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Abstract The in vivo repeated dose toxicity (RDT) test
is intended to provide information on the possible risk
caused by repeated exposure to a substance over a limited
period of time. The measure of the RDT is the no observed
adverse effect level (NOAEL) that is the dose at which no
effects are observed, i.e., this endpoint indicates the safety
level for a substance. The need to replace in vivo tests, as
required by some European Regulations (registration, evalu-
ation authorization and restriction of chemicals) is leading to
the searching for reliable alternative methods such as quanti-
tative structure–activity relationships (QSAR). Considering
the complexity of the RDT endpoint, for which data quality is
limited anddepends anywayon the studydesign, the develop-
ment of QSAR for this endpoint is an attractive task. Starting
from a dataset of 140 organic compounds with NOAEL
values related to oral short term toxicity in rats, we devel-
oped a QSARmodel based on optimal descriptors calculated
with simplified molecular input-line entry systems and the
graph of atomic orbitals by the Monte Carlo method, using
CORAL software. Three different splits into the training,
calibration, and validation sets are studied. The mechanistic
interpretation of these models in terms of molecular frag-
ment with positive or negative contributions to the endpoint
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is discussed. The probabilistic definition for the domain of
applicability is suggested.
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Abbreviations

NOAEL No observed adverse effect level
LOAEL Lowest observed adverse level
QSAR Quantitative structure–activity relationship
REACH Registration, evaluation authorization, and

restriction of chemicals
RDT Repeated dose toxicity
SMILES Simplifiedmolecular input-line entry systems
MoS Margin of safety
CSA Chemical safety assessment
DNEL Derived no effect levels
TOPKAT Toxicity prediction by komputer assisted

technology
BMD Benchmark dose
CORAL CORrelation and logic
QSPR Quantitative structure–property relationship
MLR Multiple linear regression
MRTD Maximum recommended therapeutic dose

Introduction

In risk assessment, repeated dose toxicity (RDT) provides
information on the adverse toxicological effects which can
be induced by repeated exposure to a substance over a lim-
ited period of time [1,2]. No observed adverse effect level
(NOAEL) indicates the dose atwhich no effects are observed,
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and the lowest observed adverse effect level (LOAEL) is the
lowest dose at which adverse effect can serve as measure
of the RDT [2]. The NOAEL is a toxicological require-
ment imposed by registration, evaluation authorization, and
restriction of chemicals (REACH). When the NOAEL is not
available, LOAEL can be used for the same purpose [1,3–7].

REACH is recommended development of methods such
as quantitative structure–activity relationships (QSARs) to
assess the potential harmful effects of chemicals [3]. The
aim of QSAR models is to establish correlation between the
chemical structure of a substance and biological activity [8].
QSAR for estimating NOAEL/LOAEL has been described
in the scientific literature [2,9,10].

The aim of this work was to build up QSAR model for
the NOAEL by means of the CORAL software (http://www.
insilico.eu/coral/).

Materials and methods

Data

Experimental data were obtained from the OECD tool-
box version 3.2. (http://www.qsartoolbox.org/download),
downloading HESS and Munro databases and from the
US EPA’s integrated risk information system (IRIS) data-
base (http://www.epa.gov/IRIS/). For all the compounds
the canonical simplified molecular input-line entry systems
(SMILES) were obtained by searching through CAS num-
bers on the PubChem Compound website (https://pubchem.
ncbi.nlm.nih.gov/). The correspondence between CAS num-
bers and chemical structures was further checked using
ChemID Plus Advanced website (http://chem.sis.nlm.nih.
gov/chemidplus/). The numerical data from various sources
were compared. If several values were available for the same
compound, we used the lowest.

All doubtful or inorganic compounds, salts, and mix-
tures were eliminated, because the relationships between
molecular structure and the NOAEL are very complex. We
considered only data referring to 90 days of oral administra-
tion in rats and rejected reproductive toxicity studies. It is to
be noted that the exchange of the 90-day study by shorter test-
ing is an attractive alternative [11]. Taking into account this
circumstance, values for 28 days of treatment were consid-
ered but, in order to have consistent data, they were divided
by a factor of 3, as specified by the scientific committee on
consumer safety (SCCS) in order to approximate the 90-day
NOAEL [1]. After the above selection, about four hundreds
of various substances with small molecules (e.g., 2–3 atoms)
and vice versa with extremely large molecules (e.g., 100 or
more atoms), molecules with specific groups, such as [N+],
[NH4+], [nH], etc., and substances with molecules contain-
ingmany various cycles / heterocycles were remained. Under

such circumstances, the following limitations were used in
the selection of compounds for the work set: (i) too large and,
vice versa, too small molecules were removed (practically,
molecules which can be represented by SMILES with length
less than 70 and larger than 10 symbols, were selected); (ii)
molecules which have only one cycles or have no cycles at all
were selected; and (iii) molecules with special groups (indi-
cated by square brackets) were removed from the work set.
Thus, the dataset of 140 compounds has been selected. All
values were converted to decimal logarithms (lgNOAEL).
These compounds were randomly split into training, calibra-
tion, and validation sets three times.

