

The final task addressed in this category of articles was
automatic analysis of specific pathologies. This is a broad topic,
but the main goals were to exploit NLP to get an early (105,
106) and/or more accurate diagnosis (107) or to cope with the
shortage of medical staff (108). With a similar approach, NLP
can also be exploited to infer data for psychiatric conditions,
such as suicidal thoughts in epilepsy subjects (109), depression
(110), and obsessive-compulsive disorder (111).

All of the aforementioned works come to the same
conclusion: properly trained NLP models for pathology analysis
could be useful in conducting efficient medical practice. Of
course, these tools have also their limitations. The most
significant one is the fact that a model trained on a single
hospital’s data may have a significant bias, and thus cannot
be generalized when working with new data unless it is re-
trained from scratch.

Performance data comparison

This section presents the results of the 65 papers fully
analyzed in this review. Not all of them had the same metrics,
so it was not trivial to compare them. Most of these papers did
not use a common reference dataset for the evaluation, which,
as addressed in the Discussion, makes it difficult to compare
the results. However, the most commonly used metric for each
category was selected and reported.

The first class of works presented in this review is NLP
for IE. The performance of these models is evaluated using
typical statistical metrics of ML algorithms, such as: accuracy,
precision, recall, F1-score (nomenclature and formulas are
listed in Table 3). The most widely used parameter in the
reported works was F1-score (harmonized average of recall and
precision) which is often used in the NLP field as an overall
measure of system performance. The performance of papers that
adopt a traditional ML approach are presented in Table 4, while
DL models are presented in Table 5.

As far as the NLP for classification tools are concerned, the
metric used for the evaluation is usually the area under the curve
(AUC), as visible in Table 6, referred to papers that analyze
texts produced by patients. A different approach uses notes from
clinicians to classify patients, as reported in Table 7.

The final class of works presented in this review is
NLP for data inference. This class of papers is broad
and includes different types of works. Table 8 reports the
results of the first sub-class, i.e., the model for predicting
the disposition of patients. The second subclass is related
to the identification of the best candidates for a specific
treatment, and the statistical parameter for evaluation is the

F1-score (Table 9). The last subclass is automatic analysis
of specific pathologies (Table 10) evaluated using the F1-
score.

Overall, the performance of NLP applications appeared to
be high, with an average F1-score and an AUC above 85%. It has
to be highlighted once again that the performance of reported
papers is measured on very specific datasets, and thus a direct
comparison is not feasible. Because the heterogeneity, in order
to get a quantitative index, we also derived a composite measure
in the form of Z-scores to better compare and understand the
performance of the NLP models and their different classes as a
whole (Figure 3). No statistical differences were found in the
unbiased comparison (p-value > 0.05, calculated with Kruskal–
Wallis test).

Discussion

Our review shows that NLP is used for many different
purposes in neuroscience and psychiatry. In the last years,
the interest of the scientific community studying NLP has
grown exponentially, and the same is true for the medical
community. The major factors in this growth have been: (i) the
increasing adoption of EHRs, (ii) the urge to find an automatic
way to analyze such EHRs, (iii) the proliferation of ML/DL
models in healthcare.

Entering patient data into clinical notes is time-consuming
for physicians: about 35% of their time, according to Joukes
et al. (112). Even though a structured text provides faster access
to information than a free-text report, the time required for
this operation is often too high, leading to underusing EHRs
data because of their hard accessibility. This means that a
lot of useful information is often discarded simply because
it would take too much effort to extract it. This effort could
be partially avoided by using NLP models, as they provide a
way to find and extract relevant insights from data hidden in
medical records.

TABLE 3 Performance measures.