Optimal descriptors

The hybrid optimal descriptors calculated with two repre-
sentation of the molecular structure by SMILES [12] and by
graph of atomic orbitals (GAO) [13,14] were used for QSAR
analysis:

DCW (T, N ) = CW (NOSP) + CW (HALO)

+ CW (BOND) +
∑

CW(EC0k)

=
∑

CW (SAk) , (1)

where SAk is a structural attribute extracted from SMILES
(NOSP, HALO, and BOND represented in Table 1) or from
the graph of atomic orbitals (EC0k represented in Table 2);
the CW(x) is so-called correlation weight for a structural
attribute extracted from SMILES (i.e., NOSP, HALO, and
BOND) or from GAO (i.e., EC0k). The correlation weights
are coefficients which are used for calculation with Eq. 1:
the numerical data on the correlation weights are calculated
with the Monte Carlo optimization which gives maximum of
the determination coefficient (r2) between experimental and
predicted lgNOAEL for the training set. The T is threshold,
i.e., coefficient for discrimination of SAk into two categories
(i) rare (if frequency of SAk in the training set is less than T )
and (ii) not rare (if frequency of SAk is larger than T in the
training set). The N is the total number of the Monte Carlo
method epochs (N = 1, 2, . . ., 30). The NOSP is a descrip-
tor indicating the presence (absence) of nitrogen, oxygen,
sulfur, and phosphorus; HALO is a descriptor indicating the
presence (absence) of halogens (i.e., “F,” “Cl,” “Br,” and “I”);
the BOND is a descriptor indicating the presence (absence)
of double, triple, and stereo chemical bonds; Table 1 contains
clarifications for SMILES attributes involved in building up
a model. Table 2 contains an example of representation of
the molecular structure by the molecular graphs. The EC0k
are extended connectivity of zero order in the GAO [13,14].

The modeling approach examined in this study includes
three steps:

123

http://www.insilico.eu/coral/
http://www.insilico.eu/coral/
http://www.qsartoolbox.org/download
http://www.epa.gov/IRIS/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://chem.sis.nlm.nih.gov/chemidplus/
http://chem.sis.nlm.nih.gov/chemidplus/


Mol Divers (2015) 19:563–575 565

Table 1 The examples of BOND, NOSP, and HALO descriptors

SMILES attribute Example of the representation for the CORAL software

BOND The presence / absence of double (“=”), triple (“#”), and stereo chemical (“@”) bonds, e.g., if SMILES = “CCC(O)CC”

NOSP Presence (absence) of nitrogen, oxygen, sulfur, and phosphorus, e.g., if SMILES = “CCC(O)CC”

HALO Presence (absence) of fluorine, chlorine, bromine, and iodine atoms, e.g., if SMILES = ’ClCC(=O)CCl

Step 1 Preparation of the list of attributes extracted from
SMILES and from GAO (Tables 1 and 2).

Step 2 Calculation by the Monte Carlo method series of
modelswith various values of the threshold (T = 1, 2,
and 3) and different values of the number epochs (N).
The preferable T ∗ and N∗ are selected according to
scheme represented by Fig. 1.

Step 3 Building up model with T = T ∗ and N = N∗ and
estimation of the predictive potential of the model
with the validation set, i.e., with substances which
are invisible during building up the model.

Thus, functions of the training set, the test set, and the val-
idation set are considerably different ones. The substances
from the training set are the basis to build up model. The
substances from the test set are a tool to examine the “objec-
tivity” of the model which is built up with the training set. In
other words, it is evaluating “if the overtraining is absent”.
Finally, the external validation set is a tool to estimate the
true predictive potential of model with data on substances
which are invisible during building up the model using the
above-mentioned parameters T = T ∗ and N = N∗.

The user can calculate the DCW (T*, N*) and build up
the model.

Endpoint = C0 + C1 ∗ DCW
(
T ∗, N∗) . (2)

The predictive potential of the model calculated with Eq.
2 should be validated with external validation set invisible
during building up the model [12,15]. It is to be noted that
similar nonlinear models as rule are considerable better for
visible training set (i.e., for the system of training and test
sets) but poorer for the external invisible validation set [16,
17].

The measure of the statistical prevalence of various mole-
cular features (SAk) which are extracted from SMILES and
graph of atomic orbitals can be calculated as the following
equation:

SAkDefect

=
⎧
⎨

⎩

|PTRN (SAk) − PTST (SAk)|
NTRN (SAk) + NTST (SAk)

, if_NTST (SAk) > 0

1, otherwise

(3)

where the PTRN(SAk) is the probability of the presence of
the SAk in SMILES of the training set, i.e.,

PTRN(SAk) = NTRN(SAk)/NTRN.

The PTRN(SAk) is the probability of the presence of the SAk

in SMILES of the test set, i.e.,

PTST(SAk) = NTST(SAk)/NTST.
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Table 2 Example of the representation of Acetoin (CAS 513-86-0; and SMILES=“O=C(C)C(O)C”) by means of (i) hydrogen-suppressed graph;
and (ii) Graph of atomic orbitals

Hydrogen suppressed graph

O1 C2 C3 C4 O5 C6 EC0k

O1 0 1 0 0 0 0 1

C2 1 0 1 1 0 0 3

C3 0 1 0 0 0 0 1

C4 0 1 0 0 1 1 3

O5 0 0 0 1 0 0 1

C6 0 0 0 1 0 0 1

Graph of atomic orbitals (GAO)

O1 C2 C3 C4 O5 C6 EC0k

1s2 2s2 2p4 1s2 2s2 2p2 1s2 2s2 2p2 1s2 2s2 2p2 1s2 2s2 2p4 1s2 2s2 2p2

1s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

2s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

2p4 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

1s2 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 9

2s2 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 9

2p2 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 9

1s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

2s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

2p2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

1s2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 9

2s2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 9

2p2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 9
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Table 2 continued

O1 C2 C3 C4 O5 C6 EC0k

1s2 2s2 2p4 1s2 2s2 2p2 1s2 2s2 2p2 1s2 2s2 2p2 1s2 2s2 2p4 1s2 2s2 2p2

1s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3

2s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3

2p4 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3

1s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3

2s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3

2p2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3

Fig. 1 Scheme of the definition
of the preferable CORAL
model. T is threshold; N is the
number of epochs of the Monte
Carlo optimization; T ∗ and N∗
are values which give maximum
for the correlation coefficient
between experimental and
calculated endpoint values for
the test set

The NTRN (SAk) is the number (frequency) of SMILES
which contain SAk in the training set.

The NTRN is the total number of SMILES in the training
set.

The NTST (SAk) is the number (frequency) of SMILES
which contain SAk in the test set.

The NTST is the total number of SMILES in the test set.
If the probability of SAk in the training set is equal to

the probability of SAk in the test set, it is the ideal situation
and the defect of the SAk in this case should be estimated
as minimal (zero). However, this situation is not typical, i.e.,
the difference between the probability of SAk in the train-
ing set and the probability of SAk in the test set, as rule, is
not zero. Under such circumstances, the numbers of SAk in
the training set and in the test set also should be taken into
account.

The small frequency or the absence of SAk in the training
set most probably will lead to decrease of statistical signif-
icance of the SAk for the model. The absence (or even the
small frequency) of SAk in the test set together with signif-
icant prevalence of the SAk in the training set will lead to
overfitting: the improvement of the model for the training set
due to the correlation weight of the SAk will be accompanied
by unpredictable influence of this correlation weight for the
model within the test set. The Eq. 3 gives two criteria of
expedient distribution into the training set and test set: (i) the
difference between probabilities of attributes be in the train-
ing and be in the test sets should be as small as possible; and
(ii) the numbers of attributes in the training set and test sets
should be as large as possible. If the above-mentioned two
conditions take place, the split into the training and test sets
should be estimated as “satisfactory” one. Finally, the mole-
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cular features which are absent in the test set cannot improve
model, and their defect should be defined as maximum (i.e.,
unit).

Thus, themeasure calculatedwithEq. 3 can be used for the
classification of the active (not blocked) attributes in accor-
dance with their prevalence in the training and test set.

Having the numerical data on the defects of SAk, one can
compare reliability of the prediction for a substance, using
the following criterion (DefectSMILES):

DefectSMILES =
∑

ActiveSAk

SAkdefect (4)

The domain of applicability can be defined as follows:
a substance is fall into the domain of applicability if its
DefectSMILES obeys the condition:

DefectSMILES < 2 × DefectSMILES, (5)

where DefectSMILES is average for visible set (training and
test sets). Thus, theDefectSMILESgives possibility to define
the domain of applicability for the models.

Using the summation of the Defect SMILES calculated
with Eq. 4 one can define an integral characteristic of a split
into the training and test sets:

SplitDefect =
∑

Training&TestSets
DefectSMILES. (6)

The Split Defect can be a useful characteristic of the distrib-
ution into the training set and test set from heuristic point of
view.

Results

The CORAL software gives for three above-mentioned splits
the following models (the n is the number of compounds in a
set, r2 is determination coefficient, q2 is cross-validated r2,
RMSE is root-mean-square error; F is Fischer F ratio):
Split 1

lgNOAEL = −2.1959849(±0.0086409)

+ 0.0675751(±0.0005022)∗DCW(1, 30)

n = 97, r2 = 0.5312, q2 = 0.5158,

RMSE = 0.617, F = 108 (training set) (7)

n = 16, r2 = 0.6610, RMSE = 0.444 (test set)

n = 27, r2 = 0.5832, RMSE = 0.447 (validation set)

n = 26, r2 = 0.5749, RMSE = 0.449

(validation set, domain of applicability)

Split 2

lgNOAEL = −1.8713499 (±0.0073147)

+ 0.0633027 (±0.0004966)∗DCW(1, 30)

n = 97, r2 = 0.5015, q2 = 0.4852,

RMSE = 0.613, F = 96 (training set) (8)

n = 16, r2 = 0.6799, RMSE = 0.524 (test set)

n = 27, r2 = 0.5843, RMSE = 0.457 (validation set)

n = 25, r2 = 0.5890,RMSE = 0.453

(validation set, domain of applicability)

Split 3

lgNOAEL = −2.1680835(±0.0082917)

+ 0.0737528(±0.0005127)∗DCW(1, 30)

= 97, r2 = 0.5301, q2 = 0.5153,

RMSE = 0.611, F = 107 (training set) (9)

n = 16, r2 = 0.7306, RMSE = 0.494 (test set)

n = 27, r2 = 0.6049, RMSE = 0.427 (validation set)

n = 26, r2 = 0.6143,RMSE = 0.425

(validation set, domain of applicability)

Table 3 contains experimental and calculated lgNOAEL
with Eqs. 7–9 for the training set and test set. The distribu-
tions of compounds into the training set and test set also are
represented in Table 3. Table 4 contains experimental and
calculated lgNOAEL for the external validation set.

Figure 2 contains the graphical representation of these
models.

The additional analysis of twelve splits (including three
represented by models which are calculated with Eqs. 7–
9; these are the splits 1, 2, and 3; Table 5 contains the
data) gives possibility to study the criterion calculated with
Eq. 6. Figure 3 represents the correlation between Split
Defect calculated with Eq. 6 and the determination coeffi-
cient between experimental and predicted lgNOAEL for the
validation set (12 random splits). Figure 4 represents the cor-
relation between Split Defect calculated with Eq. 6 and the
root-mean-square error for the validation set (twelve ran-
dom splits). Unexpectedly, the increase of the Split Defect
is accompanied by increase of the determination coefficient
and by decrease for root-mean-square error for the external
validation set. Thus, very likely, these correlations can be
useful criteria to compare different splits into the training set
and test set.
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Table 3 The distribution of available data into the training (+) and test (#) sets; experimental and calculated lgNOAEL values; and domain of
applicability for suggested models