Measure Synonymous Formula

Precision Positive predictive
value

TP/(TP + FP)

Recall Sensitivity, true
positive rate (TPR)

TP/(TP + FN)

F1-score F-measure, F-score 2 . (P . R)/(P + R)

Accuracy – (TP + TN)/(TP + FP + TN + FN)

False positive
rate

False alarm ratio FP/(FP + TN)

Area under ROC
curve

AUC, AUROC,
C-statistics

Trade-off between TPR and FPR.
AUC = 1: perfect classifier,
AUC = 0.5: random classifier

TP, true positive; TN, true negative; FP, false positive; FN, false negative; P, precision;
R, recall; TPR, true positive rate; FPR, false positive rate.
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The first significant turning point in the development of
NLP was the transition from statistical models to ML. Statistical
models are typically rule-based, meaning that if a text does not
conform to the rules, the system performs very poorly. ML
models are more versatile, can address non-linear problems
and are therefore more usable. The second turning point was
the introduction of DL models. The most recent ones can take
into account the context of words. This makes them even more
flexible than the classical ML approaches and able to analyze
completely unstructured texts.

As mentioned earlier, DL models require an enormous
amount of data to be properly trained. Fortunately, the NLP
community is often open-source; this means that many pre-
trained models are freely accessible and usable. Nevertheless, the
data needed to fine-tune NLP models must be labeled, which
means that some experts in the field must manually annotate
the fine-tuning corpus. Thus, the data needed to fine-tune
NER models must be fed with text containing the appropriate
entities. For example, the sentence “He has cognitive problems
due to Alzheimer’s disease, and after examining his brain, the

TABLE 4 Comparison of NLP performance for information extraction papers via traditional ML models.

Author Task NLP model Embeddings and Corpus F1-score [%]

Savova et al. (42) Development of cTAKES, tool for
IE of EHR

Rule-based PTB corpus (123): ∼910 k tokens 95.3

GENIA corpus (124): ∼400 k
words

93.2

Mayo Clinic EHR: ∼100 k tokens 92.4

Fonferko-Shadrach
et al. (51)

IE on epilepsy clinical texts Rule-based 200 unstructured clinic letters 86.1

NLP, natural language processing; cTAKES, clinical text analysis and knowledge extraction system; IE, information extraction; EHR, electronic health record; PTB, penn treebank.

TABLE 5 Comparison of NLP performance for information extraction papers via DL models.

Author Task NLP model Embeddings and Corpus F1-score [%]

Lopes et al. (55) NER pipeline for Portuguese EHR LASSO i2b2 corpus 2010: ∼1,500 EHR
(https://www.i2b2.org/NLP/DataSets/)

83

Weng et al. (64) IE pipeline built on cTAKES by
using annotated texts

cTAKES + DL iDASH corpus: 431 EHR
(64)

84.5

Massachusetts General Hospital corpus: ∼90 k EHR 87

Yu et al. (56) NER pipeline by using
unannotated texts

BERT-based + CNN-based BioWordVec: ∼2.3 M words
(https://github.com/ncbi-nlp/BioWordVec)

91.4

Kraljevic et al. (47) Development of MedCAT, tool
for IE of EHR

BERT-based Self-supervised train: ∼ 8.8B words
Fine-tune: ∼6 k annotated examples

94

Vaci et al. (61) Extract data on individuals with
depression from EHR

LSTM 1.8 M EHRs from UN-CRIS Database (61) 69

NLP, natural language processing; NER, named entity recognition; LASSO, L1-regularized logistic regression; i2b2, informatics for integrating biology and the bedside; IE, information
extraction; cTAKES, clinical text analysis and knowledge extraction system; DL, deep learning; BERT, bidirectional encoder representations from transformers; CNN, convolutional neural
network; MedCAT, medical concept annotation toolkit; EHR, electronic health record; PTB, penn treebank; LSTM, long short-term memory.

TABLE 6 Comparison of NLP performance for classification of texts produced by patients.

Author Classification NLP model Embeddings and Corpus AUC

Takano et al. (72) Study 1: Specific vs. non-specific
memory

SVM Study 1: ∼12,400 EHR 0.92

Study 2: Novel memories Study 2/3: ∼8,500 EHR 0.89

Clark et al. (65) MCI vs. AD RF + SVM + naïve
Bayes + Multilayer perceptrons

Fluency scores from ∼150 patients 0.872

Wang et al. (68) COVID-19 Twitter data analysis RF* 50 M Tweets 0.966

Yu et al. (71) Negative life events into
categories

SVM Unlabeled corpus: 5,000 forum posts
Labeled corpus: 2,856 sentences from
ISP-D database of PsychPark (125)