Random
splits

Substances lgNOAEL Domain of
applicability

1 2 3 CAS SMILES Experiment Eq. 6 Eq. 7 Eq. 8 1 2 3

+ + + 513-86-0 O=C(C)C(O)C −2.5190 −1.9727 −1.9115 −2.0152 Y Y Y

+ + + 2432-99-7 O=C(O)CCCCCCCCCCN −3.1760 −2.2346 −2.2466 −2.3286 Y Y Y

+ + + 123-31-9 Oc1ccc(O)cc1 −1.3980 −1.7691 −1.7416 −1.6771 Y Y Y

+ + + 94-26-8 O=C(OCCCC)c1ccc(O)cc1 −2.9540 −1.6171 −1.6004 −1.6094 Y Y Y

+ + + 87-20-7 O=C(OCCC(C)C)c1ccccc1(O) −0.6720 −1.5413 −1.5328 −1.5912 Y Y Y

+ # # 534-73-6 OCC(O)C(O)C(O)C(O)CO
C1OC(CO)C(O)C(O)C1(O)

−3.4660 −3.7482 −3.9690 −3.8429 Y Y Y

+ + + 503-74-2 O=C(O)CC(C)C −3.3330 −2.0023 −1.9394 −2.0377 Y Y Y

+ + + 38502-29-3 OC(Cc1ccccc1)CC(C)C −1.0000 −1.4098 −1.3657 −1.3763 Y Y Y

+ + + 108-39-4 Oc1cccc(c1)C −1.6990 −1.5155 −1.4522 −1.4417 Y Y Y

+ + + 93-92-5 O=C(OC(c1ccccc1)C)C −1.6990 −1.1564 −1.1245 −1.1917 Y Y Y

+ + + 122-99-6 OCCOc1ccccc1 −1.9030 −1.4852 −1.4373 −1.3486 Y Y Y

+ + + 698-87-3 OC(C)Cc1ccccc1 −1.0000 −1.4266 −1.3774 −1.3495 Y Y Y

# + + 142-19-8 O=C(OCC=C)CCCCCC −1.6950 −1.9551 −1.8495 −1.9142 Y Y Y

+ + + 431-03-8 O=C(C(=O)C)C −1.9540 −1.9727 −1.9115 −2.0152 Y Y Y

+ + + 78-59-1 O=C1C=C(C)CC(C)(C)C1 −2.6990 −1.7408 −1.6072 −1.7236 Y Y Y

# # + 110-43-0 O=C(C)CCCCC −1.3010 −1.8836 −1.7734 −1.8657 Y Y Y

+ + + 93-65-2 O=C(O)C(Oc1ccc(cc1C)Cl)C −0.3980 −1.7192 −1.6708 −1.8684 Y Y Y

+ + # 94-81-5 O=C(O)CCCOc1ccc(cc1C)Cl −1.0790 −1.8542 −1.7942 −1.9318 Y Y Y

# # + 99911-45-2 O=C(NS(=O)(=O)O)CC(=O)C −3.2700 −2.8728 −2.6868 −3.2731 Y Y N

+ + + 1646-88-4 O=C(ON=CC(C)(C)S(=O)(=O)C)NC 0.2220 0.2244 0.2254 0.2230 N N N

+ + + 834-12-8 n1c(nc(nc1NC(C)C)SC)NCC −0.9340 −0.9468 −0.9410 −0.9367 N N N

+ + + 108-60-1 O(C(C)CCl)C(C)CCl −2.0000 −1.8711 −1.6220 −1.5866 Y N N

+ + + 56-23-5 C(Cl)(Cl)(Cl)Cl 0.1490 0.1483 0.1495 0.1442 N N Y

+ + + 609-20-1 Nc1cc(c(N)c(c1)Cl)Cl −2.0000 −1.0139 −1.0008 −1.2012 Y Y Y

+ + + 95-50-1 c1ccc(c(c1)Cl)Cl −1.7780 −0.8650 −0.8626 −0.8850 Y Y Y

+ + + 94-75-7 O=C(O)COc1ccc(cc1Cl)Cl −0.0000 −1.5459 −1.5050 −1.6059 Y Y Y

+ # + 2164-17-2 O=C(Nc1cccc(c1)C(F)(F)F)N(C)C −0.9030 −0.9052 −1.4701 −0.8976 N Y N

+ # + 87-68-3 C(C(=C(Cl)Cl)Cl)(=C(Cl)Cl)Cl −0.0000 −0.2582 −0.3141 −0.3019 N Y N

+ + + 108-78-1 n1c(nc(nc1N)N)N −2.2300 −2.1459 −2.1641 −2.1103 N Y Y

+ + # 85-91-6 O=C(OC)c1ccccc1(NC) −1.1760 −1.0047 −1.0141 −1.1216 Y Y Y

+ + + 150-68-5 O=C(Nc1ccc(cc1)Cl)N(C)C −1.8750 −0.7268 −0.7058 −0.8508 Y Y Y

+ # + 76-01-7 C(C(Cl)(Cl)Cl)(Cl)Cl −2.0970 −1.5918 −1.4090 −1.5649 N Y Y

+ # # 108-45-2 Nc1cccc(N)c1 −0.7780 −0.9538 −0.9772 −1.0405 Y Y Y

+ + + 23950-58-5 O=C(NC(C#C)(C)C)c1cc(cc(c1)Cl)Cl −0.3980 −0.3970 −0.3929 −0.3984 Y N Y

+ + + 95-94-3 c1c(c(cc(c1Cl)Cl)Cl)Cl 0.4690 −0.5110 −0.5222 −0.5616 Y Y Y

# + + 58-90-2 Oc1c(cc(c(c1Cl)Cl)Cl)Cl −1.3980 −1.1494 −1.0723 −1.1600 Y Y Y

+ # + 95-95-4 Oc1cc(c(cc1Cl)Cl)Cl −2.0000 −1.3264 −1.2425 −1.3217 Y Y Y

+ # + 5989-27-5 C=C(C)C1CC=C(C)CC1 −2.1760 −1.3180 −1.2706 −1.3956 Y Y Y

++ + + 513-37-1 C(=C(C)C)Cl −2.0970 −1.5291 −1.4164 −1.5086 Y N Y

+ + + 98-85-1 OC(c1ccccc1)C −1.9680 −1.3970 −1.3495 −1.3270 Y Y Y

+ + + 6731-36-8 O(OC1(OOC(C)(C)C)(CC(C)
CC(C)(C)C1))C(C)(C)C

−1.5230 −1.1612 −1.0179 −1.1545 Y Y Y

# + + 112-26-5 O(CCOCCCl)CCCl −1.2220 −2.0647 −1.8052 −1.6490 Y N N

+ + + 102-47-6 c1cc(c(cc1CCl)Cl)Cl −0.5220 −0.8529 −0.8034 −0.7324 Y N Y
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Table 3 continued

Random
splits

Substances lgNOAEL Domain of
applicability

1 2 3 CAS SMILES Experiment Eq. 6 Eq. 7 Eq. 8 1 2 3

+ + # 526-73-8 c1cc(c(c(c1)C)C)C −1.0000 −1.0215 −1.0283 −1.0815 Y Y Y

+ + + 3319-31-1 O=C(OCC(CC)CCCC)c1ccc
(C(=O)OCC(CC)CCCC)c
(c1)C(=O)OCC(CC)CCCC

−2.5230 −2.0315 −2.0743 −2.2175 Y Y Y

+ + + 95-63-6 c1cc(c(cc1C)C)C −1.5230 −1.0215 −1.0283 −1.0815 Y Y Y

+ + + 88-44-8 O=S(=O)(O)c1cc(ccc1(N))C −2.0000 −2.1248 −2.1279 −2.1226 Y Y N

+ + + 149-57-5 O=C(O)C(CC)CCCC −1.7850 −2.0909 −2.0232 −2.1053 Y Y Y

+ + # 79-39-0 O=C(N)C(=C)C −1.0000 −1.6393 −1.6383 −1.8721 Y Y Y

+ + + 88-18-6 Oc1ccccc1C(C)(C)C −0.8240 −1.3553 −1.2901 −1.3173 Y Y Y

+ + + 118-75-2 O=C1C(=C(C(=O)C(=C1Cl)Cl)Cl)Cl −1.0000 −1.2981 −1.2472 −1.3940 Y Y Y

+ + # 96-76-4 Oc1ccc(cc1C(C)(C)C)C(C)(C)C −0.8240 −1.2672 −1.1911 −1.3119 Y Y Y

+ # # 123-63-7 O1C(OC(OC1C)C)C −1.5230 −1.6382 −1.5109 −1.6124 Y Y Y

+ + + 4130-42-1 Oc1c(cc(cc1C(C)(C)C)CC)C(C)(C)C −0.6990 −1.3690 −1.2822 −1.4535 Y Y Y

+ + + 828-00-2 O=C(OC1OC(OC(C)C1)C)C −1.4910 −1.6978 −1.6110 −1.7541 Y Y Y

+ + + 103-44-6 O(C=C)CC(CC)CCCC −0.4270 −1.6720 −1.5322 −1.6563 Y Y Y

+ + + 121-47-1 O=S(=O)(O)c1cccc(N)c1 −2.0000 −2.0526 −2.0648 −2.0036 Y Y N

+ + # 620-17-7 Oc1cccc(c1)CC −2.0000 −1.5451 −1.4802 −1.4643 Y Y Y

+ + + 4435-53-4 O=C(OCCC(OC)C)C −2.5230 −1.7439 −1.6625 −1.7866 Y Y Y

+ + + 111-17-1 O=C(O)CCSCCC(=O)O −1.8240 −1.8177 −1.8179 −1.8154 N N N

+ + # 108-69-0 Nc1cc(cc(c1)C)C −0.5220 −0.6922 −0.6644 −0.8002 Y Y Y

# + + 140-66-9 Oc1ccc(cc1)C(C)(C)CC(C)(C)C −0.6990 −1.2246 −1.1560 −1.2154 Y Y Y

+ + + 121-60-8 O=C(Nc1ccc(cc1)S(=O)(=O)Cl)C −1.8240 −1.8293 −1.8238 −1.8274 N N N

+ + + 1570-64-5 Oc1ccc(cc1C)Cl −1.3010 −1.7526 −1.6460 −1.7641 Y Y Y

+ + + 20265-96-7 Nc1ccc(cc1)Cl −0.6990 −0.7848 −0.7320 −0.8844 Y Y Y

# + + 123-07-9 Oc1ccc(cc1)CC −1.5230 −1.5451 −1.4802 −1.4643 Y Y Y

+ + + 137-09-7 Oc1ccc(N)cc1(N) −1.0790 −1.8417 −1.9075 −2.0125 N Y Y

# + # 4286–23-1 Oc1ccc(cc1)C(=C)C −1.0000 −1.2921 −1.2350 −1.3256 Y Y Y

+ + + 99-71-8 Oc1ccc(cc1)C(C)CC −1.5230 −1.4988 −1.4405 −1.4686 Y Y Y

+ + + 98-54-4 Oc1ccc(cc1)C(C)(C)C −1.7780 −1.3553 −1.2901 −1.3173 Y Y Y

+ + + 100-40-3 C=CC1CC=CCC1 −0.3010 −1.4697 −1.4057 −1.4321 Y Y Y

+ + + 88-53-9 O=S(=O)(O)c1cc(c(cc1(N))C)Cl −2.5230 −2.3619 −2.3217 −2.4450 Y Y N

+ + + 13718-94-0 O=C(CO)C(O)C(O)C(O)CO
C1OC(CO)C(O)C(O)C1(O)