0.897

NLP, natural language processing; AUC, area under curve; SVM, support vector machine; RF, random forest; EHR, electronic health record; MCI, mild cognitive impairment; AD,
Alzheimer’s Disease. *Only best classifier performance is reported.
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doctor prescribed him Donepezil” should be annotated with the
following entities:

1. “Alzheimer’s disease” = PATHOLOGY
2. “brain” = ANATOMY
3. “cognitive problems” = MEDICAL_CONDITION
4. “Donepezil” = DRUG

This operation is lengthy and tedious, but it is often
fundamental to increase performance. Despite the difficulty of
this process, once a model is properly trained the advantages
of its usage are obvious. It can be used for a variety of

tasks. Some examples include: data entry into databases [by
converting unstructured clinical information into structured
data, Futrelle et al. (113)], extract relevant information from
patient records to support clinical decisions (e.g., properly
selecting patients for an innovative treatment to maximize the
chances of success, recruiting participants for specific clinical
trials, . . .), categorize/stratify clinical documents, summarize
clinical information stored in long EHRs, and search and classify
clinical terms into ICD-10/SNOMED diagnosis codes (47).
More recently, NLP has been used to develop conversational
bots to provide initial instructions to patients in critical
situations, e.g., during the COVID-19 pandemic infection peaks

TABLE 7 Comparison of NLP performance for classification from clinicians’ notes.

Author Task NLP model Embeddings and Corpus AUC

Xia et al. (77) Identify patients with complex
neurological disorder

cTAKES-based Train corpus: ∼600 clinical notes
Test corpus: ∼500 clinical notes

0.96

Wissel et al. (104) Identify candidates for epilepsy
surgery

Multiple linear regression Train corpus: ∼1,100 clinical notes
Test corpus: ∼8,340 clinical notes

0.9

Heo et al. (85) Prediction of stroke outcomes CNN + LSTM + Multilayer
perceptron

Train corpus: ∼1,300 clinical notes
Test corpus: ∼500 clinical notes

0.81

Lineback et al. (78) Prediction of 30-day readmission
after stroke

Logistic regression + naïve
Bayes + SVM + RF + Gradient

boosting + XGBoost

Train corpus: ∼2,300 clinical notes
Test corpus: ∼550 clinical notes

0.64

Lin et al. (81) Identify UAU in hospitalized
patients

Logistic regression Train corpus: ∼58 k clinical notes 0.91

Bacchi et al. (87) Prediction of cause of TIA-like
presentations

RNN + CNN Corpus: 2,201 clinical notes (∼150 words
each)

0.88

NLP, natural language processing; AUC, area under curve; cTAKES, clinical text analysis and knowledge extraction system; CNN, convolutional neural network; LSTM, long short-term
memory; SVM, support vector machine; RF, random forest; UAU, unhealthy alcohol use; ISP-D, internet-based self-assessment program for depression.

TABLE 8 Comparison of NLP performance for predicting patient disposition.

Author Prediction NLP model Embeddings and Corpus AUC

Tahayori et al. (96) Patients’ disposition from triage notes BERT-based ∼250 k EHR 0.88

Ahuja et al. (94) Relapse risk for multiple sclerosis LASSO Train corpus: ∼1,400 clinical notes
Validation corpus: ∼200 clinical notes

0.71

Zhang et al. (91) Clinical risk CNN + LSTM 2.5 M patients’ EHR 0.85

Klang et al. (93) Neuroscience ICU admission XGBoost ∼412 k patients’ EHR 0.93

NLP, natural language processing; AUC, area under curve; BERT, bidirectional encoder representations from transformers; LASSO, L1-regularized logistic regression; CNN, convolutional
neural network; RNN, recurrent neural network; LSTM, long short-term memory; EHR, electronic health record; ICU, intensive care unit; TIA, transient ischemic attack.

TABLE 9 Comparison of NLP performance for identification of the best candidates for a specific treatment.