−3.8450 −3.5711 −3.7914 −3.7225 Y Y Y

+ + + 141-17-3 O=C(OCCOCCOCCCC)CC
CCC(=O)OCCOCCOCCCC

−2.0000 −2.4014 −2.3677 −2.3061 Y Y Y

+ + + 591-87-7 O=C(OCC=C)C −0.7780 −1.8074 −1.7098 −1.8015 Y Y Y

+ + + 156-43-4 O(c1ccc(N)cc1)CC −0.5220 −1.1944 −1.1993 −1.3021 Y Y Y

+ + + 103-69-5 c1ccc(cc1)NCC 0.4770 −0.3870 −0.3367 −0.3075 Y Y Y

+ + + 1825-21-4 O(c1c(c(c(c(c1Cl)Cl)Cl)Cl)Cl)C −1.6020 −0.7017 −0.6050 −0.7439 Y Y Y

# # + 99-94-5 O=C(O)c1ccc(cc1)C −1.5230 −1.5457 −1.5244 −1.5609 Y Y Y

+ + + 100-47-0 N#Cc1ccccc1 −0.8240 −0.3914 −0.3964 −0.4232 Y N Y

+ + + 140-11-4 O=C(OCc1ccccc1)C −2.4950 −1.2322 −1.1921 −1.2099 Y Y Y

# + + 141-02-6 O=C(OCC(CC)CCCC)C=
CC(=O)OCC(CC)CCCC

−2.0000 −2.2003 −2.1518 −2.2560 Y Y Y

# + # 127-90-2 O(CC(C(Cl)(Cl)Cl)Cl)C
C(C(Cl)(Cl)Cl)Cl

−1.1250 −1.9210 −1.4803 −1.8715 Y Y Y

+ + + 134-72-5 OC(c1ccccc1)C(NC)C −0.7960 −1.0805 −1.0967 −1.1465 Y Y Y
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Table 3 continued

Random
splits

Substances lgNOAEL Domain of
applicability

1 2 3 CAS SMILES Experiment Eq. 6 Eq. 7 Eq. 8 1 2 3

# + + 56539-66-3 OCCC(OC)(C)C −1.3010 −1.8706 −1.7650 −1.7932 Y Y Y

+ + # 78-44-4 O=C(OCC(C)(COC(=O)
NC(C)C)CCC)N

−2.0000 −1.9136 −1.9687 −2.1215 Y Y Y

# # + 131-17-9 O=C(OCC=C)c1ccc
cc1(C(=O)OCC=C)

−1.3980 −1.5832 −1.5809 −1.6171 Y Y Y

+ + + 3648-21-3 O=C(OCCCCCCC)c1ccccc1
(C(=O)OCCCCCCC)

−1.3190 −1.8195 −1.8043 −1.7975 Y Y Y

+ + + 205687-03-2 O=C(OCc1ccc(O)c(OC)
c1)CCCCCCC(C)C

−2.4770 −1.7440 −1.7278 −1.8038 Y Y Y

+ + + 71-55-6 CC(Cl)(Cl)Cl −2.4620 −1.9971 −1.7681 −2.0254 Y Y Y

+ + + 79-34-5 C(C(Cl)Cl)(Cl)Cl −1.0040 −1.0263 −1.0376 −0.9753 N Y N

+ + + 544-76-3 CCCCCCCCCCCCCCCC −1.1250 −1.8362 −1.7829 −1.7280 Y Y Y

+ + # 461-72-3 O=C1NC(=O)CN1 −2.0000 −1.9688 −1.9362 −1.9359 Y Y Y

+ + + 100-74-3 O1CCN(CC)CC1 −1.2220 −1.0855 −0.9785 −0.9901 Y Y Y

# + + 100-61-8 c1ccc(cc1)NC −0.2230 −0.3574 −0.3088 −0.2850 Y Y Y

+ + + 100-54-9 N#Cc1cnccc1 −0.2230 −0.6535 −0.6457 −0.6203 Y N Y

+ + + 4390-04-9 CC(CC(C)(C)C)CC(C)(C)
CC(C)(C)C

−1.5230 −0.9842 −0.9498 −1.1109 Y Y Y

+ # + 95-51-2 Nc1ccccc1Cl −1.0000 −0.7848 −0.7320 −0.8844 Y Y Y

+ + + 110-30-5 O=C(NCCNC(=O)CCCCC
CCCCCCCCCCCC)CCC
CCCCCCCCCCCCCC

−2.5230 −2.8504 −2.7942 −2.6794 Y Y Y

+ + + 629-62-9 CCCCCCCCCCCCCCC −2.5230 −1.8067 −1.7550 −1.7055 Y Y Y

+ # + 67-72-1 C(C(Cl)(Cl)Cl)(Cl)(Cl)Cl −1.6720 −2.1574 −1.7804 −2.1544 Y Y Y

+ + + 106-48-9 Oc1ccc(cc1)Cl −1.5230 −1.6804 −1.5829 −1.6450 Y Y Y

+ + + 61-76-7 Oc1cccc(c1)C(O)CNC −2.0970 −1.4821 −1.5167 −1.5191 Y Y Y

# + # 108-73-6 Oc1cc(O)cc(O)c1 −2.0000 −2.0949 −2.0941 −2.0315 Y Y Y

+ + + 9016-45-9 OCCOCCOc1ccc(cc1)
CCCCCCCCC

−2.5230 −1.8356 −1.7719 −1.6740 Y Y Y

+ + + 51-52-5 O=C1C=C(NC(N1)=S)CCC −0.0000 −0.0003 −0.0016 0.0016 Y N Y

+ # + 657-84-1 O=S(=O)(O)c1ccc(cc1)C −2.0000 −1.7612 −1.2099 −1.8467 Y Y N

+ + # 585-07-9 O=C(OC(C)(C)C)C(=C)C −0.8240 −1.5418 −1.4523 −1.6362 Y Y Y

# # + 614-45-9 O=C(OOC(C)(C)C)c1ccccc1 −1.4770 −1.0253 −0.9943 −1.0437 Y Y Y

+ + + 126-33-0 O=S1(=O)(CCCC1) −1.3010 −1.5379 −1.3014 −1.4755 Y N N

+ + + 98-51-1 c1cc(ccc1C)C(C)(C)C 0.3010 −0.7890 −0.8031 −0.8379 Y Y Y

+ + + 1025-15-6 O=C1N(C(=O)N(C(=O)N1
CC=C)CC=C)CC=C

−0.2230 −0.6570 −0.6924 −0.6435 N Y Y

+ + + 598-77-6 CC(C(Cl)Cl)Cl −1.1760 −1.1360 −1.1238 −1.1594 N Y Y

Discussion

Sakuratani et al. [2] developed a read-across approach to
predict LOAEL within repeated dose toxicity (RDT) using
toxicological grouping categories. They defined 33 chemi-
cal categories to be used for the gap filling based on RDT
data. Mazzatorta et al. [10] developed a QSAR model for
predicting LOAEL using chronic data (exposure longer than

180 days) in the rat. The model gave R2 = 0.54 and RMSE
= 0.7. However, the limit of this model is the absence of val-
idation with an external dataset and, thus, the lack of a vital
point for assessing the real predictive power of the model.
The same group also calculated an experimental variability
of 0.64 (logarithmic scale) forLOAELused in their dataset.A
model for the NOAEL suggested in the literature (the model
is built up with involving various physicochemical descrip-
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Table 4 The experimental and calculated lgNOAEL values and domain of applicability for validation set

Substances lgNOAEL Domain of applicability
for splits 1, 2, and 3

CAS SMILES Expr Eq. 7 Eq. 8 Eq. 9 1 2 3

5471-51-2 O=C(C)CCc1ccc(O)cc1 −2.0000 −1.6047 −1.5802 −1.6060 Y Y Y

108-46-3 Oc1cccc(O)c1 −1.5050 −1.7691 −1.7416 −1.6771 Y Y Y

5977-14-0 O=C(N)CC(=O)C −2.2480 −1.9224 −1.9556 −2.1300 Y Y Y

2835-39-4 O=C(OCC=C)CC(C)C −1.4910 −1.7906 −1.6981 −1.8283 Y Y Y

105-60-2 O=C1NCCCCC1 −1.6990 −1.7362 −1.6516 −1.7041 Y Y Y

108-90-7 c1ccc(cc1)Cl −1.6990 −1.0420 −1.0328 −1.0466 Y Y Y

77-47-4 C=1(C(=C(C(C=1Cl)
(Cl)Cl)Cl)Cl)Cl

−1.0000 −0.5285 −0.3132 −0.5233 Y Y Y

108-31-6 O=C1OC(=O)C=C1 −1.6020 −2.1079 −2.0230 −2.0417 Y Y Y

924-42-5 O=C(C=C)NCO −1.0970 −1.8079 −1.7938 −1.8712 Y Y Y

1918-16-7 O=C(N(c1ccccc1)C(C)C)CCl −1.1240 −0.6298 −0.5675 −0.6628 Y N N

122-42-9 O=C(OC(C)C)Nc1ccccc1 −1.6990 −0.8862 −0.9113 −1.0069 Y Y Y

630-20-6 C(C(Cl)(Cl)Cl)Cl −2.0000 −1.9128 −1.6458 −1.7538 Y N Y

1948-33-0 Oc1ccc(O)c(c1)C(C)(C)C −2.0970 −1.6810 −1.6426 −1.6717 Y Y Y

118-91-2 O=C(O)c1ccccc1Cl −2.5230 −1.7105 −1.6550 −1.7642 Y Y Y

95-57-8 Oc1ccccc1Cl −1.1250 −1.6804 −1.5829 −1.6450 Y Y Y

102-81-8 OCCN(CCCC)CCCC −0.9210 −1.3516 −1.2960 −1.3116 Y Y Y

100-69-6 n1ccccc1C=C −0.6200 −0.9915 −1.0017 −0.9426 Y Y Y

87-59-2 Nc1cccc(c1C)C −0.6020 −0.6922 −0.6644 −0.8002 Y Y Y

2416-94-6 Oc1c(ccc(c1C)C)C −1.5230 −1.6599 −1.5784 −1.6799 Y Y Y

108-42-9 Nc1cccc(c1)Cl −1.0000 −0.7848 −0.7320 −0.8844 Y Y Y

95-64-7 Nc1ccc(c(c1)C)C −0.5220 −0.6922 −0.6644 −0.8002 Y Y Y

87-62-7 Nc1c(cccc1C)C −1.0000 −0.6922 −0.6644 −0.8002 Y Y Y

626-17-5 N#Cc1cccc(C#N)c1 −0.4270 −0.8270 −0.8634 −0.9242 N N Y

50-81-7 O=C1OC(C(O)=
C1(O))C(O)CO

−3.0970 −2.7001 −2.7443 −2.7380 Y Y Y

1477-55-0 NCc1cccc(c1)CN −1.6990 −1.0129 −1.0331 −1.0856 Y Y Y

608-93-5 c1c(c(c(c(c1Cl)Cl)Cl)Cl)Cl −0.3420 −0.3340 −0.3520 −0.3999 Y Y Y

87-86-5 Oc1c(c(c(c(c1Cl)Cl)Cl)Cl)Cl −1.0000 −0.9724 −0.9021 −0.9984 Y Y Y

tors) is characterized by n = 218, r2 = 0.35, and q2 = 0.21
[18].