Author Identification NLP model Embeddings and Corpus F1-score [%]

Cohen et al. (101) Candidates for surgery for drug-resistant epilepsy Naïve Bayes ∼6,300 patients’ EHR 82

Sung et al. (103) Intravenous thrombolytic therapy candidates MetaMap-based 234 clinical notes 98.6

NLP, natural language processing; EHR, electronic health record.

TABLE 10 Comparison of NLP performance for analysis of specific pathologies.

Author Analyzed
pathology

NLP model Embeddings and Corpus F1-score [%]

Castro et al. (107) Cerebral aneurysms cTAKES-based + LASSO Train corpus: ∼300 clinical notes (manually
annotated)
Validation corpus: ∼17 k clinical notes

84

Katsuki et al. (108) Primary headache DL-based Test corpus: ∼850 clinical notes 63.5

NLP, natural language processing; cTAKES, clinical text analysis and knowledge extraction system; LASSO, L1-regularized logistic regression; DL, deep learning.
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FIGURE 3

Performance box plot of the NLP methods representing the medians, interquartile ranges, outliers. IE, information extraction; ML, traditional
machine learning; DL, deep learning; Patients, patients texts; Clinical, clinical notes; Disp., patients’ disposition; Cand., best candidates; Pathol.,
specific pathologies.

when primary care physicians had to answer dozens/hundreds
of calls daily (114). Clearly, the role of the physician is essential
for the adoption of NLP in clinical practice. Their expertise
would make them the perfect testers of NLP tools (e.g., QABot,
NER, information grouping/retrieving, summarization, . . .),
and the final evaluators in terms of user-friendliness, utility and
usability of such systems.

As a final remark, none of the three macro-categories
presented in the comparison Section shows dominant
performance respect to the others. This proves that NLP is
flexible and can be applied to every task with similar results.

It has to be highlighted that, although NLP has a great
potential, some issues have to be taken into account.

Language issues

The first issue is the strong asymmetry between English
and non-English availability of corpora and models. Of the 65
papers in the quantitative search, five developed non-English
based models, representing 7.7% of the total. Moreover, there
are ∼5,000 English models in the HF repository, but only five
Chinese, 51 Hindi, and 400 Spanish, even though these are the
second, third, and fourth most spoken languages in the world,
respectively. This can be problematic, especially if one plans to

use DL architectures in an NLP model, as these require a massive
amount of data to be trained (e.g., BERT required more than
3 billion words for pre-training). This problem can be partially
mitigated by the availability of multi-language models (there are
dozens of them available in the HF public repository). Starting
from such models, the user should only need to fine-tune them,
which requires a much smaller amount of data (e.g., fine-tuning
a BERT model requires tens to hundreds of thousands of words).
Another approach could be automatic translation of English
corpora, but this inevitably introduces bias and the effectiveness
of this approach has yet to be fully demonstrated.

Annotation problems

The typical workflow is to start from a pre-trained model
and fine-tune it, thus exploiting a model that has a general
understanding of the language. Fine-tuning, the operation that
allows to specialize a generic pre-trained model to a specific
task, requires much less data and computing power. However,
data for this operation have to be labeled (in contrast to the
unsupervised nature of pre-training). This means that, especially
for very specific medical domains (e.g., neurology), labeling
must be done by experts in that specific field, so it is not trivial
to produce high quality labeled data.
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Standard terminology

Natural language processing systems can be very sensitive
to the use of non-standard terminology. Because medical terms
can be very specific and unusual, there is no guarantee that
synonyms will be recognized as such. The most common
standards associated with medical topics are the International
Statistical Classification of Diseases and Related Health
Problems (ICD), the Systemized Nomenclature of Medicine–
Clinical Terms (SNOMED-CT), and the UMLS. A possible
solution could be the use of a very large corpus containing
different terms and acronyms used in an interchangeable way.
Indeed, DL based model embeddings take into account the
context of a word and different words used in a very similar
context would likely have a similar representation. Another way
to approach the problem would be to use a model that has been
trained by taking into account issues related to nomenclature
and ontologies, e.g., the aforementioned Umls-BERT.