Although the correlation between molecular structure and
the NOAEL takes place, there is a considerable percentage of
other factors that can influence this endpoint [8,10,18–20].

Thus, the suggested approach gives quantitativemodels of
the NOAEL for three random splits into the training set, the
test set, and the validation sets, and the predictive potential
of these models are comparable with the predictive potential
of models for the NOAEL [21,22] described in the literature
[18].

Instead of the NOAEL/LOAEL approach, the Benchmark
Dose Methodology (BDM) [23] can be used. However, the
BDM is more expensive approach. Besides, in some cases,
the BDM cannot be used to estimate toxicological behavior
of substances. Taking this into account, the NOAEL/LOAEL

approach should be estimated as a useful alternative for the
BDM.

Finally, we deem that the principle “a QSAR is a ran-
dom event” can be useful from regulatory point of view.
In other words, the reliability of a QSAR approach for any
endpoint in general, and for NOAEL in particular, should
be validated with a group of different splits into the vis-
ible training set and invisible validation set [15]. The use
of the approach (analysis of a group of distribution into
the training set, test set, and external validation set, i.e.,
not only one split) in the case of the lgNOAEL numer-
ical data for other set of organic compounds [18] gave
the models which are statistically characterized by [24]:
n ≈ 174, r2 ≈ 0.70, s ≈ 0.41(training set), and n ≈ 21,
r2 ≈ 0.64, s ≈ 0.39 (test set). These models [24] are
based on the representation of the molecular structure by
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Fig. 2 Experimental (expr) and calculated (calc) lgNOAEL values for three random splits

Table 5 Correlation between split defect calculated with Eq. 6 and the
predictive potential of the models

Split Split defect r2validation RMSEvalidation

1 30.1 0.5832 0.4473

2 21.3 0.5843 0.4571

3 38.1 0.6049 0.4272

4 18.2 0.5188 0.4896

5 40.1 0.6300 0.4424

6 25.2 0.5672 0.4507

7 26.1 0.6210 0.4424

8 24.2 0.5224 0.4859

9 22.3 0.6006 0.4500

10 25.2 0.5800 0.4400

11 16.4 0.5676 0.4800

12 16.3 0.5156 0.5334

solely SMILES (without data on the molecular graph). In
fact, compounds examined here are characterized by a bigger
variety of the molecular structure; therefore, QSAR mod-

els for these substances which are based on solely SMILES
are characterized by a poor statistical quality. Fortunately,
the hybrid approach (SMILES together with the molecu-
lar graph) gives the satisfactory statistical quality of the
models for these very varied compounds calculated with
Eqs. 7–9.

The suggested criteria for the estimation of the defect for
the individual SMILES and GAO (Defect SMILES, Eq. 4)
and for the estimation of the distribution into the training set
and test set (Split Defect, Eq. 6) can be a convenient tool for
the QSAR analysis. The Defect SMILES gives possibility to
detect “suspected” compounds, thus this criterion is a tool
to define the domain of applicability. The Split Defect gives
possibility to compare different distribution into the training
set and test set and to select preferable distribution from point
of view of robustness of a QSAR. The disadvantage of these
criteria is their dependence upon the distribution of available
data into the training set and test set.

The Supplementary materials section (Table S1) contains
the numerical data on the correlation weights for SAk calcu-
lated with three different splits into the training and test sets.
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Fig. 3 Correlations between the Split Defect and the determination
coefficient (r2) for the external validation set (for 12 random splits)

Fig. 4 Correlations between the Split Defect and the root-mean-square
error (RMSE) for the external validation set (for 12 random splits)

There are a group of SAk which are stable promoters of the
lgNOAEL increase (i.e., SAk characterized by (i) significant
frequency in the training set and (ii) stable positive values
of correlation weights) and group of stable promoters of the
lgNOAEL decrease (i.e., SAk characterized by (i) significant
frequency in the training set and (ii) stable negative values
of correlation weights). The above described SAk defects
are also represented in Table S1 for split 1, 2, and 3. Table
S2 contains the numerical data on the correlation weights of
SMILES attributes and GAO invariants for twelve random
splits into the training set and the test set. Table S3 contains
an example of the DCW (1, 30) calculation for a substance
represented by the SMILES andGAO (acetoin, CAS 513-86-
0). Table S4 contains the list of compounds that were selected
as the external validation set. Table S5 contains twelve ran-
dom splits into the training and test set which are examined
in this work.

Thus, the suggested models have (i) definition of the
domain of applicability (Tables 3, 4); (ii) the mechanistic

interpretation in terms of the promoters of increase / decrease
for lgNOAEL; and (iii) unambiguous algorithm to build up
model. Consequently, describedmodels are built up in accor-
dance with OECD principles [21,22].

Conclusions

The NOAEL can be modeled by the Monte Carlo technique
using SMILES and graph of atomic orbitals for the repre-
sentation of the molecular structure. The statistical quality
of models for the NOAEL calculated with the 2D descriptors
is comparable with the statistical quality of models based
on the 3D representation of the molecular structure with
additional input of the physicochemical data. There are cor-
relations between predictive potential of the models and the
Split Defect calculated with Eq. 6 (Table 5). It should be
noted that the described approach based on 2D descriptors
can be used to build up predictive models for the cases of
other complex endpoints, i.e., endpoints related to nanoma-
terials [25,26] and endpoints related to peptides [27].
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