Training/test data not always
comparable across studies

One possible source of performance degradation is that a
model trained on corpora from a single hospital can cause bias in
the model, making it very focused and unable to generalize (83).
The best solution, if possible, is to include text from different
medical institutions in the training corpus. This way, the model
can benefit from different text representations and thus improve
its generalization capabilities.

Other possible issues

Another gap, when speaking about medical NLP, is that
a universally recognized state-of-the-art model is still missing.
This comes as no surprise, since the topic is still in its infancy.
Moreover, implementing a NLP pipeline is a complex and
burdensome task, that requires both programming skills and
medical knowledge. NLP tools need to be developed through a
synergy between IT people for model creation and medical staff
for the annotation part. It is important to remember that these
tools, like any ML model, are only as good as the quality of the
data they are trained with. Another limitation, related in part
to this issue, is the lack of a standardized, universally accepted
medical data set for model evaluation. From this review, it
appears that almost all the papers presented used their own
data to develop and test models. This may introduce bias when
comparing different models and make the comparison difficult.
Nonetheless, in the last years international organizations have
made efforts to overcome this gap. One of them is the
Conference and Labs of the Evaluation Forums (CLEF),9

whose main mission is to promote research of information

9 http://www.clef-initiative.eu/

access systems with an emphasis on multilingualism and
multimodality. Such organizations promote workshops and/or
competitions, where research teams all over the world can
validate their models in an unbiased and scientific way. Some
of the most known events are:

1. BioASQ10: sponsored by Google and the European
Union, BioASQ organizes challenges on biomedical
semantic indexing, including text classification,
information retrieval, QA from texts and structured
data, multi-document summarization and many other
areas;

2. n2c211: organized by Harvard Medical School, it is an
annual context where participants have to develop models
able to perform biomedical NLP tasks (e.g., NER, IE, event
detection);

3. The International Workshop on Semantic Evaluation
(SemEval): a series of international NLP research
workshops whose mission is to advance the current
state-of-the-art in semantic analysis and to help create
high-quality annotated datasets in a range of increasingly
challenging problems in natural language semantics.

In addition, only a few of the analyzed papers exploited DL
architectures. Most of the works in this review used NLP only
as a tool to get features for traditional classifiers (SVM, RF, . . .).
While this is the only possible approach in some situations (e.g.,
when the training corpus is small and therefore cannot be used
for DL architectures), DL models have shown better results for
classification tasks, so their approach may lead to more robust
models in the future.

Finally, another limitation, especially for medical personnel,
is the lack of plug-and-play NLP tools. This restriction is even
more heavy for non-English speakers. Although there are many
tools available to perform NLP analysis and some easy to use
open-source libraries, this still could represent a barrier for
people without a solid IT background. Wider availability of
user-friendly NLP tools could lead to greater interest in the
topic, increasing the competition and the future quality of
studies in this sector.

Limitations

This review has a number of limitations. The most
significant one is the fact that it analyses only articles from the
first quartile rank. While this ensures that the papers examined
are of high-quality, it could lead to the a priori exclusion
of effective tools. Another limitation is that speech-related
works were not included. This topic has become more
important in recent years, in the context of the increasingly

10 http://bioasq.org/

11 https://portal.dbmi.hms.harvard.edu/data-challenges/
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prevalence of voice assistants. However, as explicitly stated in the
introduction, the research question of this work was to analyze
tools that manipulate clinical documents, and therefore this class
of papers was excluded.

Conclusion

Natural language processing algorithms hold promise for
helping physicians to get insights from unstructured texts such
as medical reports, clinical research form EHR data, and more.
Advanced NLP techniques will enable machines to understand,
classify, summarize, and generate text to automate medical
linguistic tasks. There are many tools that make NLP accessible
and publicly available for medical areas, such as: HF, spaCy,
and other well-supplied resources. Open-source libraries are
flexible and allow developers to fully customize NLP resources.
So far, they are not fully cost-effective and require to spend
time to create and train ad hoc NLP models before they
can be used in the medical fields. The performance of NLP
applications is generally high, but few systems are actually
used in routine clinical care or research. The establishment of
minimum requirements, further standardization, and external
validation will likely soon increase the prevalence of NLP
applications in neuroscience and psychiatry.
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